
A Domain-Specific Language for Low-Level Secure
Multiparty Computation Protocols

Peeter Laud
Cybernetica AS

peeter.laud@cyber.ee

Jaak Randmets
Cybernetica AS

University of Tartu
jaak.randmets@cyber.ee

ABSTRACT
Sharemind is an efficient framework for secure multiparty computa-
tions (SMC). Its efficiency is in part achieved through a large set of
primitive, optimized SMC protocols that it makes available to ap-
plications built on its top. The size of this set has brought with it an
issue not present in frameworks with a small number of supported
operations: the set of protocols must be maintained, as new proto-
cols are still added to it and possible optimizations for a particular
sub-protocol should be propagated into larger protocols working
with data of different types.

To ease the maintenance of existing and implementation of new
protocols, we have devised a domain-specific language (DSL) and
its optimizing compiler for specifying protocols for secure compu-
tation. In this paper, we give the rationale of the design, describe
the translation steps, the location of the compiler in the whole Share-
mind protocol stack, and the results obtained with this system.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Cryptographic
controls; C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

Keywords
Secure multi-party computation; secure computation outsourcing;
additive secret sharing; compiler; protocol optimization

1. INTRODUCTION
Secure multiparty computation (SMC) has become more and

more practical in recent years, with the appearance of several SMC
frameworks [2, 14, 7, 10, 20, 34, 43, 33] and noteworthy appli-
cations [9, 25, 3]. Existing SMC frameworks use different pro-
tocol sets for achieving privacy. Several frameworks implement
the arithmetic black box (ABB) [15], the methods of which are
called during the runtime of a privacy-preserving computation by
the SMC engine in the order determined by the specification of
the computation. An ABB implementation consists of a data rep-
resentation for private values, somehow sharing them among the
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813664 .

computing parties, and a set of protocols for operations on shared
values. When executing a protocol from this set, the computing
parties provide the shares of the operands as inputs to that protocol,
and receive the shares of the result as outputs. An ABB must at
least contain the methods for linear combination and multiplication
of private integers (in order to be Turing-complete), but it contains
more in typical implementations. For yielding secure applications
making use of SMC, the ABB implementation must be universally
composable [11]. In this case, the protocols of the ABB can be
invoked in any order, sequentially or in parallel, without losing se-
curity guarantees.

Sharemind SMC framework [7] features an exceptionally large
ABB. Besides the operations listed above, it also contains com-
parisons, bit extraction, bit conversions, division of arbitrary-width
integers [8], as well as a full set of floating-point [23] and fixed-
point [12] operations, including the implementations of elementary
functions. More often than not Sharemind protocols are specified
in a compositional style forming a hierarchy, with more complex
protocols invoking simpler ones. For example, floating-point oper-
ations typically use fixed-point operations which in turn use inte-
ger operations [28]. The choice to expand the ABB of Sharemind
has been validated by the multitude of privacy-preserving appli-
cations it has been used for, including genome-wide association
studies [22], prediction of satellite collisions [23], and a privacy-
preserving statistical analysis tool [4].

The implementation of protocols for ABB operations is an error-
prone and repetitive task. Manual attempts to optimize complex
protocols over the composition boundaries is a laborious task, prone
to introduce errors and make the library of protocols unmaintain-
able. Implementation is made more difficult due to the fact that pro-
tocols need to work for various different integer widths and many
of the abstractions in the implementation language (such as virtual
function calls in C++/Java) entail unacceptable run-time overhead.
The task of building and maintaining implementations of protocols
is naturally answered by introducing a domain-specific language
(DSL) for specifying them.

The DSL allows us to specify the protocols in a manner similar
to their write-up in papers on SMC protocols. This specification is
compiled and linked with the Sharemind platform. A different lan-
guage [6] is used for specifying the privacy-preserving applications
as a composition of these protocols. Having different languages for
implementing different levels of the privacy-preserving computa-
tion allows us to apply optimizations most suitable for each level,
and improves the user experience by allowing us to tailor the lan-
guages for the specific domain. Protocols are specified and im-
plemented in a declarative style, but applications built on top of
the primitive protocols are specified in an imperative style as a se-
quence of protocol invocations.

In this paper we describe our protocol DSL. We discuss its de-
tails and their rationale, show how it enables us to easily build pro-
tocols for complex operations, and describe our experience in using
it, both in terms of performance and maintainability. In Sec. 2 we
introduce our language through a number of examples, allowing us
to demonstrate the impouurtant details of the DSL. Sec. 3 discusses
how the language is defined, compiled, optimized and located in the
Sharemind framework. In Sec. 4 we discuss the security of the pro-
tocols implemented in our DSL, and how the DSL toolchain sup-
ports the development of secure protocols. In Sec. 5 we show how
the use of the DSL has improved the performance of the protocols
employed in Sharemind. In Sec. 6 we discuss related developments
and in Sec. 7 give our conclusions.

We note that other SMC frameworks with large ABBs have been
proposed [43, 24]. Also, there exist SMC applications that have
been implemented essentially on top of an ABB with a large num-
ber of SMC protocols [25, 17]. All these could potentially benefit
from the DSL we are proposing and the architecture it implies.

2. OVERVIEW OF THE PROTOCOL DSL
We sought to create a programming language that facilitates the

implementation of SMC protocols in similar style to their specifi-
cation in [7] and [23]. Our experience in implementing SMC proto-
cols in C++ for Sharemind showed that the aspect most hindering
our productivity and performance was the lack of composability.
Namely, our C++ framework is designed to allow a single proto-
col to be executed on many inputs in parallel (in SIMD style) but
the parallel execution of two different protocols has only been re-
alizable by interleaving both protocols and manually packing all
network messages together. This effort was very time-consuming
even for medium sized protocols. The lack of composability has
led to poor readability, maintainability and modifiability. Fixing a
bug means making changes in every place the modified protocol
has been copied to. This has often led to sacrificing performance
for readability and development time.

Hence the key design principle of the protocol DSL is to always
put composability first: whenever the data-flow dependencies al-
low, the protocols are executed in parallel, no matter the order they
occur in the code. For performance reasons, it is very important to
keep the round complexity of protocols low, as a network roundtrip
is orders of magnitude slower than the time it takes to evaluate the
(arithmetic) gates in the protocols. In implementing protocols in
C++, large parts of the code dealt with how the network messages
are packed and how they are sent to other computing parties – we
wanted to automate this process. In the protocol language we have
simplified this aspect and the programmer only has to specify what
values are used by other parties, but not how or when they get there.
The compiler minimizes the round count, chooses how values are
packed into messages and deals with sending and receiving the net-
work messages automatically.

We also wanted to have an optimizing compiler for the language
so that the programmer does not have to optimize manually when
compositions introduce possibilities for it (e.g. by partially apply-
ing a protocol to a constant value). The protocol DSL is a functional
language enabling a declarative style and letting the programmer
manipulate protocols in a higher-order manner. For instance, it is
natural to apply a protocol to each element of a vector by using a
higher-order map operator.

The language supports type level integers (called size types) and
arithmetic on them. Functions polymorphic in the number of input
bits allow the protocols to be specified once for all input lengths.
The language is mainly designed for implementation of additive
secret sharing schemes but is not strictly limited to that.

def reshare : uint[n] -> uint[n] = \u ->
let r = rng ()
in u + r - (r from Next)

Listing 1: Resharing protocol

2.1 Additive secret sharing
In Sharemind SMC framework the private values are additively

shared among the parties performing the secure computation. The
sharing is over a finite ring. Different rings of the form Z2n and Zn

2
can be used. The protocols of the framework perform operations
with secret-shared values, receiving the shares of the operands as
inputs and delivering the shares of the results.

Even though our protocol DSL can support an arbitrary number
of parties, the protocols of Sharemind have been designed specifi-
cally for three parties and in this paper we also focus on this case.
A secret-shared value x ∈ R, where R is one of the rings Z2n or
Zn

2, is represented as a triple (x1, x2, x3) with the i-th party holding
xi ∈ R, satisfying x1 + x2 + x3 = x, where the addition is in ring R. A
nice property of additive scheme is that integers can be added with
no network communication by adding the respective shares. Most
other operations require at least one communication round.

In Sec. 4 we provide more detailed discussion of the security of
SMC protocols in general and Sharemind’s protocols in particular,
as well as the support offered by the protocol DSL and the Share-
mind framework for ensuring the security of protocols. Briefly, our
protocols provide security against a single honest-but-curious party,
meaning that for any single computing party, its view could be gen-
erated from its inputs only, and does not depend on the inputs and
outputs of the other parties.

