
Universally Composable Time-Stamping Schemes with
Audit ?

Ahto Buldas1,2,3,??, Peeter Laud1,2,? ? ?, Märt Saarepera, and Jan Willemson1,4

1 University of Tartu, Liivi 2, 50409 Tartu, Estonia.
2 Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia.

3 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.
4 Playtech Estonia.

Abstract. We present a Universally Composable (UC) time-stamping scheme
based on universal one-way hash functions. The model we use contains an ideal
auditing functionality, the task of which is to check that the rounds’ digests are
correctly computed. Our scheme uses hash-trees and is just aslight modification
of the known schemes of Haber-Stornetta and Benaloh-de Mare, but both the
modifications and the audit functionality are crucial for provable security. We
prove that our scheme is nearly optimal – in every UC time-stamping scheme,
almost all time stamp requests must be communicated to the auditor.

1 Introduction

Time-stamping is an important data integrity protection mechanism the main objective
of which is to prove that electronic records existed at certain time. The scope of appli-
cations of time-stamping is very large and the combined risks related to time stamps
are potentially unbounded. Hence, the standard of securityfor time-stamping schemes
must be very high. It is highly unlikely that currently popular trusted third party so-
lutions are sufficient for all needs, since the practice has shown that insider threats by
far exceed the outside ones. This motivates the developmentof time-stamping schemes
that are provably secure even against malicious insiders.

Several constructions of potentially insider-resistant time-stamping schemes have
been proposed [6, 15, 16, 7, 20] based on collision-resistant hash functions, but only
few analytical arguments confirm the security of these schemes. Two early attempts to
sketch a security proof [6, 16] were recently shown to be flawed [9]. Presently, there
are two schemes with correct security proofs: a non-interactive time-stamping scheme
in the bounded storage model [20] and a bounded hash-chain scheme in the standard
model [9]. However, the schemes in use (like [26–28]) still have no security proofs.

The formal security conditions for time-stamping schemes are still a subject un-
der discussion. The early works [6, 15, 16] focused on theconsistency of databases
maintained by time-stamping service providers. It was required to be hard to change
the database without compromising its consistency with a digest published in a secure

? This paper is an extended abstract. Proofs of the results arepresented in the full version [8].
?? Supported by Estonian SF grant no. 5870.

? ? ? Supported by Estonian SF grant no. 6095.

repository. In [9] it was pointed out that one of the implicitassumptions of the con-
sistency condition – the adversary knows at least one pre-image of a published digest
– may be unjustified for malicious service providers. An independent security con-
dition was proposed [9] in which the stream of time stamp requests is modeled as a
high-entropy distribution. Considering the wide range of time-stamping applications, it
cannot be taken for granted that these two conditions are sufficient.Universal Compos-
ability (UC) framework[1–4, 10, 22–24] provides a more general approach to security
– rather than studyingad hocbehavior of adversaries, it is proved that real security
primitives faithfully implement a certainideal primitive the security of which is evi-
dent. Therefore,all security features of the ideal primitive (including thead hocones
mentioned above) are transferred to the real primitive.

In this paper, we construct universally composable time-stamping schemes under
an assumption that they contain a third party auditing functionality. The idea of third-
party audit in time-stamping schemes is natural and certainly not new. It has been pro-
posed as one of the additional security measures in commercial time-stamping schemes
[26]. Still, the formal security conditions presented thusfar do not include the audit
explicitly. We include audit functions into a general time-stamping scheme and present
new security conditions that reflect two different types of auditability – audit-supported
publishing and multi-round audit. We present a practical construction of an auditable
time-stamping scheme that uses slightly modified Merkle trees [19] and collision resis-
tant (or universal one-way) hash functions. We prove that the scheme is secure in the
sense of conventional security conditions, assuming that the underlaying hash function
is collision-resistant. The auditor is crucial in the scheme – the negative results in [9]
imply that the ordinary reduction techniques are insufficient for such proofs in case no
additional functionalities are added to the time-stampingscheme.

We also prove that our construction of a time-stamping scheme with audit-supported
publishing is universally composable, if the hash functionused is universally one-way.
Our construction turns out to be nearly optimal in the sense of communication between
the time-stamping service and the auditor.

In Section 2, we present notations and definitions. In Section 3, we define auditable
time-stamping schemes and the corresponding security notions. In Section 4, we con-
struct an auditable time-stamping scheme based on collision-resistant hash functions.
In Section 5, we outline a proof that our construction gives auniversally composable
time-stamping scheme with audit-supported publishing. InSection 6, we prove that our
construction is nearly optimal.

2 Notation and Definitions

By x ← D we mean thatx is chosen randomly according to a distributionD. If A is
a probabilistic function or a Turing machine, thenx ← A(y) means thatx is chosen
according to the output distribution ofA on an inputy. By Un we denote the uni-
form distribution on{0, 1}n. If D1, . . . ,Dm are distributions andF (x1, . . . , xm) is a
predicate, thenPr[x1 ← D1, . . . , xm ← Dm: F (x1, . . . , xm)] denotes the probability
thatF (x1, . . . , xm) is true after the ordered assignment ofx1, . . . , xm. For functions
f, g: N → R, we writef(k) = O(g(k)) if there arec, k0 ∈ R, so thatf(k) ≤ cg(k)

(∀k > k0). We writef(k) = ω(g(k)) if lim
k→∞

g(k)
f(k) = 0. If f(k) = k−ω(1), thenf is

negligible. A Turing machineM is polynomial-time(poly-time) if it runs in timekO(1),
wherek denotes the input size. LetFP be the class of all functionsf : {0, 1}∗ → {0, 1}∗

computable by a poly-timeM. A distributionD on{0, 1}∗ is poly-sampleableif it is an
output distribution of a poly-time Turing machine. A poly-sampleable distributionD is
unpredictableif Pr[L← Π(1k), x← D: x ∈ L] = k−ω(1) for every predictorΠ ∈ FP.
We say thatD1 andD2 areindistinguishable(and writeD1 ≈ D2) if for every distin-
guisher∆ ∈ FP: | Pr[x← D1: ∆(1k, x) = 1]−Pr[x← D2: ∆(1k, x) = 1] |= k−ω(1).

