
On the (Im)possibility of Privately Outsourcing Linear
Programming

Peeter Laud
Cybernetica AS

peeter.laud@cyber.ee

Alisa Pankova
Cybernetica AS

Software Technologies and Applications
Competence Centre

University of Tartu, Institute of Computer Science
alisa.pankova@cyber.ee

ABSTRACT
In this paper we study the security definitions and meth-
ods for transformation-based outsourcing of linear program-
ming. The recent attacks have shown the deficiencies of
existing security definitions; thus we propose a stronger,
indistinguishability-based definition of security of problem
transformations that is very similar to IND-CPA security
of encryption systems. We will study the realizability of
this definition for linear programming and find that barring
radically new ideas, there cannot exist transformations that
are secure information-theoretically or even computation-
ally. We conclude that for solving linear programming prob-
lems in privacy-preserving manner, cryptographic methods
for securely implementing Simplex or some other linear pro-
gramming solving algorithm are the only viable approach.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; C.2.4 [Computer-Commu-
nication Networks]: Distributed Systems—Client/server

Keywords
Cryptanalysis; Linear programming; Secure outsourcing

1. INTRODUCTION
In linear programming (LP), one seeks the optimal value

of a linear function of several arguments, subject to linear
constraints on these arguments. In the canonical form, a LP
task is

maximize ~cT~x, subject to A~x ≤ ~b, ~x ≥ ~0, (1)

where A ∈ Rm×n, ~b ∈ Rm, ~c ∈ Rn (all vectors are column
vectors), and the inequalities hold componentwise. The so-
lution ~xopt is a vector of length n over real numbers. There
exist algorithms for solving LP tasks that are efficient in
theory and/or in practice. A large number of practical opti-
mization problems can be cast as LP tasks either exactly or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW’13, November 8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2490-8/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517488.2517490.

approximately. As the specifications of these problems may
also have privacy constraints, there has been ample interest
towards privacy-preserving methods for solving LP tasks.

Secure outsourcing is conceptually the simplest case of
privacy-aware computation. In this case, there are two par-
ties, the client and the server. The client has a task T which
it would like to solve, but has insufficient computational re-
sources for doing so. The server is powerful enough to solve
the task T . The client wants to keep T private from the
server. Thus the client and server engage in a protocol that
results in the client learning the solution to T , but is com-
putationally less demanding for the client than solving T
himself. Such outsourcing protocols have been proposed for
different tasks, e.g. sequence matching [2], database opera-
tions [11], cryptographic operations [12, 6], and some linear
algebra tasks [1] including linear programming [8, 22]. Quite
often, the outsourcing protocol consists of the client trans-
forming the task T in some manner that hides its original
description, the server solving the transformed task, and
the client transforming the solution of the transformed task
back to the solution of the original task. To reap the bene-
fits of outsourcing, a good, problem-specific transformation
is probably necessary [7].

In this paper, we consider the feasibility of outsourcing lin-
ear programming in privacy-preserving manner. This prob-
lem is tightly related to multiparty privacy-preserving LP,

where the specification (A,~b,~c) of a LP task is distributed
among several mutually distrusting parties. There is a de-
cent number of proposed protocols for this task that are
actually based on outsourcing as well — the clients execute
a protocol that results in a transformed task, this is solved
publicly, and another protocol transforms this solution back
to the solution of the original LP task [9, 21, 18, 19, 4, 17,
13, 14].

This paper is motivated by some recent attacks against
privacy-preserving multiparty and/or outsourcing LP solv-
ing methods [3, 15]. They show that, for linear programs
given in canonical form and split horizontally between par-
ties (each party provides some of the constraints of the sys-
tem), the existing transformations can in general be undone
by some of the parties, using the partial knowledge they
have about the initial task. There exist other forms of LP
tasks (see Sec. 2.1) and proposed transformations for them,
and the existing attacks are not directly applicable to these
transformations, but as all forms are equivalent, it may be
possible to adapt the attacks.