To ensure such independence, resharing is a commonly used in
implementing Sharemind’s set of protocols. The significance of
the resharing protocol is in providing fresh shares for input value
so that the new shares can be used as inputs for further protocols
without giving any information about the input shares. The im-
plementation of the resharing protocol [8, Alg. 1] in our DSL is
depicted in Listing 1. As the input, the i-th party receives the
share ui of some private value u ∈ Z2n . In order to obtain the
output share u′i , the i-th party generates a random value ri, sends
it to the previous party and finally adds the difference of gener-
ated and received random value to the input. All arithmetic is per-
formed modulo 2n. The final shares obtained in the protocol will
be (u′1, u

′
2, u

′
3) = (u1 + r1 − r2, u2 + r2 − r3, u3 + r3 − r1). We see that

u′1 + u′2 + u′3 = u1 + u2 + u3 = u, i.e. the output value is the same as
the input value but u′i is independent of ui.

In the protocol DSL implementation Listing 1 we define a vari-
able reshare of type uint[n] -> uint[n] denoting a function tak-
ing an n-bit unsigned integer to an n-bit unsigned integer (the num-
ber of bits can be arbitrary). After the equals sign the variable def-
inition follows: in this case it is defined to be a function taking an
argument called u. The body of the function follows after the arrow
and it first randomly generates a variable r and then evaluates to
expression u + r - (r from Next). It is important to note that we
have not explicitly stated which computing party performs which
computation. The default mode of operation in the protocol DSL is
that every computing party executes the same code. For instance,
each party generates a random value independently even though it
is only written once in the code. The types of variables are derived
via type inference: from the type of the function we know that the
input variable u must be an n-bit integer, and because addition op-

def reshareToTwo : uint[n] -> uint[n] = \u ->
let {1}
r2 = rng ()
r3 = u - r2
in case:
1 -> 0
2 -> u + (r2 from 1)
3 -> u + (r3 from 1)

Listing 2: Protocol for resharing between two parties

erates on integers of same bit width we know that the randomly
generated variable r must also be an n-bit integer.

In Listing 1, we see how the transmission of values between
parties is specified. The receiver of the value states which value
and from which party it wishes to receive. The from-construct is a
somewhat unusual networking primitive but it is a good fit for us as
it does not specify when or in what order are network messages de-
livered. It is up to the code generator to select how to pack values
into network messages and when to send them. While it is def-
initely true that a programmer can easily construct more efficient
networking schemes for small protocols, our experience shows that
doing so for medium sized and large protocols is an extremely time-
consuming and labor intensive task. The Sharemind’s architecture
allows us to select between hand-tuned and generated protocols.

Sometimes it is useful to reshare a value in such a way that one
of the parties holds 0 as its share. Such resharing protocol is given
in Listing 2. In this protocol, given the shares of an input u =

(u1, u2, u3), the first computing party generates a random value r2,
sends it to the second computing party and sends r3 = u1 − r2 to the
third computing party. The second and third computing parties add
the received values to their input shares. The resulting shares are
(0, u2 + r2, u3 + (u1 − r2)) which sum to the original value u.

The protocol in Listing 2 demonstrates various features of the
language: the ability to perform computation and to define values
for only some subset of parties, the ability to branch the compu-
tation depending on the evaluating party and finally the ability to
receive values from certain fixed parties. The variables r2 and r3
are only defined by the first computing party. The result of the
function body is computed differently depending on the computing
party: the first computing party always returns 0, while the second
[resp. third] computing party adds r2 [resp. r3] received from the
first party to its input share.

2.2 Multiplication protocol
The algorithm for multiplying two additively shared numbers

u, v ∈ Z2n is based on a simple equality given by distributivity of
multiplication over addition: (u1+u2+u3)(v1+v2+v3) =

∑3,3
i, j=1,1 uiv j

=
∑3

i=1(uivi + uivp(i) + up(i)vi), where p(i) denotes the previous in-
dex (p maps 2 7→ 1, 3 7→ 2 and 1 7→ 3). This equation is directly
mapped to code in Listing 3 by letting the i-th party compute the
term wi = uivi + uivp(i) + up(i)vi. To achieve security and privacy
the algorithm reshares both of the inputs and the output. Notice the
let-expression overshadowing input variables u and v with same
names. We can see the similarity to Algorithm 2 in [8] but again,
the presentation is much more concise.

Textually the resharing call on the output occurs after the rest
of the code but notice that there are no data dependencies that for-
bid us from performing the network communication of all the re-
share calls in parallel during the first communication round. This
is exactly what happens in practice where we try to minimize the
number of communication rounds required by the protocol. The

def mult : uint[n] -> uint[n] -> uint[n] = \u v ->
let
u = reshare u
v = reshare v
w = u * v + u * (v from Prev) + (u from Prev) * v
in reshare w

Listing 3: Multiplication protocol

simplest approach to achieve this is to greedily send values with
messages in the earliest communication round possible. We will
see in Sec. 3.5 that during automatic optimizations the round count
of multiplication protocol is reduced to one.

Usually we specify the protocols for integers of arbitrary bit-
width n, such as the multiplication protocol here, but in the concrete
system the protocol implementations are instantiated to bit-widths
that computers support natively. In most cases protocols are spe-
cialized to operate on 8-, 16-, 32- and 64-bit integers but in general
the bit-widths we specialized the protocols to are not restricted.
The only limitation is that we do not allow the choice of bit-width
happen dynamically; it always has to be fixed before executing the
code, during compilation of protocols. Support for arbitrarily large
integers has turned out to be extremely useful. For example, inte-
ger division protocol internally uses larger than 128-bit integers. In
addition to that, as we will later see, fixed-point computations (that
are used to implement floating-point operations as in [28]) can be
sped up by starting operations on large integers and gradually cut-
ting back during the protocol.

2.3 Bit-level protocols
Many of the high-level protocols in Sharemind are implemented

in terms of bit-level operations. Accessing bits of additively shared
values is a non-trivial task. For example, to extract the highest
(most significant) bit of a 2-bit number we not only have to consider
the highest bits of the shares but also have to take into account
the possibility that the sum of the lowest bits of the shares may
overflow and influence the value of the highest bit.

Consider the special case of additive secret sharing over the ring
Z2. The multiplication over Z2 acts as boolean conjunction ∧ and
the addition operation as the XOR operation ⊕. We can extend this
to bitwise additive secret sharing over the ring Zn

2 where the bitwise
XOR of two private values can be computed as the bitwise XOR
of respective shares and the bitwise conjunction can be computed
with a protocol similar to Listing 3. Bitwise negation is computed
by an odd number of parties negating their shares, and disjunction
is computed using conjunction and negation via De Morgan’s laws.
We call this kind of bitwise additive secret sharing XOR sharing.

Prefix-or is a primitive bit-level protocol that is often used inside
higher-level operations. The prefix-or of a value ~u ∈ Zn

2 is obtained
by propagating its most significant 1 bit downwards. For example,
the prefix-or of the 8-bit number 001011002 is 001111112. If ui is
the i-th bit of ~u, then the prefix-or of ~u is ~v, where vi =

∨n
j=i ~ui.

The implementation of prefix-or is shown in Listing 4. We use
the disjBit protocol for computing disjunction of a XOR shared
number and a bit, and a built-in function ++ for array concatena-
tion. Our DSL allows to manipulate integers as bit-arrays where
lower indices denote less significant bits. The prefixOR function is
defined recursively: we split the input into two roughly equal parts
(u[m .. n] denotes the slice of the array u from index m until the
index n − 1) and recursively compute the prefix-or of the parts. We
concatenate the resulting parts, but if the lowest bit of the higher
half is set, then every bit of the lower half of the result must be set

def disjBit : uint[n] -> bit -> uint[n]
def ++ : arr[a,n] -> arr[a,m] -> arr[a,n+m]
def prefixOR : uint[n] -> uint[n] = \u ->
if (n < 2) then u else
let
x = prefixOR u[0 .. n/2]
y = prefixOR u[n/2 .. n]
x = disjBit x y[0]
in x ++ y

Listing 4: Prefix-or protocol

def addXor : uint[n] -> uint[n] -> uint[n]
def bitextr : uint[n] -> uint[n] = \u ->
let
v = reshareToTwo u
x = case: 2 -> v | {1,3} -> 0
y = case: 3 -> v | {1,2} -> 0
in addXor x y

Listing 5: Bit extraction

as well. Prefix-or of a 0- or 1-bit number is the number itself; this
is the recursion base.