A collision-resistant hash functionis a familyh = {hk: {0, 1}∗ → {0, 1}k}k∈N,
such thatδ(k) = Pr[hk ← F, (x, x′)← A(1k, hk): x 6= x′, hk(x) = hk(x′)] = k−ω(1)

for everyA ∈ FP. Here,F is a poly-sampleable distribution onF∗. A familiy h, such
thatPr[x ← A1(1

k), hk ← F, x′ ← A2(hk, x): x 6= x′, hk(x) = hk(x′)] = k−ω(1)

for every(A1, A2) ∈ FP, is called aUniversal One-Way Hash Function(UOWHF).
UOWHFs can be built from one-way functions [21]. We writeh(x) instead ofhk(x).

3 Auditable Time-Stamping Schemes

3.1 General Definition of a Time-Stamping Scheme

A time-stamping schemeTS is capable of: (1) assigning a time-valuet ∈ N to each
requestx ∈ {0, 1}k, and (2) verifying whetherx was time-stamped during thet-th time
unit (hour, day, week, etc.). Time-stamping schemes consist of the following processes:

– Repository – a write only database that receivesk-bit digests, adds them to a list
D. Repository also receives queriesτ ∈ N and returnsD[τ] if τ ≤|D|. Otherwise,
Repository returnsNIL. We assume that the repository is updated in a regular way
(say daily), and the update time/date is known to the users ofthe system. This is a
link between the real time and the modeled time valuet =|D|. Practical schemes
[26] use newspaper-publishing as theRepository. Hence, it is reasonable to assume
thatRepository is costly and to keep the number of stored bits as small as possible.

– Stamper – operates in discrete time intervals calledrounds. During thet-th round,
Stamper receives requestsx and returns pairs(x, t). We assume thatStamper

”knows” how many digests have been stored toRepository. Let Lt be the list of
all requests received during thet-th round. In the end of the round,Stamper cre-
ates acertificatec = Stp(x; Lt, Lt−1, . . . , L1) for each requestx ∈ Lt. Besides,
Stamper computes a digestdt = Pub(Lt, . . . , L1) and sendsdt to Repository.

– Verifier – a computing environment for verifying time stamps. In practice, each
user may have its ownVerifier but for the security analysis, it is sufficient to have
only one. It is assumed thatVerifier has a tamperproof access toRepository. On
input (x, t), Verifier obtains a certificatec from Stamper, and a digestd = D[t]
from Repository, and returnsVer(x, c, d) ∈ {yes, no}. It is not specified howc is
transmitted fromStamper to Verifier. In practice,c can be stored together withx.
Hence, the size ofc should be reasonable. Note thatx can be verified only after the
digestdt is sent toRepository. This is acceptable, because in the applications we
address,x is verified long after stamping.

– Client – any application-environment that usesStamper andVerifier.

Definition 1 (Correctness).A triple TS = (Stp, Pub, Ver) is a time-stamping scheme
if Ver(xn, Stp(x,L), Pub(L)) = yes for everyL = (Lt, . . . , L1), andx ∈ Lt.

3.2 Security Conditions

It is assumed that an adversaryA is able to corruptStamper, some instances ofClient

and some instances ofVerifier. TheRepository is assumed to be non-corrupting. After
closing thet-th round (i.e. after publishingdt) it should be impossible to add a new
requestx to the setLt of requests and prove to aVerifier that x ∈ Lt by finding a
suitable certificatec. This suggests the following security condition:

Definition 2 (Consistency).A time-stamping scheme isconsistentif for everyA ∈ FP:

Pr[(Lt,. . .,L1,c,x)←A(1k): x 6∈Lt, Ver(x, c, Pub(Lt, . . . , L1))=yes] = k−ω(1) . (1)

The condition (1) is not completely satisfactory because the adversary has to explic-
itly construct the listsLt, . . . , L1 of time-stamped requests. Back-dating attacks can be
possible withoutA creating these lists. For example,A may publish a valued which
is not necessarily computed by using thePub function and then, after obtaining a new
(random)x, to findc so thatVer(x, c, d) = yes. This suggests a different condition [9]:

Definition 3 (Security against random back-dating).A time-stamping scheme is se-
cure if for every unpredictable distributionD on{0, 1}k and(A1, A2) ∈ FP:

Pr[(d, a)←A1(1
k), x←D, c←A2(x, a): Ver(x, c, d)=yes] = k−ω(1) . (2)

In some applications, additional security features (like confidentiality of messages,
availability etc.) of time-stamping schemes are required.We do not study these features.

3.3 Time-Stamping Schemes with Audit

It is essential for the security of time-stamping that a corruptedStamper is not able
to publish a valued in Repository without actually knowing a database(x1, . . . , xn)
such thatPub(x1, . . . , xn) = d. Otherwise, it could be difficult (or even impossible)
to find a security proof [9]. The easiest way to prove such knowledge is sending the
requestsx1, . . . , xn to a trustedAuditor who checks ifPub(x1, . . . , xn) = d. Audit
can be performed before or after publishing. We observe two different audit models:

– Audit-Supported Publishing. In this model, the roles ofRepository andAuditor are
merged. If thet-th round is closed, theAuditor/Repository receives a listLt of bit-
strings and an audit report fromStamper and checks their correctness. The digest
is not published if the audit report is incorrect.