The outline of this paper is the following. In Sec. 2 we
review LP-related notions and existing transformation tech-
niques from related works. In Sec. 3 we study how to build
LP transformations on top of solid cryptographic founda-
tions. To this end, we propose a natural indistinguishability-
based definition stating that any two LP tasks chosen by the
adversary cannot be distinguishied by it after the transfor-
mation. In Sec. 4 we show that it is impossible to information-
theoretically achieve this level of security at least with trans-
formations from a large class that includes all transforma-
tions built on currently proposed techniques. We note that
this does not yet rule out computational security, and in
Sec. 5 we study a number of candidate secure transforma-
tions. It turns out that none of our proposals are secure.
We generalize the reason why all these transformations fail,
and then we empirically state another necessary property
for secure transformations that excludes this way of failing.
In Sec. 6 we see that this property is very strong and con-
strains the transformed tasks too much.We thus conclude
that, barring any radically new ideas related to transform-
ing the LP task to some different task, transformation-based
techniques for privacy-preserving LP outsourcing and multi-
party LP solving are unusable, and the only currently known
feasible method is to use privacy-preserving building blocks
in implementing existing LP solving algorithms [20, 16].

2. PRELIMINARIES
Throughout this paper, the upright upper case letters A

denote matrices, and the lower case letters with vector signs
~b denote column vectors. Writing two matrices/vectors to-

gether without an operator A~b denotes multiplication, while
separating them with a whitespace and putting into paren-

theses (A ~b) denotes column augmentation. By augmenta-

tion we mean attaching a column ~b to the matrix A from
the right. This can be generalized to matrices: (A B) de-
notes a matrix that contains all the columns of A followed
by all the columns of B. Row augmentation is defined analo-
gously. Since multiplication and augmentation may be used
in the same expression at once, for clarity the augmentation

is sometimes also denoted (A|~b), whereas the multiplication
operation has higher priority.

2.1 Linear Programming
The canonical form (1) of LP is equivalent to its standard

form

maximize ~cT~x, subject to A~x = ~b, ~x ≥ ~0 (2)

and to its augmented form (i ∈ {1, . . . , |~x|}):

maximize xi, subject to A~x = ~b, ~x ≥ ~0 . (3)

Indeed, the inequalities of the canonical form may be re-
placed with equalities by introducing slack variables. Each
equality may be substituted with two inequalities of oppo-
site directions. Given a linear program in its standard form,
the objective function vector ~c may be included into the ma-
trix, and an additional variable represent the corresponding
linear combination. The augmented form is an instance of
standard form where the i-th entry of ~cT is 1, and the rest
are 0.

A feasible solution of a linear program is any vector x0 ∈
Rn that satisfies its constraints. An optimal solution of a
linear program is any feasible solution that maximizes the

value of its objective function. The feasible region of a linear
program is the set of all its feasible solutions. It is a poly-
hedron — the intersection of a finite number of hyperplanes
and half-spaces. A feasible solution is basic if it is located
in one of the vertices of that polyhedron.

2.2 Existing Types of Transformations
Let a linear programming task be given in its standard

form (2). The main basic transformations from the related
works are the following.

Multiplying from the left. The idea of multiplying A

and~b by a random invertible matrix P from the left was first
introduced in [9]. Since P is invertible, all the solutions to
the system, including the optimal solution, remain the same.
This means that the transformation is not harmful for the
correctness. However, the feasible region remains revealed.

Multiplying from the right. The idea of multiplying

A and ~b by a random invertible matrix Q from the right was
also proposed in [9]. This operation hides also the objective
function vector ~c. Unfortunately it changes the optimal so-

lution if some external constraints of the form B~x ≥ ~b′ are
present. In this case, the vector ~b′ should also be modified
according to the transformation, but that in fact reveals all
the information about Q. Since in practice linear programs
do require such constraints (in general of the form ~x ≥ ~0),
this solution is not sufficient.

Scaling and Permutation. There have been attempts
to implement multiplication from the right without affecting
the correctness [21], and finally it was noticed in [4] that in

order to preserve the inequality ~x ≥ ~0, the most general
type of matrix by which we may multiply from the right is
a positive monomial matrix (product of a positive diagonal
matrix and a permutation matrix). This results in scaling
and permuting the variables.

Shifting. In [8], the initial variable vector ~x is not only
scaled, but also shifted. This is done by introducing special
slack variables for each shifted variable.