The implementation of prefix-or in Listing 4 demonstrates recur-
sion over type level naturals: the if-check is over a type predicate
n < 2 and recursive calls are performed on n/2-bit and (n−n/2)-bit
numbers. The algorithm terminates as n/2 and n − n/2 are strictly
smaller than n whenever n ≥ 2. The protocols we have seen thus
far take a constant number of rounds regardless of the number of
input bits and the prefix-or is the first exception, taking O(log n)
communication rounds for an n-bit input.

The bit level protocols are used as building blocks for high-level
additive protocols. We may need to convert between additive shar-
ing and XOR sharing. Converting a bit u ∈ Z2 to an additively
shared integer in Z2n is not completely straightforward, because the
shares of u may also sum up to 2 or 3 in Z2n . A more elaborate
protocol shareconv is required for converting a bit to an additively
shared integer: we do not give its listing here but it can easily be
adapted from [8] with the tools we already have. Notice that using
the share conversion protocol we can convert an arbitrary bit-width
XOR shared integer ~u ∈ Zn

2 to an additively shared one by convert-
ing each bit ~ui to vi ∈ Z2n and then computing the dot product with
successive powers of two:

∑n−1
i=0 2ivi.

We have seen how to convert XOR shared data to additively
shared data but the converse is also required. The protocol for
doing that (Listing 5) is conceptually very simple. Given an ad-
ditively shared value v ∈ Z2n we first reshare it between second and
third party as (0, v2, v3) such that v = v2 + v3. The reshared value
can then be viewed as two XOR-shared values x = (0, v2, 0) and
y = (0, 0, v3). To compute the XOR-shared sum (simply adding
them in Z2n will produce an additively shared sum) of x and y we
implement an adder circuit. All the necessary tools for doing so
– elementary bitwise operations and recursion – are provided. We
have omitted the implementation of addXor function as it is rela-
tively straightforward but verbose.

In certain protocols we need to compute the XOR-shared charac-
teristic vector ~c ∈ Zm

2 of an additively shared u ∈ Z2n (represented
as triple (u1, u2, u3)), for which we know that it is in some range
0 ≤ u < m = 2k, where m is relatively small. By definition, char-
acteristic vector satisfies ci = 1 ⇔ i = u. The protocol for this
purpose is given in Listing 6. It first rotates 1 ∈ Zm

2 left (using the

def rol : m >= n => uint[m] -> uint[n] -> uint[m]
def chVector : m >= n > 0 => uint[n] -> uint[m] = \u ->
let
u = reshare u
c = case:
1 -> rol (1, u)
{2, 3} -> 0
c = xorReshareToTwo c
in case:
1 -> 0
{2, 3} -> rol (c, u from 2 + u from 3)

Listing 6: Characteristic vector

def countUp : uint[n] -> arr[uint[n],m]
def conjBit : uint[n] -> bit -> uint[n]
def shiftr : n >= m > 0 => uint[n] -> uint[m] -> uint[n] =
\u s -> let
u = bitextr u
v = map (\i -> u >> i) (countUp 0)
bs : uint[n] = chVector s
rs = zipWith conjBit v bs
r = foldl (\x y -> x ^ y) 0 rs
in xorToAdditive r

Listing 7: Private shift right

function rol) by u1 and XOR shares the resulting value between
parties 2 and 3. The receiving parties sum the input shares u2 and
u3 and rotate the received values by the sum to produce the result.
As a result we have rotated 1 ∈ Zm

2 by u positions (first party rotat-
ing it by u1 and the rest rotating it by u2 +u3). Because the shares of
u can be larger than m the rotations are performed modulo m. This
protocol takes constant number of communication rounds regard-
less of the number of input or output bits. It could be converted to a
bit extraction protocol (the one in Listing 5 takes O(log n) rounds)
using no further communication, but its network communication
scales linearly with the bound m.

2.4 High-level protocols
One of the simplest high-level protocols that Sharemind imple-

ments is a bit-shift right on additively shared data (Listing 7). This
protocol is often used to implement floating-point operations but is
also useful as a stand-alone protocol. To shift an additively shared
u ∈ Z2n right by an additively shared s ∈ Z2m we first convert u to
XOR shared integer ~u. The XOR shared representation allows us to
calculate all possible shifts vi = ~u � i by public values 0 ≤ i < m.
As the result we pick the correct one out of all the possible shifts
by computing r as

⊕n−1
i=0 vi ∧ (s = i). The protocol conjBit is

applied pointwise to elements of v and b using higher-order func-
tion zipWith and all of the invocations of the argument protocol are
executed in parallel. Listing 7 also demonstrates the parallel com-
position of previously defined non-trivial protocols: bitextr and
chVector. The meaning of higher-order functions map, zipWith and
foldl is standard (see e.g. [32]).

We have used the protocol DSL to implement floating-point arith-
metic and most of the primitive operations from [23]. Briefly, in
Sharemind a floating-point number N is composed of three parts:
sign bit s, significand f , and exponent e such that N = (−1)s · f · 2e

where the significand is always in the range 1/2 ≤ f < 1. In
the protocol DSL we represent the sign bit, exponent and single-
precision fractional part with 1-, m- and n-bit unsigned integers

respectively (for single- [resp. double-]precision floats we have
m = 16 and n = 32 [resp. n = 64]).

The fractional part f is represented as an unsigned integer where
the most significant bit denotes 1/2, the second highest one 1/4 and
so on. This lets us approximate real values in the range [1/2, 1). We
require that the representation is normalized, meaning that the most
significant bit is always 1. The only exception to that is when we
want to represent zero, in which case f = 0. Unlike IEEE floating-
point numbers we explicitly store the highest bit.

As a final example we demonstrate a protocol for computing the
inverse of a floating-point number. The intuitive idea is that for a
floating-point number N = (−1)s · f · 2e we have

1
N

= (−1)s 1
f 2e = (−1)s 1

2 f
1

2e−1 = (−1)s ·
1

2 f
· 21−e .

This already gives us a suitable floating-point representation for
every f ∈ (1/2, 1) because in such case 1

2 f ∈ (1/2, 1). The case
when the fractional part of the input is 1/2 or close to it is self-
correcting as our algorithm rounds the result down and prevents
it from overflowing. This gives us the recipe for computing the
inverse of a floating-point number. We first compute 1 − f and
interpret it as a fixed-point number with a single binary digit be-
fore the radix point. To do that we divide − f by 2 (negation and
division computed for an unsigned integer). A fixed-point format
with a single binary digit before the radix point allows us to repre-
sent values in the range [0, 2) and the extra digit is needed because
inverse yields us a value in the range [1, 2).

By setting x = 1 − f we can compute 1/ f using the equality
1/ f = 1/(1 − x) =

∑∞
i=0 xi =

∏∞
i=0

(
x2i

+ 1
)
. Evaluating just the

first k terms of the product gives the maximum error of about 2−2k

at x = 1/2. This means that for a single-precision floating-point
number it is sufficient to only compute the first 5 terms. To get the
fractional part of the result all that is left to do is to evaluate that
expression on fixed-point numbers. Note that this approximates
1/ f as a fixed-point number with one digit before the radix point,
but reinterpreting that as a fixed-point number with no digits before
the radix point yields the approximation for 1/(2 f).

To find 1/ f we need to compute powers of x = 1 − f and multi-
ply the terms incremented by one to approximate the wanted value.
Therefore, fixed-point multiplication is needed. Let u and v be
(1 + n)-bit fixed-point numbers with a single digit before the radix.
To compute the product u ∗ v (assuming that the result does not
overflow) we extend both of the numbers to 1 + 2n bits, multiply
them and then cut away n least significant digits of the result. This
is a rather expensive operation: to extend the numbers we need to
compute their overflow bits and to cut away least significant digits
we again need to check if those digits overflow. The overflow bits
have to be computed because extending a number to a larger one
has the same problem that we already faced with extending a single
bit integer to a larger one. One of the ways to compute the overflow
bit is to tailor the bit extraction protocol for this purpose (a more
efficient method is provided in [8]).

If we know, ahead of time, that we are performing some multipli-
cations in a row, for example, when computing a product of several
numbers, we can optimize the computation by eliminating the need
to extend the numbers before every multiplication. If we know that
we are performing exactly r multiplications on u we can instead
immediately extend it to 1 + (1 + r)n bits and on every successive
multiplication remove the lowest n bits.