– Multi-Round Audit. In this model, audit reports are checked long after publishing,
which is much more close to the real-life (yearly) audit.

We define two additional functions:Rep for creating a reportrt = Rep(Lt, . . . , L1),
andAud for checking the consistency ofrt anddt = Pub(Lt, . . . , L1).

Definition 4. A 5-tupleATS = (Stp,Pub,Ver,Rep,Aud) is anauditable time-stamping
schemeif Aud(Rep(L), Pub(L)) = yes, for anyL = (Lt, . . . , L1) (properly created
audit reports verify successfully), and(Stp, Pub, Ver) is a time-stamping scheme.

In this paper, we assume thatAud(Lt, . . . , L1) depends only on the first argument
Lt. The results we obtain for such schemes can be easily generalized.

Schemes with Audit-Supported Publishing. The audit is performed during (or be-
fore) publishing. The auditor is a trusted middle-man betweenStamper andPublisher.
After the t-th round,Stamper computes a digestdt = Pub(Lt, . . . , L1) and an audit
reportrt = Rep(Lt, . . . , L1). Having sent a pair(d, r), the auditor checks whether
Aud(r, d) = yes and sendsd to Repository. Hence, a successful publishing is possible
only if a correct audit report is sent to the auditor. A time-stamping scheme with audit-
supported publishing is secure against random back-datingif for every unpredictableD
and for every(A1, A2) ∈ FP:

Pr[(d,r,a)←A1(1
k), x←D, c←A2(x,a): Ver(x,c,d)=yes= Aud(r, d)]=k−ω(1) . (3)

Schemes with Multi-Round Audit. Publishing is done like in the schemes with-
out audit. The audit function is performed after publishing. If N rounds are passed,
Stamper computes audit reportsr1 = Rep(L1), ..., rN = Rep(LN , . . . , L1) and sends
(r1, . . . , rN) to the auditor. Fort = 1 . . .N , the auditor obtainsdt from Repository

and computesAud(rt, dt). If for somet the result isno then all users are informed. A
time-stamping scheme with multi-round audit is secure against random back-dating if
for every unpredictableD and for every(A1, A2) ∈ FP:

Pr[(d,a)←A1(1
k), x←D, (c,r)←A2(x, a): Ver(x,c,d)=yes=Aud(r,d)]=k−ω(1) . (4)

3.4 Records of Arbitrary Length

The definitions above assume that all time stamp requests arek bits long. To time-stamp
longer records, practical schemes use collision-resistant hash functions (at the client
side) to make requests shorter. Since these hash functions have influence on security,
they have to show up in the security conditions.

Definition 5. A time-stamping scheme with audit-supported publishing issecure rela-
tive to a client side hash functionh: {0, 1}∗ → {0, 1}k if for every unpredictableD on
{0, 1}∗ and for every(A1, A2) ∈ FP:

Pr[(d,r,a)←A1(1
k), X←D, c←A2(X,a): Ver(h(X),c,d)=yes=Aud(r,d)]=k−ω(1) . (5)

A time-stamping scheme with multi-round audit is said to be secure relative to a client
side hash functionh if for every unpredictableD and for every(A1, A2) ∈ FP:

Pr[(d,a)←A1(1
k),X←D, (c,r)←A2(X,a): Ver(h(X),c,d)=yes=Aud(r, d)]=k−ω(1) . (6)

Lemma 1. If D is unpredictable andh is collision-resistant thenh(D) is unpredictable.

In spite of Lemma 1, a secure auditable scheme in the sense of (3) or (4) is not neces-
sarily secure relative to every collision-resistant hash function ((5),(6)) because, in (5)
and (6),A2 has more information (anh-pre-imageX of x) than in (3) and (4).

4 Construction of an Auditable Time-Stamping Scheme

Let h be a collision-resistant hash function, or a UOWHF chosen byRepository. We
defineATSh = (Pubh, Stph, Verh, Reph, Audh) and prove that this 5-tuple of func-
tions form a secure time-stamping scheme with audit. LetL = (x0, . . . , xm−1) be all
requests received during thet-th round. For simplicity, we assume thatm = 2`.

The publishing functionPubh(L) builds a complete binary tree of height` each vertex
v of which has a(k + 1)-bit labelΛ[v] = b‖H [v], whereb ∈ {0, 1} indicates whether
v is a leaf (b = 0 iff v is a leaf) andH [v] ∈ {0, 1}k is a hash value computed by the
following (inductive) scheme. For then-th leafv, we defineH [v] = xn, andH [v] =
h(Λ[vL]‖Λ[vR]) for any non-leafv, wherevL andvR are the left- and the right child of
v, respectively. As a result,Pubh(L) returns a(k + 1)-bit root label of the tree.

The stamping functionStph(L, n) builds the same tree as above. Letv be then-th
leaf andv = v0, v1, . . . , v`−1, v` be the unique path fromv to the root vertex (v`),
i.e. vi is a child ofvi+1 for everyi ∈ {0, . . . , ` − 1}. Let v′0, v

′
1, . . . , v

′
`−1 denote the

siblings ofv0, v1, . . . , v`−1, respectively. Letzi = Λ[v′i] for everyi ∈ {0, . . . , ` − 1}
andz = (z0, . . . , z`−1). The certificate isc = Stph(L, n) = (n, z).