Several of the transformations presented above are spe-
cial cases of the following transformation for a LP task in
the augmented form (3). Generate a random n× n positive
diagonal matrix D and n× n permutation matrix Q (corre-
sponding to the permutation σ ∈ Sn), where n = |~x|. Out-

put i′ = π(i) and (A′|~b′) = RREF(ADQ|~b), where RREF(M)
is the reduced row-echelon form (RREF) of the matrix M .
We call this transformation the basic transformation of a LP
task.

Recall that the RREF is an invariant of matrices: we have
RREF(M1) = RREF(M2) for m × n matrices M1 and M2

iff there exists an invertible m × m matrix P , such that
M1 = PM2. Also, for each m × n matrix M there exists
an invertible m×m matrix P , such that RREF(M) = PM .
Thus the computation of RREF generalizes the multiplica-
tion of the system of equations with an invertible matrix,
occurring in almost every transformation proposed so far.

On input i′, A′, ~b′, the server finds an optimal solution

~yopt for the LP task “maximize yi′ , subject to A′~y = ~b′,

~y ≥ ~0”. Upon learning ~yopt, the client can recover an optimal
solution to (3) by ~xopt = ~yoptQ

−1D−1.
Note that the basic transformation does not employ shift-

ing. We have made this choice because the shifting trans-
formation, as used in [8], is easy to undo [15].

3. DESIRED SECURITY DEFINITION
The security definition that has been used in the previous

works related to the transformation-based approach is the
acceptable security. This notion was first used in [10]. A
protocol achieves acceptable security if the only thing that
the adversary can do is to reduce all the possible values of the
secret data to some domain with the following properties:

1. The number of values in this domain is infinite, or
the number of values in this domain is so large that a
brute-force attack is computationally infeasible.

2. The range of the domain (the difference between the
upper and lower bounds) is acceptable for the applica-
tion.

Some works provide more detailed analysis [3, 8] that esti-
mates the probability that the adversary guesses some secret
value. The leakage quantification analysis [8] is a composi-
tional method for estimating the adversary’s ability to make
the correct guess when assisted by certain public informa-
tion. However, even this analysis is still not formal enough
and is related to the same acceptable security definition.
The informal definitions allow the existence of some attacks
that may be yet unknown, but may turn out to be efficient.
For example, some vulnerabilities against settings that were
assumed to be secure have been found [15]. Additionally,
to argue about the security of complex protocols that use
privacy-preserving LP transformations as a subprotocol, a
more standard security definition for the LP transformation
is necessary.

We now give the necessary notions to formally define a
problem transformation and its security. Let T ⊆ {0, 1}∗
be the set of all possible tasks and S ⊆ {0, 1}∗ the set of
all possible solutions. For T ∈ T and S ∈ S let T � S
denote that S is a solution for T . A problem transformation
is a pair of functions F : T × {0, 1}∗ → T × {0, 1}∗ and
G : S × {0, 1}∗ → S. Both F and G must work in time
polynomial to the length of their first argument. The pair
(F ,G) is a correct problem transformation if

∀T, r, T ′, S′, s :(
(T ′, s) = F(T ; r) ∧ T ′ � S′

)
⇒ T � G(S′, s) .

This implication shows the intended use of F and G. To
transform a task T , the mapping F uses randomness r, pro-
ducing a transformed task T ′ and some state s for the map-
ping G that transforms a solution S′ to T ′ back into a solu-
tion of the original task T . We write F(T) for a randomized
function that first samples r and then runs F(T ; r).

Note that we have not defined the transformation in the
most general manner possible. Namely, we require that the
result of transforming a task from the set T is again a task
from T. This corresponds to our goal that a transformed
linear program is a linear program again.

The transformation F is intended to hide the important
details of a task T . The meaning of hiding has been recently
investigated by Bellare et al. [5] in the context of garbling
circuits [23]. It is possible that it is unimportant and/or
too expensive to hide certain details of T . It is also possible
that certain tasks are inherently unsuitable for hiding. In
the context of linear programming, we most probably do not
want to hide the size of the task, because we would like to
avoid padding all tasks to some maximum size. Also, some

tasks may be ill-specified and thus unsuitable for transfor-
mation. For example, we may require the constraint matrix
to have full rank.