The implementation for floating-point inverse is presented in List-
ing 8. We have used but not defined various helper functions:
a) publicShiftr for shifting an additively shared value right by
some public value; b) choice for obliviously choosing between two

type float[n,m] = uint[1] * uint[n] * uint[m]
def bias : unit -> uint[m]

def floatInv : n > m > 3 => float[n,m] -> float[n,m] =
\N -> let
(s, f, e) = N
x = publicShiftr (-f) 1 // x = 1 - f
f’ = fixInv x
e’ = share((bias() + 1) << 1) - e // 2 - e
// b checks if 1/(2f) < 1/2
b = trunc (publicShiftr f’ ‘(n - 1))
half = share (1 << ‘(n - 1))
f’ = choice b f’ half // correct fraction
e’ = e’ - shareconv b // correct exponent
in (s, f’, e’)

def fixInv : n > 0 => uint[n] -> uint[n] = \x ->
let
x : uint[n + 5*(n - 1)] = extend x
one = share (1 << ‘(n - 1))
in fixInvLoop (x[0 .. n + 4*(n - 1)] + one) x

def fixInvLoop : n > 0 =>
uint[n+(r+1)*(n-1)] ->
uint[n+(r+2)*(n-1)] -> uint[n] =
\acc xPow -> let
xPow : uint[n+(r+1)*(n-1)] = cut (square xPow)
one = 1 << ‘(n - 1)
acc = cut (mult acc (xPow + one))
in if (r == 0) acc else fixInv acc xPow

Listing 8: Floating-point reciprocal protocol

additively shared integers; c) share for sharing a public value by
having two of the parties pick 0 as their shares; d) cut for cutting
away some least significant bits of an additively shared integer; and
e) extend for converting an additively shared integer to a larger one.
Floating-point numbers are represented by a triple consisting of a
1-bit sign, n-bit fractional part and m-bit exponent. The type syn-
onym float[n,m] is provided for this. The function bias returns
the bias for an m-bit exponent (we omit the definition), the function
fixInv computes the inverse of an n-bit fixed-point number with a
single digit before the radix point and finally floatInv computes
the inverse of a floating point number.

If the input had a fractional part very close to 1 then 1/(2 f) is
very close to 1/2. During the computation this may be rounded
down and the highest bit can become 0 resulting in a denormalized
float. To avoid this, we need to check the highest bit of the to-be
fractional part – we denote it with b. This is computed by shifting
the fractional part right by n−1 bits. If the highest bit turns out to be
0 then we know that the input had a fractional part very close to 1
and the result was rounded down too much during the computation.
In this case we correct both the resulting fraction and the exponent.

Initially we implemented the reciprocal protocol using fixed-
point polynomial evaluation technique as in [23]. However, the
protocol DSL enabled us to rapidly try out different implementa-
tions and optimizations and we quickly found out that the approach
presented here is superior to polynomial evaluation both in speed
and in precision. Implementing the protocol in optimized manner
in our C++ framework would have been a major undertaking.

3. THE CORE PROTOCOL LANGUAGE
In this section we will formalize the core of the protocol DSL.

The code examples presented previously do not match the syntax
provided here perfectly but can be translated to the core language

Size literals c ∈ N0

Party nr. p ∈ N1

Sources q ::= p | Prev | Next
Expressions e ::= x | λx. e | Λα. e

| e1 e2 | e τ | let x = e1 in e2

| if C then e1 else e2

| case: e1, . . . , ek | e from q
Programs M ::= ε | def x : σ = e M
Constraints C ::= ε | C1 ∧C2 | s1 ∼ s2 | s1 < s2

Monotypes τ, s ::= α | unit | bit | arr[τ, s] | τ1 → τ2

Size types | c | s1 + s2 | s1 ∗ s2 | s1/s2

Polytypes σ ::= ∀α.C ⇒ τ

Figure 1: Syntax of the core protocol DSL

with relatively little effort. For some constructs we have provided
syntactic rewriting rules. A major difference is that the core lan-
guage does not infer type parameters automatically and expects ex-
plicit type applications. In the compiler implementation the type
arguments are inferred whenever possible during type checking.

The syntax of the language is presented in Fig. 1. Expressions e
of the language include the standard constructs for lambda calcu-
lus: variables, function applications, lambda-abstractions and let-
expressions. In addition to that the language includes conditional
expressions over size predicates, case-expressions for branching
depending on the computing party, and from-expressions for per-
forming network communication. An expression e is always evalu-
ated by a set of computing parties that may communicate between
each other. By default, all the parties evaluate the same expres-
sion, but every computing party does not always hold a result for
the given expression. We will see that case-expressions allow the
computation to branch depending on the evaluating party but may
also omit the value for some parties. The let-expressions are sim-
ilar to those in ML. They are not recursive and shadow (override)
previous variable definitions with the same name.

The from-expression e from q is used for network communica-
tion and states that the current evaluating party gets the value of e
from source q. For example, for the second computing party the ex-
pression x from 1 evaluates to the first computing party’s value of
the variable x. The source q is not only restricted to concrete parties
but may also denote the next or the previous computing party.

The conditional expression if C then e1 else e2 evaluates to e1

if type constraint C holds and otherwise evaluates the expression e2.
When type checking a branch the fact that C does or does not hold
may be used depending on the branch. The protocol DSL compiles
to an intermediate representation (IR) with no branching constructs,
meaning that the source code may only contain loops that are stat-
ically bounded. The mixture of supporting type-level integers and
providing the ability to branch over them facilitates writing recur-
sive code and cleanly segregates values that might only be dynam-
ically known (regular values) from values that are definitely stati-
cally known (types). Recall that Sharemind protocols are always
instantiated to concrete bit-widths.

The case-expression case: e1, . . . , ek evaluates to ei for the i-th
party where k is the number of computing parties. This construct
looks quite different to what we have seen in the examples above
but high-level code can be straightforwardly trasnalted to this form.
If a case-expression has any uncovered cases we can add them by
mapping to undefined values. As an example, a case expression
with no branches has no value for any of the computing parties (it
is undefined everywhere). A set of parties can be implemented by

binding the expression to a fresh variable, replacing the expressing
with the variable and duplicating that branch for each party.

A program M of the language consists of a sequence of variable
definitions. All top-level bindings must be annotated with types
and the definitions may be mutually recursive unlike the regular
let-expressions.

3.1 Type system
The type system of the language is inspired by Cryptol [31]. We

have opted for strict and static type checking with type inference: a
classic Hindley-Milner type system [13] extended with type con-
straints (predicates) over type-level natural numbers. A regular
type τ is either a variable α, the unit type having only a single
value, the bit type having two values 0 and 1, an array arr[τ1, s]
of length s containing elements of type τ1, or a function τ1 → τ2

taking arguments of type τ1 and returning values of type τ2. Be-
cause most protocols operate on integer values we use uint[n] as
a synonym for an array of n bits for the sake of conciseness and
readability. The language additionally supports n-ary tuples and
data structures, but we have omitted them here as they are a rela-
tively straightforward addition to the language. The protocol DSL
has two different kinds of types: regular data types, and size types
for denoting lengths of arrays. A size type s is either a variable n, a
natural number c ∈ N0, or an arithmetic expression of size types.

The type system is simply an instantiation of OutsideIn(X) where
X has been chosen to be integer constraints. The general type
checking algorithm is described in [41]. The type checking of the
protocol DSL is made easier by our requirement to annotate all
polymorphic types: top-level bindings must be annotated and no
generalization is performed when type checking let-expressions.
Note that the type system of the language is definitely not com-
plete: in order to type check arbitrary programs we need to be able
to solve arbitrary (non-linear) systems of equations. In practise this
has not turned out to be a hindrance as almost all of the constraints
are very simple and easily dispatched by Z3 [16] SMT solver.

3.2 Semantics
The semantics of the language is relatively straightforward by

exploiting the fact that programs of the language must always ter-
minate. There are two kinds of values in the protocol DSL: func-
tional values (either value or type abstraction), and tuples of primi-
tive values where the i-th component denotes the value that the i-th
party has. When we say that some value is undefined everywhere
we mean that it is a tuple consisting of bottom values ⊥.

The semantics is in small-step style. The transition rules are ei-
ther from expression to another e

p
−→ e′ or from expression to a

value e
p
−→ v. All of the transitions are annotated with probabilities

(omitted if equal to 1). The meaning of constraints ~C� ∈ {0, 1} is
defined in the obvious manner.

The evaluation rules for the three party case are given in Fig. 2.
Mostly they are straightforward lambda-calculus rules: we evalu-
ate expressions under the evaluation context C and substitute vari-
ables in case of function application and let-expression. Evaluation
is performed strictly except for lambda (or type) abstractions and
if-expressions. The from-expression rearranges the components
of the tuple (in syntax we have i ≡ 〈i, i, i〉, Next ≡ 〈2, 3, 1〉 and
Prev ≡ 〈3, 1, 2〉). For case-expression all subexpressions are eval-
uated and then correct components are picked out of the branches.
The generation of a random bit by three parties chooses each pos-
sible set of three bits with equal probability.