The verification functionVerh(x, (n, z), d) recomputesd (based onx and(n, z)) and
compares the results. Letn = n`′−1n`′−2 . . . n0 be the binary representation ofn and
z = (z0, z1, . . . , z`′−1). The functionVerh computes sequencesλ = (λ0,λ1, . . . ,λ`′)∈
(

{0, 1}k+1
)`′

andχ = (χ0, χ1, . . . , χ`′) ∈
(

{0, 1}k
)`′

inductively, so thatχ0 = x,
λ0 := 0‖x, and for everyi > 0, λi = 1‖χi, where

χi :=

{

h(zi‖λi−1) if ni−1 = 1
h(λi−1‖zi) if ni−1 = 0

. (7)

The verification procedure outputsyes, iff λ`′ = d.

The report functionis trivial, i.e. Reph(L) = L for every listL. The audit function
Audh(L, d) computesd′ = Pubh(L) and returnsyes iff d′ = d.

Lemma 2. (A) If x 6∈ L, andAudh(L, d) = Verh(x, c, d) = yes then theh-calls of
Verh andPubh contain a collision forh. (B) If L 6= L′ andPubh(L) = Pubh(L′) then
theh-calls performed byPubh contain a collision forh.

Theorem 1. If h is collision resistant then a time-stamping schemeATSh with audit-
supported publishing is secure relative to a client-side hash functionh.

Theorem 2. If h is collision resistant then a time-stamping schemeATSh with multi-
round audit is secure relative to a client-side hash function h.

Proofs of these results are presented in the full version [8].

Lemma 2 directly implies the consistency condition (1) forATSh. Hence, we have
proved that our construction is secure in the conventional sense. Note also that it is

probablynot possibleto prove that the schemeTSh without audit is secure against
random back-dating (2), based on the collision-resistanceof h. The reason is that one
can find an oracleO and choose a hash functionh (that usesO) so thath is collision-
resistant butTSh is still insecure [9]. As the ordinary reduction techniquesrelativize,
the security ofTSh cannot be proved (in ordinary way) in the real world either. In this
sense, the audit functionality is crucial for provable security.

5 Universally Composable Time-Stamping Schemes

5.1 Universal Composability Framework

To prove that a cryptographic primitive is secure inevery reasonable applicationthe
universal composability(UC) paradigm is used [1–4, 10–12,22–24]. If the reader is not
familiar with the UC paradigm, we recommend to study the seminal works by Canetti
[11, 12] and the monograph on composability by Lindell [17].Rather than usingad hoc
behavior of adversaries, the UC paradigm defines anideal primitivewhich is ”obviously
secure” and then proves that ifA ∈ FP is an adversary for an application of the real
primitive then there is another adversaryA′ ∈ FP for the same application in which the
real primitive is replaced with the ideal primitive. Loosely speaking, no security incident
in any application of the primitive is caused by the difference between the real and the
ideal primitives –the real functionality faithfully implements the ideal functionality.

We use the language of Finite State Machine (FSM) theory borrowed from Pfitz-
mann [24] when describing the UC formalism. Every componentof the system (for a
fixed value ofk) is a (probabilistic) FSM with input- and output ports. Eachport has
a name and a type (in or out). By a composition〈M1, M2〉 of two machinesM1 and
M2 we mean a network of machines obtained by connecting the input and output port
pairs in a certain (pre-defined) way. For example, pairs withidentical names can be
connected. The precise formalism for describing the connections is unimportant in this
paper, because the networks we use are very simple. We assumethat each input port
is buffered, whereas the length of the buffer is unlimited. When analyzing a particular
machine, we use the following abbreviations. Byinν → x we denote the event that
the machine has inputx in the portinν . By y → outν we mean thaty is sent to the
output portoutν . To overcome the difficulties related to the asynchronous behavior of
the network, it is assumed that no two machines run at the sametime. Technically, this
is achieved by introducing the clock-ports to the system. Each machine, after finishing
its work, can clock (give the token to) only one machine. In this paper, we use clocked
output signals. Byx

.
→ outν we mean thatx is sent to the output port namedν and the

token is given to the machine with input portinν . By theviewof Mi in a composition
M = 〈M1, . . . , Mn〉 we mean the sequence of all input/output signals ofMi in a partic-
ular run ofM. The view is denoted by VIEWMi

〈M1, . . . , Mn〉. In general, the view is a
probability space.

In the UC framework, we have an ideal time-stamping schemeTSI, a real scheme
TSR, and an environmentClient. A composition〈Client, TSR〉 is called areal appli-
cation, while 〈Client, TSI〉 is called anideal application. Each machine has special
input/output ports for an adversaryA.

Definition 6 (Universal Composability).TSR is universally composable, if for every
A ∈ FP there is aA′ ∈ FP, so that for everyClient ∈ FP: V IEWClient〈Client,TSR,A〉 ≈
V IEWClient〈Client,TSI,A

′〉.

Informally, this condition means that anything that may happen to the real application
〈Client, TSR〉may also happen to the ideal application〈Client, TSI〉.

In the proofs of UC, a simulatorS is constructed that usesA as a black-box, i.e.
A′ = 〈S, A〉. It is then proved that〈TSI, S〉 andTSR behave identically, except when
certain cryptographic primitives (used byTSR) are broken. Hence, if the primitives are
believed to be secure, this implies the indistinguishability of views and also the security
of TSR in the strongest possible sense. To prove the identical behavior of 〈TSI, S〉 and
TSR, abisimulationbetween these two machines is constructed.