Both the public details and suitability for hiding are cap-
tured by the notion of side information function Φ : T →
{0, 1}∗ that, again, must be polynomial-time computable.
When transforming a task T , we do not try to hide the in-
formation in Φ(T). If T should not be transformed at all,
then we set Φ(T) = T . We can now state a rather standard,
indistinguishability-based definition of privacy. Recall that
a function α : N → R is negligible if ∀c∃m∀n ≥ m : α(n) <
1/nc.

Definition 1. A transformation (F ,G) for T is Φ-private
if the advantage of any probabilistic polynomial-time adver-
sary A = (A1,A2) is a negligible function of η in the follow-

ing experiment ExpT,Φ
A :

(T0, T1, s)← A1(η)
if |T0| 6= η ∨ |T1| 6= η ∨ Φ(T0) 6= Φ(T1)

return ⊥
b

$← {0, 1}
(T ′,)← F(Tb)
b′ ← A2(T ′, s)

return (b
?
= b′)

where the advantage of the adversary is 1/2 less the proba-
bility of the experiment returning true.

If T is the set of all linear programming tasks “maxi-

mize ~cT~x, subject to A~x = ~b, ~x ≥ ~0”, determined by A ∈
Rm×n, ~b ∈ Rm and ~c ∈ Rn, then we will in the follow-

ing take Φ(A,~b,~c) = (m,n, ~xopt, bb(A,~b)), where ~xopt is the
unique optimal solution for the linear programming task and

bb(A,~b) is the bounding box for the polyhedron A~x = ~b,

~x ≥ ~0. If the task is infeasible, unbounded, or has several
different optimal solutions, then we consider the task unsuit-

able for transformation and take Φ(A,~b,~c) = (A,~b,~c). This
choice of Φ is at least as permissive as the privacy goals for
previously proposed transformations (note that these goals
have often been implicit in the papers where these transfor-
mations were presented).

Quite clearly, the transformations described in Sec. 2.2, in
particular the basic transformation, do not satisfy this defi-
nition. If F is the basic transformation then the adversary
picks two LP tasks T0 and T1 with n variables, m equality
constraints and the same optimal solution, such that their
feasible regions P0 and P1 both have the unit hypercube with
opposite corners at (0, . . . , 0) and (1, . . . , 1) as the bound-
ing box, but a different number of vertices with coordinates
(0, . . . , 0, 1, 0, . . . , 0). Given the transformed task T ′, the ad-
versary will find its bounding box (by solving a number of
LP tasks with the constraints of T ′ and either maximizing or
minimizing a single variable), scale it to the unit hypercube,
and count the vertices with coordinates (0, . . . , 0, 1, 0, . . . , 0).
This count is not changed by the basic transformation.

4. NO PERFECT SECRECY
A transformation (F ,G) provides perfect secrecy (or infor-

mation-theoretic secrecy) if the advantage of any adversary
in the experiment described in Def. 1 is zero. It is definitely
possible to define a transformation that provides perfect se-
crecy with respect to this definition. Such a transformation

F would solve the LP task and then output a randomly
selected (or even a constant) LP task that has the same op-
timal solution. But obviously, we are not looking for such
transformations because the goal of the entire outsourcing
approach is to make the client not pay the price of solving
the original problem.

In this section we prove that any perfectly secure transfor-
mation with the properties listed below cannot be compu-
tationally much simpler than solving the LP task. W.l.o.g.
we assume that both the inputs and the outputs of F are
linear programs in the canonical form (1). The properties
are the following:

1. The optimal solution ~yopt to the transformed linear

program F(A,~b,~c; r) only depends on r and Φ(A,~b,~c).

2. The mapping F(·; r) is continuous with respect to the
optimal solutions of the initial and transformed prob-
lems. This means that for each ε > 0 there exists δ >
0, such that if (A◦, ~b◦, ~c◦) and (A•, ~b•, ~c•) are two LP
tasks with n variables, m constraints and the optimal
solutions satisfying ‖ ~x◦opt− ~x•opt‖ ≤ δ, then the opti-

mal solutions of the transformed tasks F(A◦, ~b◦, ~c◦; r)

and F(A•, ~b•, ~c•; r) satisfy ‖ ~y◦opt − ~y•opt‖ ≤ ε.