Implementing this semantics would result in an extremely ineffi-
cient evaluator. It would constantly compute values that will never
be used (due to the case-construct dropping them) and often prop-

e
p
−→ e′

C[e]
p
−→ C[e′]

(λx. e)v→ e[x 7→ v] (Λα. e)τ→ e[α 7→ τ]

{v1, v2, v3} from 〈i, j, k〉 → {vi, v j, vk}

let x = v in e→ e[x 7→ v]
~C� = i

if C then e1 else e0 → ei

case: v1, v2, v3 → {v1
1, v

2
2, v

3
3}

rngBit()
1/8
−−−→ {b1, b2, b3}

Figure 2: Semantics of the core language

DSL Frontend DAG Optimizer LLVM
Security

Backend

Figure 3: Protocol DSL compiler pipeline

agate bottom values (due to the case-construct introducing them).
However, this is not a problem for us because we are compiling
to an IR in the form of a finite directed acyclic graph (DAG) with
no control flow constructs. This allows us to eliminate all such in-
efficiencies with dead-code elimination, by throwing away bottom
values and the operations that have introduced them. This seman-
tics is the basis for our compiler.

3.3 Compiler implementation
High-level overview of the compilation pipeline is presented in

Fig. 3. The frontend performs, in respective order, lexical analysis,
syntactic analysis, static checking and translation to the low-level
intermediate DAG representation. The IR is optimized, statically
checked for security guarantees and compiled to LLVM [29] code.
The generated LLVM code can in turn be compiled and linked with
Sharemind. The generated code is not tightly coupled to Sharemind
and does not depend at all on Sharemind’s functionality. Instead the
control is inverted, so that the generated code provides meta infor-
mation that Sharemind reads, and callbacks for every computation
round that Sharemind invokes with requested data (received mes-
sages, randomly generated data etc.). Many other SMC systems
can use the generated code given that they are able to send network
messages and provide random numbers.

On the high-level language we perform data type verification
and party type verification. After static checks we translate the
high-level code to a much simpler code that is based on system Fω

(λ-calculus with type application and type operators). This repre-
sentation is evaluated to a normal form which is converted to the
IR. The IR has well defined syntax and semantics and is optimized
with a separate tool. Security analysis is performed on the IR to
provide additional guarantees that optimizations preserve security.

3.4 Low-level Intermediate Representation
Arithmetic circuits are the IR for our protocol compiler; this rep-

resentation is used for optimizations. An arithmetic circuit is a di-
rected acyclic graph (DAG), where the vertices are labeled with
operations and the incoming edges of each vertex are ordered. The
input nodes of the circuit correspond to the representation of the

inputs to the ABB operation that this protocol implements; in case
of protocol sets based on secret sharing, each input is represented
by a number of nodes equal to the number of the protocol parties.
Similarly, the output nodes correspond to shares of the output.

Communication between parties is expressed implicitly: each
node of the circuit is annotated with the executing party, and an
edge between nodes belonging to different parties denotes commu-
nication. Such representation makes both the aspects of computa-
tion (relationships between values) and communication (how many
bits are sent in how many rounds?) in the protocol easily accessible
for analyses and optimizations. The fact that our DAG representa-
tion contains no control-flow constructs or loops makes accurate
analysis and powerful optimizations possible even on large graphs.

To compile the protocols specified in our protocol DSL to cir-
cuits, loops have to be unrolled, function calls inlined, etc. The
type system and the compiler of the DSL ensure that loop counts
and function call depths (even for recursive functions) are known
during compile time. If the control flow of a protocol requires the
knowledge of (public) data known only at runtime (e.g. the length
of an array), then this protocol cannot be fully specified in the pro-
tocol DSL and SecreC [6] has to be at least partially used. The
circuit corresponding to the multiplication protocol (Listing 3) is
shown in Fig. 4. Different parties are identified by different node
shapes. A solid edge denotes communication. We see that this pro-
tocol requires two rounds, because there are paths in this graph that
contain two solid edges.

3.5 Optimizations
The IR is used to optimize the protocols. Due to the composi-

tional nature of specification, the protocols typically contain con-
stants that can be folded, duplicate computations, dead code, etc.
So far, we have implemented all optimizations analogous to the
ones reported in [27] for Boolean circuits (constant propagation,
merging of identical nodes, dead code removal). But as our circuits
are much smaller (the biggest protocols have less than a hundred
thousand nodes), and the arithmetic operations allow much more
information about the computation to be easily gleaned, we have
also successfully run more complex optimizations. We can sim-
plify certain arithmetic expressions, such as linear combinations,
even if communication is involved between operations.

Interestingly, we can move certain computations from one party
to another, or even duplicate computations, if it results in decrease
of communication (which is the bottleneck for current protocols of
Sharemind). In the multiplication protocol in Fig. 4(a), we can re-
duce the number of rounds to 1 by duplicating six subtraction nodes
and assigning them to different parties (box→ oval→ diamond→
box) resulting in the circuit in Fig. 4(b). This does not turn a secure
protocol insecure because it does not make the view of any party
richer than it was. A small downside of the optimization is that
the resulting circuit has more nodes and thus has become slightly
slower to evaluate. This is an exception and in most cases the opti-
mizer reduces the size of circuits by a significant margin.

To analyze the reduction in communication we have to view the
total communication as a sum of two parts: online and offline. The
online part consists of communication from nodes that depend on
the inputs of the protocol. The offline part depends only on the
randomly generated values and is a significant portion of over-
all communication: the extensively used resharing protocols and
share conversion protocol generate such nodes. The circuit opti-
mizer manages to reduce the amount of online communication in
most of the protocols by a sizable amount (up to 10%) but does not
change the total communication. Table 1 lists the ratios for node
counts and online communication for unoptimized and optimized

+ +

+

× × ×

+ +

y1

$

−−

$ $y3$

+

−

$$

++

−

+

−

y2

+

− −−

+

× × ×× × ×

x1 x2 x3$ $ $

+ + +

−

+

(a) Generated DAG

y1

$

$$y3 $

$

$

−

−

y2

×

−

+

+

−

×

+

×

x1 x2

×

$ $ $

−

+++

− −

×

−

×

−

× ×

+

+

−

−

+

x3

+

−

+

+

−

×

+

+

−

+

−

(b) Optimized DAG

Figure 4: Multiplication protocol circuit

protocols. The table contains ratios for the following operations:
integer multiplication (mul), bit-shift right by a private (shr) and
by a public (shrc) amount, division with private (div) and pub-
lic divisor (divc), floating-point addition fadd and multiplication
fmul, floating-point reciprocal inv, square root sqrt and natural
logarithm ln. Integer operations have only been measured for 64-
bit integers and floating-point operations only for single-precision
operations. The size ratio of 1.12 for multiplication protocol means
that the optimizer added nodes.

uint64 mul shrc shr divc div

Size ratio 1.12 0.84 0.56 0.90 0.81
Online ratio 1.00 0.96 0.99 0.97 0.97

float32 fadd fmul inv sqrt ln

Size ratio 0.77 0.86 0.84 0.86 0.79
Online ratio 0.90 0.95 0.98 0.93 0.91

Table 1: Optimizer performance: ratio of code size and online
communication

3.6 Integration with Sharemind
The specified protocols are used to generate protocol implemen-

tations for the Sharemind platform. While the specifications are
usually polymorphic in bit-width of the arguments and the result,
the Sharemind protocols work with integers of fixed length. Hence,
together with our protocols we also specify the input and output
widths for which we want the implementations to be generated.
E.g., Sharemind currently has protocols for multiplying 8-, 16-, 32-,
and 64-bit integers.

The protocols are first translated to a low-level IR, which is then
compiled to LLVM code. The protocols in Sec. 2 are defined for
scalar values, but Sharemind mostly operates on vectors of values

and thus expects that operations are vectorized. Hence the LLVM
code generation also performs automatic vectorization (this process
does not increase the round count) — the inputs to the protocol are
vectors of values, which are pointwise operated on, and result in a
vector of outputs. The vectorization step is very important because
network latency is orders of magnitude larger than the time to takes
to perform arithmetic operations. E.g. it is an order of magnitude
faster to run the multiplication protocol on thousand elements in
parallel than it is do the same thing iteratively.