5.2 On the Model

Some primitives are hard to cast in terms of the UC framework.Thecommitment prob-
lemoccurs, meaning that a simulator that acts as an intermediary between the real-world
adversary and the ideal functionality has to fix the value of acertain data item without
knowing all the components it was created from, and also without the ability to present
instead of this data item something that is and remains indistinguishable from it. Canetti
and Fishlin proved [13] that UC bit-commitment is impossible in the ”plain model” (i.e.
a model without ideal functionalities) but it becomes possible in theCommon Reference
String (CRS)model, where a common (and accessible) random string is added to the
system as an ideal functionality. Similar problems occur when trying to define univer-
sally composable time-stamping schemes, but fortunately,the problems dissapear if an
ideal audit functionality(represented in our model byRepository that is merged with
Auditor) is added to the system. The universal composability can be proved based on
theuniversal one-waynessof a hash functionh, assuming that a new random instance
of h is generated (byRepository) during each round. The reduction we obtain is linear-
preserving and gives good practical security guarantees.

Hence, our UC Time-Stamping scheme construction is not in the plain model. How-
ever, adding the trustedRepository to the system is reasonable because: (1) there are
real-life systems that behave in a similar way (e.g. newspapers); (2) it is possible to
implement similar functionalities in the CRS model by usingpublic-key cryptography.

5.3 Ideal Time-Stamping Scheme

The ideal scheme is a secure host that stores for each round numbert a setLt of all
bit-strings that were stamped during thet-th round. The value oft is initially 0 and is
incremented each time the round is closed. In our real scheme, we allow the stamp-
ing functionality to be corrupted. This is reflected in the ideal scheme by giving the
adversary complete control on which bit-strings will be considered stamped during the
current round. As we shall see, at the end of the roundt the adversary sends the contents
of Lt to the secure host. Hence no availability is guaranteed. Theimportant property is,
however, that once thet-th round has ended, no more bit-strings can be added toLt —
back-datingis not possible.

In the real world, the verification of a time-stamp may fail for a number of reasons
that are under the control of the adversary. For example, therepository may be currently
unavailable or it may be available but not yet contain the digest of the round we are
interested in. In this case we cannot rely on the time-stamp and must behave as if it was
invalid. In the ideal world we model this situation by allowing the adversary to declare
any verification attempt unsuccessful. However, the adversary is unable to declare a
time-stamp valid if it really was not.

The internal state of the ideal time-stamping schemeTSI consists of an indexed
list LI each elementLI[t] of which is a set ofk-bit strings. Initially,LI = bc. The
ideal schemeTSI (Fig. 1, left) offers service on portsinreq, outst, inver, andoutres. The
other ports (outreq, inst, inaud, outver, andinres) are intended for communication with an
adversaryA′. In the following, we describe the behavior ofTSI by defining its reaction
to any possible input.

– If inreq → x thenx→ outreq.
– If inst → (x, t) then(x, t)→ outreq.
– If inaud → L thenLI := LI‖L.
– If inver → (x, τ) then(x, τ)→ outver.
– If inres → (x, b̄, τ) thenb := b̄ &True(x ∈ LI[τ]) and(x, b, τ)→ outres.

inst

inres

outst

outres

inst

inaud

outst

outaud

outres

A′

L
Client TSI

outver outverinver inver

(x, τ) (x, τ)

outreq outreqinreq inreq

(x,b̄,τ)

(x, t) (x, t)

xx

LI

inres

(x,b,τ)

inst outst inst outst

inveroutver inver outver

outnumindig

outreq outreqinreq inreq

dτ τ

innumoutdir

Repository

Stamper

outres outcertinres

Verifier

D

(x,b,τ)

outaudinaud

(x, t)

x

(x, t)

A

(x, τ) (x, τ)

(r, d)

x

Client

incert
(x,c,τ)

Fig. 1.The ideal schemeTSI and the real schemeTSR = 〈Stamper, Repository, Verifier〉.

5.4 Real Scheme

In the real scheme, the trusted host is replaced by a number ofVerifier hosts. Some of
them may be corrupted but we observe only one non-corruptedVerifier. This is allowed
because in the standard time-stamping setting, there is no communication between ver-
ifiers. We assume that the channel betweenRepository and (non-corrupted)Verifier is

tamperproof. It is a reasonable practical assumption because channels with similar se-
curity properties (e.g. newspapers) exist in the real life.

Having obtained a verification request(x, t) (which reads ”Wasx time-stamped
during thet-th round?”),Verifier obtains the correspondingrt from Repository and
applies theVerh procedure. However,Verifier needs a certificatec for verification. We
take into account possible (malicious) modification of the certificate before verification.
Therefore, it is natural to assume that the certificate is entirely provided by the adversary
A. The real schemeTSR (Fig. 1, right) consists of three components:

– Stamper – a prototype for a server that receives time stamp requests and returns
time stamps toClient. As we assume that the adversaryA has full control over
Stamper, we defineStamper as a stateless intermediary betweenClient and A.
Stamper offers service on portsinreq andoutst. Two other ports (outreq and inst)
are for the communication withA. The behavior ofStamper is defined as follows:

• If inreq → x thenx→ outreq.
• If inst → (x, t) then(x, t)→ outst.

– Repository – a prototype for a secure repository that publishes the digests of rounds.
The internal state ofRepository consists of a (initially empty) listD of k-bit strings.
Repository offers service on portsinnum andoutdir. The third portinaud is for the
communication withA. The behavior ofRepository is defined as follows:

• If innum → τ andτ <|D|, thendτ := D[τ] anddτ → outdig.
• If innum → τ andτ ≥|D|, thenNIL→ outdig.
• If inaud → (r, d) andAud(r, d) = yes thenD := D‖d.