In code generation, the necessary communication between par-
ties is derived from the accesses to a party’s values from a different
party’s code, which is directly visible in the DAG. Communication
is realized with the help of Sharemind’s networking API, packing
all values communicated at the same round into a single message or
a few messages of suitable length. During the translation to the IR,
all polymorphism is resolved, hence each compiled protocol is used
with values of a particular length and lengths of all exchanged mes-
sages are known at compile-time. The DSL generated protocols are
called through high-level language scripts. High-level SecreC [6]
code is translated to bytecode that the Sharemind virtual machine
evaluates. The bytecode specifies the control flow, the invoked pro-
tocols, and their arguments. The actual invocations are performed
by the virtual machine. This is summarized in Fig. 5.

4. SECURITY

4.1 Security definitions
The three-party additive secret-sharing based protocol set that

Sharemind uses provides security against one honest-but-curious
party. Security is defined as the indistinguishability of the actual
execution of the protocol from a simulated one. Security implies
that (i) the protocol preserves the privacy of honest parties’ inputs,
and (ii) the protocol delivers correct outputs to all honest parties.
For honest-but-curious adversaries, the second property trivially

Sharemind

Protocols

MUL8 MUL16 DIV8 ...LLVM
compileMUL8

SecreC
code

bytecompile eval
code

callspecify calls

Figure 5: Sharemind architecture

holds. We have attempted to construct the protocols of Sharemind
in such a way that they would provide privacy [5, 37] against one
malicious computing party.

We use the universal composability (UC) [11] framework to ar-
gue about the security and privacy properties of our protocol set. In
this framework, a protocol — a real functionality — is modeled as
a collection of interactive Turing machines (ITM). These machines
communicate with each other over a number of named tapes. In a
closed collection, each named tape has a single machine writing it,
and a single machine reading it. Only closed collections of ITMs
are executable. The interface of a collection of ITMs is the set of
named tapes occurring in it that lack a reader or writer. In the UC
framework, the interface of a functionality is split into two parts —
the interface for the intended user (called the environment) of the
functionality, and the interface for the adversary.

Let π be a real functionality (a protocol — a collection of ITMs)
and F an ideal functionality (usually expressed as a single ITM).
We say that π is black-box at least as secure as F , if there exists an
ITM Sim, such that all environments Z and all adversaries A, the
views of Z in closed collections Z‖π‖A and Z‖F ‖(Sim‖A) are
indistinguishable [11]. Here ‖ denotes the parallel composition of
ITM-s or their collections, together with the identification of tapes
with the same name.

If π is an SMC protocol for performing a particular operation
op on shared values, then the ITMs of π receive the shares of the
inputs over the interface with Z at the beginning of the protocol.
Also, the adversary may corrupt some ITMs at the beginning of the
protocol. During the protocol, the ITMs exchange messages and
compute the shares of the outputs. Corrupt ITMs send everything
they receive also to the adversary. If the adversary is malicious,
then the corrupt ITMs do not follow the protocol but the adversary’s
orders. Finally, the ITMs of π hand the shares of the outputs back
to Z. A corresponding ideal functionality Fop also receives the
shares of the inputs from Z and the corruption requests from A.
The functionalityFop reconstructs the actual inputs from the shares,
applies op to them and shares the results, thereby obtaining the
output shares which it gives back to Z. The functionality Fop also
sends the input and output shares of corrupt parties to A. If the
adversary is malicious, then it can also change the output shares
returned to corrupt parties.

An SMC protocol π for the operation op is secure if it is at least
as secure as the corresponding ideal functionality Fop. E.g. the
resharing protocol in Listing 1 is a secure protocol for the identity
function. The privacy of a protocol can be defined similarly. Let the
protocol π̄ be obtained from π and the functionality F̄ be obtained
fromFop by removing from them the final sendings of output shares
toZ andA. We say that π is private if π̄ is at least as secure as F̄ .

It is known that the sequential composition of two protocols
(where the output shares from the first protocol are directly given as
inputs to the second protocol, without going through Z) preserves

privacy [5]. Against honest-but-curious adversaries, the composi-
tion of a private protocol and a secure protocol (commonly reshar-
ing) is secure [5]. Against malicious adversaries, privacy limits the
amount of information they can learn about the inputs of the proto-
col by interfering with it [37].

A protocol optimizationT transforms a protocol π implementing
an ideal functionality F into a new protocol T (π) also implement-
ing F . Each optimization we have implemented in our DSL com-
piler preserves the preservation of privacy — we show that there
exists an ITM T, such that

∀Sim :
[
∀Z,A : Z‖π‖A ≈ Z‖F ‖(Sim‖A)⇒

∀Z,A : Z‖T (π)‖A ≈ Z‖F ‖((T‖Simα)‖A)
]
,

where Simα denotes Sim with renamed tapes, such that it directly
communicates only with T. In effect, if T is a protocol transfor-
mation, then T‖(·)α is the corresponding simulator transformation
used to transform a security proof of π to a security proof of T (π).

4.2 Proving security of protocols
Our protocol DSL contains no particular mechanisms to stati-

cally ensure the security or privacy of protocols. The type system
of the language only controls the lengths of the values, but not their
dependence on inputs or random variables. Hence we also cannot
speak about security-preserving compilation in the sense of [19].

We ensure the security of the generated protocols using data flow
analysis at the level of the IR. Our compiler pipeline contains the
static analyzer by Pettai and Laud [37] that checks protocols ex-
pressed as arithmetic circuits for privacy against malicious adver-
saries. If a protocol passes that check and we know that it is fol-
lowed by a resharing protocol, then it is also secure against honest-
but-curious adversaries. The check is invoked after the translation
from the protocol DSL to the intermediate language, and the opti-
mization of the generated intermediate code. Having the security
check late in the pipeline ensures that the earlier operations do not
introduce uncaught vulnerabilities.

Our experience with the protocol DSL validates the security as-
pects of the language and compiler design. Indeed, we have found
the writing of secure protocols to be very straightforward. This can
be explained by most of the protocols being written as a composi-
tion of simpler ones. When writing in this style the composition
theorem automatically provides the privacy guarantee. It is very
rare that a protocol is added that is not purely a composition, and
even in this case the automatic privacy checker is there to provide
a safety net and validation for the programmer. In fact, for those
reasons, to implement efficient and secure protocols in the protocol
DSL one does not need to have a deep understanding of the secu-
rity framework of the additive secret sharing scheme. The protocol
implementor never has to show that an implemented protocol is se-
cure: it is often trivially so by virtue of composition and this fact is
always automatically verified regardless.

5. EXPERIMENTAL RESULTS
We have implemented protocols for integer operations from [8]

and for floating-point operations from [23]. In this section we ex-
plore the performance of some of these DSL implemented proto-
cols compared to the existing C++ protocol set. In most cases
the evaluated protocols are not algorithmically identical. This is
unavoidable, as a key design point of the DSL is to simplify the
optimization and exploration of protocols. The protocols in C++

are long (the C++ division protocol spans over 1500 lines of code
whereas all DSL protocols combined span less than 3000) and dif-
ficult to read. It is often not clear if their implementation matches

the specification – and frequently it does not as the concrete imple-
mentations tend to employ undocumented optimizations.

Another factor that makes identical comparison difficult is that
the DSL floating-point protocols provide better (accuracy) guaran-
tees. For instance, we found out that some of the C++ protocols do
not handle 0 properly, some operations have poor relative errors,
and double-precision floating-point numbers provide very poor ac-
curacy guarantees (only in the range of 10−7). Providing fair com-
parison would either mean incorporating those defects into DSL
protocols or improving the C++ protocols. In both cases valuable
time is wasted. The poor accuracy guarantees of C++ protocols
are due to double-precision operations requiring the use of larger
than 128-bit integers which the old framework had difficulties with.
These differences give a performance advantage to C++ protocols
as they do not handle some of the cases and do not operate on inte-
gers as large as those used in the new protocols.

Experiments were performed on a cluster of 3 identical comput-
ers connected with a 10 Gigabit Ethernet network. Each computer
was equipped with 128GB DDR4 RAM, two 8 core Intel Xeon
(E5-2640 v3) processors and was running Debian Jessie (14th May
2015). Every protocol was benchmarked on various numbers of in-
puts: when executing a protocol in parallel on multiple inputs, the
round count remains the same while the amount of network com-
munication increases. On a decent network connection, the eval-
uation of the multiplication protocol on scalars, and on vectors of
length 10000, takes roughly the same time.

On each input length we have evaluated every protocol at least
twenty times; and up to few hundred times on smaller input sizes
in order to reduce variance. To estimate the execution time of a
protocol on some input length, we computed the mean of all mea-
surements on that length. The speedup was computed by dividing
the estimated execution time of the old protocol with the estimated
execution time of the respective DSL generated protocol. Speedup
greater than one means that the new protocol was, on average, faster
than the old one. All of the measurements were performance in an
identical setup, using the same unmodified software versions.

In Fig. 6(a) we can see the running time of the DSL and C++

floating-point multiplication protocols depending on the input size.
Notice how the running time is roughly constant up to around 500
elements after which the execution time grows linearly. We call this
point a saturation point because from this point on the execution
time is no longer latency bound and is limited by some other factors
(such as bandwidth or computation). Fig. 6(b) shows the speedup
of the protocol compared to the C++ version. We can see that the
new floating-point multiplication is between two to six times faster.

Complete benchmarking results are presented in Table 2. The
integer operations have been benchmarked on 32-bit integers and
floating-point protocols on single-precision numbers. We chose to
display only 32-bit versions because 64-bit integer division proto-
cols are not implemented in C++ and for the rest of the operations
the results are quite similar, mostly favouring DSL protocols. The
shift-right with a private value (a � b) protocol has benefited a lot
from a redesign in the DSL.

We can see that in every case the protocol DSL provides us an
improved floating-point arithmetic operation as we can expect the
protocols to run at least twice as fast. In many cases the DSL pro-
vides up to 10 times faster protocols. Some slowdown with integer
division operations was to be expected as they are very well tuned
medium-sized protocols. Still, past 10-element inputs we can see
some speedup in favour of the DSL. Integer multiplication is pro-
vided here as a pathological worst case for us: multiplication is a
very small and simple protocol that is easy to hand-tune and thus
we should not expect the DSL generated version to compete. This

100 101 102 103 104 105

a × b 1.12 0.96 0.90 1.05 1.10 0.68
a � n 0.90 1.07 1.36 2.36 2.11 1.32
a � b 2.13 4.31 13.56 28.35 35.97 27.99
a / n 0.78 0.73 1.54 2.65 2.67 3.03
a / b 0.90 1.02 1.33 1.27 1.05 0.95

x + y 2.62 2.87 3.65 4.38 3.93 3.79
x × y 1.74 1.89 3.28 4.21 4.18 4.37
1 / x 1.91 2.42 3.79 3.95 3.95 3.90
√

x 2.50 3.33 5.01 5.81 5.81 5.96
sin x 9.23 10.62 13.10 12.62 9.50
ln x 12.29 12.68 14.32 11.12 7.83
ex 5.33 6.55 10.47 11.48 10.97

erf x 4.71 12.32 29.02 36.32 41.73

Note: a and b denote 32-bit additively shared integers; n denotes 32-bit
public integer; x and y denote single-precision private floating-point num-
bers.

Table 2: Speedup in comparison to non-DSL protocols

is exactly so and we see a drastic drop in performance past 104-
element input vectors. We do not have a full explanation for this
drop, but one possibility is that the current multiplication proto-
col continues to compute intermediate values while some network
messages are being sent. The hand-tuned implementation might
also send messages in a more suitable pattern for the Sharemind’s
network layer.

We have also benchmarked private satellite collision analysis
from [23] using the new protocols. We see roughly 5-fold speedup,
going from 0.5 satellite pairs per second to 2.5 pairs per second.
When processing 100 pairs in parallel we gain a roughly 8-fold
speedup going from processing 0.7 pairs per second to 6 pairs per
second. This demonstrates that improving low-level floating-point
protocols can have a great effect on high-level applications.

6. RELATED WORK
A fair number of languages for SMC have been proposed over

the years, aiming to simplify the implementation of SMC proto-
cols, and to allow the developer to concentrate on application logic.
Most of the languages concentrate purely on application logic, ex-
pecting the SMC runtime to invoke a specific protocol for each
operation on private values that occurs in the program. Such lan-
guages include SecreC [6] used in the Sharemind framework, and
SFDL, compiled into Boolean circuits in the FairplayMP frame-
work [2] based on garbled circuits [42].

In several systems, the privacy-preserving application is expressed
in some widely used programming language, possibly with some
restrictions and privacy-related annotations. The program is an-
alyzed and operations on private data replaced with calls to the
implementations of protocols for these operations. The resulting
program can be compiled, and results in an executable, distributed
application making use of SMC. The language used may be C [43],
Java [40], Python [24] or Haskell [35]. Alternatively, the program
may be translated into Boolean circuits [21], which are then opti-
mized [26] and garbled.

A number of proposed languages can express both the compu-
tations performed through SMC protocols, and the computations
performed privately by each participant [36, 20, 39, 33, 38]. They
are not meant, nor capable to describe the details of those protocols.

None of the languages described above are helpful in stating
how the low-level SMC protocols are implemented. As far as we

● ● ● ● ●●●●●●
●

● ● ●●●●●●

●
●

●
●●

●
●●●

●
●

●
●

●
●●●●

●

●

●
●

●
●

●●
●

●

●
●

●
●●●

●●

100

101

102

103

104

105

100 101 102 103 104 105 106

Vector length

D
ur

at
io

n
(m

s)
Type

● C++ float32

C++ float64

DSL float32

DSL float64

(a) Running time

2

4

6

100 101 102 103 104 105 106

Vector length

S
pe

ed
up

Type

float32

float64

(b) Speedup of DSL compared to C++

Figure 6: Benchmarking results for floating-point multiplication

know, only Launchbury et al. [30] seriously discuss the structur-
ing and higher-level constructions for these protocol implementa-
tions. They do not propose a novel language, but use Haskell with a
primitive operation rotateRight (corresponding to our from Next).
Their approach does not straightforwardly allow the parallelization
of protocols to the same extent as ours.

Our DSL has some similarities to dataflow programming [18],
where the communication pattern follows from the data dependen-
cies in the program. Our from-primitive is slightly similar to the
concept of a future [1]. Still, the relationship with these paradigms
is not too close, because for us, the concept of a party is also funda-
mental, and we explicitly state which computations are executed by
which parties. Hence we believe that the design of a DSL for a do-
main similar to ours (building complex protocols between mutually
distrustful parties) has not been considered before.

7. CONCLUSIONS
We have presented a DSL for specifying low-level SMC proto-

cols. The ultimate goal of this DSL is to improve the efficiency of
different kinds of SMC applications, thereby facilitating the adop-
tion of this technique. The DSL achieves this goal by increasing the
efficiency of executable protocols, easing their development and
maintenance, and simplifying the comparison of different design
decisions for protocols.

At least the following aspects of its design contribute to the suc-
cess of our DSL: (i) it is separate from the application-level lan-
guage; (ii) it concentrates on describing the data dependencies of a
protocol, not the computation and communication details; (iii) its
communication primitives are tailored to the needs of low-level
SMC protocols; (iv) its type system is length-polymorphic, yet
allows precise control over the lengths of input, output, and in-
termediate values; (v) its intermediate representation (IR) is ex-
tremely parallelization-friendly; (vi) the IR consists of arithmetic
operations; (vii) the optimizations targeting the IR are applied to
the whole protocol; (viii) the optimizations preserve the security
of protocols; and (ix) the security checker is invoked late in the
toolchain. These fortunate aspects build upon and strengthen each
other. E.g. if there was a single language for primitive protocols
and applications, resulting in a monolithic protocol for the entire
privacy-preserving application, then the whole-protocol optimiza-
tions would be infeasible. The use of arithmetic circuits, as op-
posed to Boolean ones, also keeps down the size of the protocol
description. The compositional nature of protocols, together with

the security-preserving optimizations, ease the development of se-
cure protocols, and the security checker instills confidence.

We believe that it is worthwhile to use the same or similar lan-
guage for developing the low-level protocols in SMC frameworks
based on Shamir’s secret sharing [43] or SPDZ [24]. Similar im-
provements in efficiency and maintainability would be obtained.

Our DSL brings structure to the implementations of low-level
protocols and opens up new optimization possibilities for the ap-
plication level language. While the application language already
supports SIMD operations, we can now add statement-level par-
allelism to it. We can also estimate the performance of low-level
protocols much more precisely, depending on the parameters of the
execution environment of the SMC application, so that the applica-
tion compiler can better choose the applied optimizations.

8. ACKNOWLEDGEMENTS
This work was supported by the European Social Fund through

the ICT Doctoral School programme, and by the European Re-
gional Development Fund through the Estonian Center of Excel-
lence in Computer Science, EXCS, and through the Software Tech-
nologies and Applications Competence Centre, STACC. It has also
received support from Estonian Research Council through project
IUT27-1. We would like to thank Madis Janson, Liisi Kerik, Alisa
Pankova, Martin Pettai and Karl Tarbe for their contributions to the
compiler and protocols.