– Verifier – a prototype for a real verification environment, which typically is a trusted
client computer.Verifier receives verification requests and answers with a veri-
fication result. It is assumed thatVerifier is able to obtain the digestsdτ form
Repository in a tamperproof way. The internal state ofVerifier consists of a bit-
string variabler. Initially, r = bc. Verifier offers service on portsinver andoutres.
Two ports –outnum andindig – are for requesting the digests fromRepository, and
two last ports (outver and indig) are for the communication withA. Let y

.
→ outc

denote the event thaty is sent to the output channeloutc and the corresponding
connection is clocked. The behavior ofVerifier is defined as follows:

• If inver → (x, τ) then(x, τ)→ outver.

• If incert → (x, c, τ) thenr := (x, c, τ) andτ
.
→ outnum.

• If indig → dτ ∈ {0, 1}k and r = (x, c, τ), then b := Ver(x, c, dτ) and
(x, b, τ)→ outres.
• If indig → NIL andr = (x, c, τ), then(x, no, τ)→ outres.

For completing the description of the real scheme, it is sufficient to give efficient
constructions forPub, Aud, andVer, i.e. exactly the components of an auditable time-
scheme that appear in the security conditions (3), (4), (5),and (6). Hence, for any au-
ditable time-stamping scheme it is reasonable to speak about universal composability
as a security condition.

5.5 Simulator for ATS
h

We define a simulator for the schemeATSh, we presented in Section 4. The internal
state of the simulatorS (Fig. 2, right) consists of two lists(DI, CI) and a bit-stringrI.
The elements ofDI arek-bit strings, while the elements ofCI are sets ofk-bit strings.
Initially, DI = bc, CI = (∅, ∅, . . .), andrI = bc. The simulator has five ports (inreq, outst,
outaud, inver, andoutres) for communicating withTSI and five ports (outreq, inst, inaud,
outver, andincert) for communicating withA. The behavior ofS is defined as follows:

– If inreq → x thenx→ outreq.

– If inst → (x, t) then(x, t)
.
→ outst.

– If inaud → (L, d) andd = Pub(L), thenDI := DI‖d, andL
.
→ outaud.

– If inver → (x, τ) then(x, τ)→ outver.
– If incert → (x, c, τ) thenrI := (x, c, τ), b̄ := τ <|DI | & Ver(x, c, DI[τ]), and

(x, b̄, τ)
.
→ outres. If b̄ = yes thenCI[τ] := CI[τ] ∪ {x}.

outst inst

inver outver

outreqinreq

Repository

Stamper

incertoutres
(x,b,τ)

(x, t)

x

(x, t)

(x, τ) (x, τ)

x

MR

C

(r, d)
inaud

LD

Verifier

dτ τ

(x,c,τ)
outres

inst

inres

outst inst

incertoutres

MI

inver outver outverinver

(x, τ)(x, τ)

(x,b,τ) (x,b̄,τ)

inreq outreq outreq
outst

x x

(x, t) (x, t)

inreq

x

LI

L
inaudinaud outaud

TSI S

(x, t)

(r, d)

(x, τ)

(x,c,τ)DI CI

Fig. 2.The real machineMR, the simulatorS, and the ideal machineMI = 〈TSI, S〉.

5.6 Bisimilarity of the Real- and the Ideal Machines

We start the proof by augmenting the state of the componentsRepository andVerifier

of the real functionality. From the following description it is obvious that this extra state
has no influence on the behavior of these components as the existing parts make no use
of the new state. We add an initially empty listL of sets ofk-bit strings to the state of
Repository. We also replace the third item in the description of its behavior by

– If inaud → (r, d) andAud(r, d) = yes thenD := D‖d, andL := L‖r.

We add a listC of sets ofk-bit strings to the state ofVerifier. Initially, C = (∅, ∅, . . .).
We replace the third item in the description of the behavior of Verifier by

– If indig → dτ ∈ {0, 1}k andr = (x, c, τ), thenb := Ver(x, c, dτ) and(x, b, τ) →
outres. If b = yes thenC[τ] := C[τ] ∪ {x}.

Let MR = TSR be the real machine andMI = 〈TSI, S〉 be the ideal machine
(Fig. 2). A states = (L, D, C, r) is said to befaulty if ∃τ : C[τ] 6⊆ L[τ]. Let SR andSI

be the sets of states ofMR andMI, respectively. LetFR andFI be the corresponding
sets of faulty states. LetI andO be the sets of inputs and outputs (common forMR and
MI). Let δR: I × SR → SR be the next-state function ofMR andλR: I × SR → O be
the output function ofMR. We defineδI andλI analogously forMI. Let s0

R ands0
I be

the initial states of the corresponding machines. By Lemma 2, if one of the machines
reaches a faulty state then theh-calls performed so far comprise a collision forh.

Definition 7. Two machinesMR andMI are said to bebisimilar with error(FR, FI),
if there is a binary relation (called abisimulation) β ⊆ SR × SI such that(s0

R, s0
I) ∈

β and for any pair of states(sR, sI) ∈ β and for any inputi ∈ I, at least one of
the following three conditions holds:(1) δR(i, sR) ∈ FR, (2) δI(i, sI) ∈ FI, or (3)
(δR(i, sR), δI(i, sI)) ∈ β andλR(i, sR) = λI(i, sI).

Theorem 3. The machinesMR = TSR andMI = 〈TSI, S〉 are bisimilar with error
(FR, FI), whereas the bisimulationβ is defined as follows:

(L, D, C, r)β (LI, DI, CI, rI) ≡ (L = LI)&(D = DI)&(C = CI)&(r = rI) .

Corollary 1. If h is a collision-resistant (or universal one-way) hash function then
ATSh is a UC time-stamping scheme with audit-supported publishing.

Proofs of these results are presented in the full version [8].