9. REFERENCES
[1] Henry C. Baker, Jr. and Carl Hewitt. The Incremental Garbage Collection of

Processes. In Proceedings of the 1977 Symposium on Artificial Intelligence and
Programming Languages, pages 55–59. ACM, 1977.

[2] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for
secure multi-party computation. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security, pages 257–266, New
York, NY, USA, 2008. ACM.

[3] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. A Short Paper on
How the National Tax Office Evaluated a Tax Fraud Detection System Based on
Secure Multi-party Computation. In Proceedings of 19th International
Conference on Financial Cryptography and Data Security, 2015.

[4] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind: a tool for
cryptographically secure statistical analysis. Cryptology ePrint Archive, Report
2014/512, 2014.

[5] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From input private
to universally composable secure multi-party computation primitives. In IEEE
27th Computer Security Foundations Symposium, CSF 2014, pages 184–198.
IEEE, July 2014.

[6] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-polymorphic
programming of privacy-preserving applications. In Alejandro Russo and Omer

Tripp, editors, Proceedings of the Ninth Workshop on Programming Languages
and Analysis for Security, PLAS@ECOOP 2014, Uppsala, Sweden, July 29,
2014, page 53. ACM, 2014.

[7] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In Sushil Jajodia and Javier López,
editors, ESORICS, volume 5283 of Lecture Notes in Computer Science, pages
192–206. Springer, 2008.

[8] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson.
High-performance secure multi-party computation for data mining applications.
Int. J. Inf. Sec., 11(6):403–418, 2012.

[9] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft.
Secure multiparty computation goes live. In Roger Dingledine and Philippe
Golle, editors, Financial Cryptography and Data Security, 13th International
Conference, FC 2009, Accra Beach, Barbados, February 23-26, 2009. Revised
Selected Papers, volume 5628 of Lecture Notes in Computer Science, pages
325–343. Springer, 2009.

[10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain network events and
statistics. In USENIX Security Symposium, pages 223–239, Washington, DC,
USA, 2010.

[11] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145, 2001.

[12] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point
numbers. In Radu Sion, editor, Financial Cryptography and Data Security, 14th
International Conference, FC 2010, Tenerife, Canary Islands, January 25-28,
2010, Revised Selected Papers, volume 6052 of Lecture Notes in Computer
Science, pages 35–50. Springer, 2010.

[13] Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 207–212. ACM, 1982.

[14] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.
Asynchronous Multiparty Computation: Theory and Implementation. In
Stanislaw Jarecki and Gene Tsudik, editors, Public Key Cryptography, volume
5443 of Lecture Notes in Computer Science, pages 160–179. Springer, 2009.

[15] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 247–264. Springer, 2003.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, pages 337–340, 2008.

[17] Fabienne Eigner, Matteo Maffei, Ivan Pryvalov, Francesca Pampaloni, and
Aniket Kate. Differentially private data aggregation with optimal utility. In
Charles N. Payne Jr., Adam Hahn, Kevin R. B. Butler, and Micah Sherr, editors,
Proceedings of the 30th Annual Computer Security Applications Conference,
ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014, pages 316–325.
ACM, 2014.

[18] Jim Falgout. Dataflow Programming: Handling Huge Data Loads Without
Adding Complexity. Dr. Dobb’s Journal, 36, 9 2011.

[19] Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. A security-preserving
compiler for distributed programs: from information-flow policies to
cryptographic mechanisms. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, Proceedings of the 2009 ACM Conference on Computer and
Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13,
2009, pages 432–441. ACM, 2009.

[20] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. TASTY: tool for automating secure two-party
computations. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, Proceedings of the 17th ACM Conference on Computer and
Communications Security. CCS’10, pages 451–462. ACM, 2010.

[21] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure
two-party computations in ANSI C. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 772–783.
ACM, 2012.

[22] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect
privacy in large-scale genome-wide association studies. Bioinformatics,
29(7):886–893, 2013.

[23] Liina Kamm and Jan Willemson. Secure floating point arithmetic and private
satellite collision analysis. International Journal of Information Security, pages
1–18, 2014.

[24] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical
actively secure MPC with dishonest majority. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, pages 549–560. ACM, 2013.

[25] Florian Kerschbaum, Axel Schröpfer, Antonio Zilli, Richard Pibernik, Octavian
Catrina, Sebastiaan de Hoogh, Berry Schoenmakers, Stelvio Cimato, and
Ernesto Damiani. Secure collaborative supply-chain management. IEEE
Computer, 44(9):38–43, 2011.

[26] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin R. B. Butler. PCF:
A portable circuit format for scalable two-party secure computation. In
Samuel T. King, editor, Proceedings of the 22th USENIX Security Symposium,
Washington, DC, USA, August 14-16, 2013, pages 321–336. USENIX
Association, 2013.

[27] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure
computation with malicious adversaries. In Proceedings of the 21st USENIX
conference on Security symposium, pages 285–300. USENIX Association,
2012.

[28] Toomas Krips and Jan Willemson. Hybrid model of fixed and floating point
numbers in secure multiparty computations. In Sherman S. M. Chow, Jan
Camenisch, Lucas Chi Kwong Hui, and Siu-Ming Yiu, editors, Information
Security - 17th International Conference, ISC 2014, Hong Kong, China,
October 12-14, 2014. Proceedings, volume 8783 of Lecture Notes in Computer
Science, pages 179–197. Springer, 2014.

[29] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March
2004, San Jose, CA, USA, pages 75–88. IEEE Computer Society, 2004.

[30] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy
Adams-Moran. Efficient lookup-table protocol in secure multiparty
computation. In Peter Thiemann and Robby Bruce Findler, editors, ACM
SIGPLAN International Conference on Functional Programming, ICFP’12,
Copenhagen, Denmark, September 9-15, 2012, pages 189–200. ACM, 2012.

[31] Jeff Lewis. Cryptol: specification, implementation and verification of
high-grade cryptographic applications. In Peng Ning, Vijay Atluri, Virgil D.
Gligor, and Heiko Mantel, editors, FMSE, page 41. ACM, 2007.

[32] Miran Lipovača. Learn You a Haskell for Great Good! A Beginner’s Guide. No
Starch Press, 2011.

[33] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael W. Hicks.
Automating efficient ram-model secure computation. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages
623–638. IEEE Computer Society, 2014.

[34] Lior Malka. Vmcrypt: modular software architecture for scalable secure
computation. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors,
Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, pages
715–724. ACM, 2011.

[35] John C. Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman.
Information-flow control for programming on encrypted data. In Stephen
Chong, editor, 25th IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012, pages 45–60. IEEE, 2012.

[36] Janus Dam Nielsen and Michael I. Schwartzbach. A domain-specific
programming language for secure multiparty computation. In Michael W.
Hicks, editor, Proceedings of the 2007 Workshop on Programming Languages
and Analysis for Security. PLAS’07, pages 21–30. ACM, 2007.

[37] Martin Pettai and Peeter Laud. Automatic Proofs of Privacy of Secure
Multi-Party Computation Protocols Against Active Adversaries. In Cedric
Fournet and Michael Hicks, editors, 2015 IEEE 28th Computer Security
Foundations Symposium (CSF 2015), 2015.

[38] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A
programming language for generic, mixed-mode multiparty computations. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 655–670. IEEE Computer Society, 2014.

[39] Axel Schröpfer, Florian Kerschbaum, and Guenter Mueller. L1 - An
Intermediate Language for Mixed-Protocol Secure Computation. In
Proceedings of the 35th Annual IEEE International Computer Software and
Applications Conference. COMPSAC’11, pages 298–307. IEEE Computer
Society, 2011.

[40] Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd D. Millstein.
Mrcrypt: static analysis for secure cloud computations. In Antony L. Hosking,
Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013, pages 271–286. ACM, 2013.

[41] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin
Sulzmann. OutsideIn(X) Modular type inference with local assumptions.
Journal of Functional Programming, 21(4-5):333–412, 2011.

[42] Andrew C. Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167,
Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

[43] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: a general-purpose
compiler for private distributed computation. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 813–826. ACM, 2013.

	Introduction
	Overview of the protocol DSL
	Additive secret sharing
	Multiplication protocol
	Bit-level protocols
	High-level protocols

	The core protocol language
	Type system
	Semantics
	Compiler implementation
	Low-level Intermediate Representation
	Optimizations
	Integration with Sharemind

	Security
	Security definitions
	Proving security of protocols

	Experimental results
	Related work
	Conclusions
	Acknowledgements
	References