6 Size of the Audit Report

In ATSh, theRep function is not length-decreasing which means that the network load
(and the computations) are doubled, compared to the schemeswithout audit. It is natural
to ask whether the length of the report can be reduced. The answer turns out to be
negative: in every UC time-stamping scheme with audit-supported publishing|rt|≈|Lt|.

We construct aClient and an adversaryA (for 〈Client, TSR〉) so that no efficient
adversaryA′ (for 〈Client, TSI〉) can simulateA unless|Rep(rt)|≈|Lt|. Our construction
exploits the commitment problem – the adversaryA′ (or a simulator) knows onlydt but
has to sendLt to TSI, and henceLt should be efficiently computable fromdt.

The internal state ofClient consists of ap(k)-element arrayL = (x1, . . . , xp(k)) ∈

{0, 1}k×p(k) (wherep(k) = kO(1)), a k-bit string z (initially 0), and a boolean value
RoundOver that is initially false. Client reacts to the input events as follows:

– If inA → init then theClient generatesx1, . . . , xp(k) independently at random,
computesr = Rep(L), d = Pub(L), and outputs(r, d)→ outA.

– If inA → round then theClient outputs(0k, 1)
.
→ outver.

– If inver → (0k, yes, 1) (a confirmation that the round is closed) then theClient sets
RoundOver := true and outputsL→ outA (revealsL to the adversary).

– If inA → verify thenClient generatesi← {1, . . . , p(k)} uniformly at random, sets
z := xi and outputs(z, 0)

.
→ outver.

– If inver → (z, yes, 0) andRoundOver = yes thenClient outputsyes→ outA.

The adversaryA is defined as follows. The internal state ofA consists of ap(k)-
element arrayLA = (a1, . . . , ap(k)) ∈ {0, 1}k×p(k) (wherep(k) = kO(1)). First of all,
the adversaryA outputsinit→ outClient and then reacts to the input events as follows:

– If inClient → (r, d) thenA outputs(r, d)
.
→ outaud. After getting control again, the

adversaryA outputs(Rep(0k), Pub(0k))
.
→ outaud. Finally, A outputsround

.
→

outClient.
– If inver → (0k, 1) thenA outputs(0k, Stp(0k, 1), 0)→ outcert.
– If inClient → L thenA setsLA := L and outputsverify

.
→ outClient.

– If inver → (z, 0) thenA finds ani, such thatLA = z, computesc := Stp(i, LA),
and outputs(z, c, 0)→ outcert. The adversary halts if there is no suchi.

With probability one, VIEWClient〈Client, TSR, A〉 contains the outputyes from Client.
LetA′∈FP and VIEWClient〈Client, TSR, A〉 ≈ V IEWClient〈Client, TSI, A

′〉. Due to the
indistinguishability, with probability1 − k−ω(1) the view VIEWClient〈Client, TSI, A

′〉
contains the outputyes from Client. From the description ofTSI, it follows that with
probability1−k−ω(1) the adversaryA′ (based on partial information(Rep(L),Pub(L)))
is capable of findingLA such thatxi ∈ LA. Lemma 3 below shows that suchA′ is
possible only if the bit-length of(Rep(L), Pub(L)) is≈ k · p(k).

Lemma 3. Let X = (X1, . . . , Xp(k)) ∈ {0, 1}k×p(k) (wherep(k) = kO(1)) and
= ← {1, . . . , p(k)} be independent and uniformly distributed random variables. Let
f : {0, 1}k×p(k) → {0, 1}`(k), A: {0, 1}`(k) → {0, 1}k×m(k), m(k) = kO(1), and

δ = Pr[X←{0, 1}k, L←A(f(X)),=←{1, . . . , p(k)}: X=∈L] = 1− k−ω(1) .

Then`(k) = k · p(k)−O(log k).

Proof. A p(k)-tuple (x1, . . . , xp(k)) is good if xi ∈ A(f(x1, . . . , xp(k))) for all i ∈
{1, . . . , p(k)}. Other tuples arebad. As for any bad tuple(x1, . . . , xp(k)) the probability
of error1 − δ ≥ 1

p(k) 6= k−ω(1), the number of good tuples should be(1 − k−ω(1)) ·

2k·p(k). On the other hand, the number of good tuples cannot exceed2`(k) · m(k)p(k)

and hence2`(k) ·m(k)p(k) = (1 − k−ω(1)) · 2k·p(k), which gives (by taking logarithm
from both sides)̀(k) = k · p(k)−O(log k). ut

Corollary 2. In every UC secure time-stamping scheme with audit-supported publish-
ing ATS = (Pub, Stp, Ver, Rep, Aud), where the report and the publishing functions
have types:Rep: {0, 1}k×p(k) → {0, 1}r(k) andPub: {0, 1}k×p(k) → {0, 1}d(k):

r(k) + d(k) ≥ k · p(k)−O(log k) ,

i.e. the amount of data sent to the auditor is comparable to the list of all time stamps.

Actually, the last corollary holds for a weaker security notion –simulatability:

Definition 8 (Simulatability). TSR is simulatable, if for everyClient, A ∈ FP there is
A′ ∈ FP, so thatV IEWClient〈Client,TSR,A〉 ≈ V IEWClient〈Client,TSI,A

′〉.

Like the Universal Composability, also the Simulatabilityimplies both the Consis-
tency (1) and the security against Random Back-Dating (2) but not the other way round.
So it is still possible that one can compress the published information and still have a
provably secure auditable time-stamping scheme in the sense of (1) and (2). One such
construction is presented in [9] but their security reduction is very inefficient.

The Simulatability (and the Universal Composability) conditions depend on the def-
initions of TSI andTSR. It is not completely excluded that these definitions can be
relaxed (in a reasonable way) so that the compression of the published information
becomes possible. However, we cannot even imagine how this could be done.

7 Discussion on Practical Implementation

As in the schemes with audit, all time stamp requests are sentfrom Stamper to Auditor

who then performs the same hash computations. Hence, if there arem stampers in the
scheme and each stamper performsp hash operations per round, then the auditor must
performm · p hash operations per round. Hence, the cost of the service increases by a
constant factor, no matter how many users there are.

In the schemes described above, we have only one trustedAuditor. As one of our
main goal was to develop measures against insider attacks, it is reasonable to assume
that also theAuditor can be malicious. A natural approach would be to replace a trusted
Auditor with a list Auditor1, . . . , Auditorn of auditors and use the secure multi-party
computation. A simplified approach would be that aStamper sends the digestd and the
reportr to all auditors in the list. The auditors check whetherAud(r, d) = 1 and sendr,
d and the result (of the check) toRepository who then decides by clear majority which
value to publish. This works if theRepository and n+1

2 auditors are honest.

Acknowledgements.The authors are grateful to Estonian Science Foundation forsup-
porting the study.

References

1. Michael Backes.Cryptographically Sound Analysis of Security Protocols. PhD thesis, Uni-
versität des Saarlandes, 2002.

2. Michael Backes and Birgit Pfitzmann. Symmetric Encryption in a Simulatable Dolev-Yao
Style Cryptographic Library. In17th IEEE Computer Security Foundations Workshop, Pa-
cific Grove, CA, June 2004.

3. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Symmetric authentication within
a simulatable cryptographic library. In Einar Snekkenes and Dieter Gollmann, editors,Com-
puter Security - ESORICS 2003, 8th European Symposium on Research in Computer Secu-
rity, volume 2808 ofLNCS, pages 271–290, Gjøvik, Norway, October 2003. Springer-Verlag.

4. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A Universally Composable Cryp-
tographic Library. InProceedings of the 10th ACM Conference on Computer and Commu-
nications Security, Washington, DC, October 2003. ACM Press.

5. Dave Bayer, Stuart Haber, and W.-Scott Stornetta. Improving the efficiency and reliability of
digital time-stamping. InSequences II: Methods in Communication, Security, and Computer
Science, pp.329-334, Springer-Verlag, New York 1993.

6. Josh Benaloh and Michael de Mare. Efficient broadcast time-stamping. Tech. report 1, Clark-
son Univ. Dep. of Mathematics and Computer Science, August 1991.

7. Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-Stamping with Binary
Linking Schemes. InAdvances in Cryptology – CRYPTO’98, LNCS1462, pp. 486-501, 1998.

8. Ahto Buldas, Peeter Laud, Märt Saarepera, and Jan Willemson. Universally Composable
Time-Stamping Schemes with Audit. IACR ePrint Archive, 2005.

9. Ahto Buldas and Märt Saarepera. On provably secure time-stamping schemes. InAdvances
in Cryptology – ASIACRYPT 2004, LNCS 3329, pp.500–514, 2004.

10. Ran Canetti. A unified framework for analyzing security of protocols.Electronic Colloquium
on Computational Complexity (ECCC), 8(16), 2001.

11. Ran Canetti. Security and composition of multi-party cryptographic protocols.Journal of
Cryptology, 13(1):143-202, 2000.

12. Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. In 42nd FOCS, pp. 136–145. 2001.

13. Ran Canetti and Marc Fischlin. Universally Composable Commitments. InCRYPTO’01,
LNCS 2139, pp. 19–40. 2001.

14. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

15. Stuart Haber and W.-Scott Stornetta. How to time-stamp adigital document.Journal of Cryp-
tology, Vol. 3, No. 2, pp. 99-111 (1991).

16. Stuart Haber and W.-Scott Stornetta. Secure Names for Bit-Strings. InACM Conference on
Computer and Communications Security, pp. 28–35, 1997.

17. Yehuda Lindell.Composition of Secure Multi-Party Protocols. A Comprehensive Study.
LNCS 2815. 2003.

18. Michael Luby.Pseudorandomness and cryptographic applications. Princeton University
Press, 1996.

19. Ralph C. Merkle. Protocols for public-key cryptosystems. Proceedings of the 1980 IEEE
Symposium on Security and Privacy, pp.122-134, 1980.

20. Tal Moran, Ronen Shaltiel and Amnon Ta-Shma. Non-interactive timestamping in the
bounded storage model. InAdvances in Cryptology – CRYPTO 2004, LNCS3152, 2004.

21. Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. Proceedings of theTwenty First Annual ACM Symposium on Theory of Computing.
May 15–17 1989: Seattle, ACM Press, pp. 33–43, 1989.

22. Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Cryptographic Security of Reac-
tive Systems. In Steve Schneider and Peter Ryan, editors,Workshop on Secure Architectures
and Information Flow, volume 32 ofElectronic Notes in Theoretical Computer Science,
Royal Holloway, University of London, 2000. Elsevier Science.

23. Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure
reactive systems. InCCS 2000, Proceedings of the 7th ACM Conference on Computer and
Communications Security, pages 245–254, Athens, Greece, November 2000. ACM Press.

24. Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Reactive Systems and
its Application to Secure Message Transmission. In2001 IEEE Symposium on Security and
Privacy, pages 184–200, Oakland, California, May 2001. IEEE Computer Society Press.

25. Alexander Russell. Necessary and sufficient conditionsfor collision-free hashing.Journal of
Cryptology(1995) 8: 87–99.

26. www.surety.com
27. www.authentidate.com
28. www.digistamp.com