We find the properties natural; they are satisfied by all trans-
formations proposed so far in the literature and seem to be
natural consequences of the proposed transformation tech-
niques. For example, the result of scaling and shifting the
polyhedron or permuting its variables depends only on the
random matrices by which it is multiplied (the range for the
random values may depend on the bounding box). For a
transformation satisfying these properties, we show how to
turn it into a LP solving algorithm with only little extra
computational effort.

According to property 2, there exists a function ∆ : R>0 →
R>0 (where R>0 denotes the set of positive real numbers),
mapping ε to δ. W.l.o.g. we may assume that the function
∆ is monotone and continuous.

For the simplicity of the exposition, we need a further
technical property of F . Let Qn be the n-dimensional unit
hypercube. For a polyhedron P bounded by a number of hy-
perplanes, let its roundness rd(P) be the minimum distance
between a vertex of P and a hyperplane of P that does not
contain this vertex. For ~v ∈ Qn, let rdmn (~v; r) be the round-
ness of the polyhedron determined by the constraints of the

LP task F(A,~b,~c; r), where Φ(A,~b,~c) = (m,n,~v,Qn). Note
that due to property 1, the quantity rdmn (~v; r) is well-defined.
The required property of F is the following:

3. The function rdmn (~x; r) is continuous (as a function of
~x).

We show that the existence of a perfectly secure trans-
formation with listed properties allows us to perform of-
fline precomputations for a fixed dimension n and number
of bounding hyperplanes m that afterwards allow us to solve
an arbitrarily large proportion of interesting LP tasks of di-
mension n− 1 with m− 2 facets with an effort that is only
marginally larger than applying F and G. Let our interest
in these tasks be described by a probability distribution D;
the tasks we want to solve are sampled from this distribu-
tion. We assume that the probability density function p
of the optimal solutions of tasks sampled according to D is
continuous. We also assume that as side information, we

know the bounding boxes of the polyhedra defined by the
constraints of these tasks; this assumption holds for large
classes of problems occurring in practice. We will actually
use an assumption equivalent to the last one due to the ease
of scaling and shifting: the bounding boxes of all tasks sam-
pled from D are Qn−1.

For the precomputation, we first fix the randomness r. We
construct a LP task T pre with n variables and m bounding
hyperplanes and the objective function selected in such a
way that the optimal solution of T pre is ~xpre

opt = (1, . . . , 1)T.
We perform the transformation – Upre = F(T pre; r) – and
solve the resulting task Upre. Let the solution to Upre be
~ypre

opt.
Let q ∈ (0, 1) be the desired success probability of the

LP solving algorithm. The online phase of LP depends on
a constant ε > 0 that is selected according to q (but is
independent of T pre). Let us first explain the algorithm,
and then show that there is a choice of ε that guarantees
the success probability at least q. Denote δ = ∆(ε).

Let T ← D be a LP task with n − 1 variables and m −
2 constraints. Let P be the polyhedron defined by these
constraints; let the bounding box of P be Qn−1. To solve
T , we subject it to the following transformations.

1. Scale the polyhedron P down, with the scalar mul-
tiplier being δ. This corresponds to substituting each
variable xi in each constraint and in the objective func-
tion vector by (1/δ)xi. Let T0 be the resulting task and
P0 the polyhedron defined by the scaled constraints.
The bounding box of P0 is the hypercube in n − 1
dimensions with the side length δ.

2. Add the n-th dimension and build an oblique hyper-
prism from P0, with the bases at hyperplanes xn = 0
and xn = 1, and the bounding box of the hyperprism
being equal to Qn. This modifies the system of con-
straints as follows:

• Two new constraints, xn ≥ 0 and xn ≤ 1, are
added corresponding to the bases of the hyper-
prism.

• Each existing constraint
∑n−1
i=1 aixi ≤ b is re-

placed with
∑n−1
i=1 ai(xi + (1 − δ)xn) ≤ b, cor-

responding to the sides of the hyperprism.

The result of these two transformations is shown in Fig. 1.
Let T ′ be the LP task where the resulting hyperprism P ′ is

the set of feasible solutions, and where the objective function
of T ′ is

∑n−1
i=1 cixi + Cxn, where ~c = (c1, . . . , cn−1) is the

objective function vector of T and C is a large constant.
Hence the optimal solution ~x′opt of T ′ is located on the base
P1 of the hyperprism, otherwise being “at the same vertex”
as the optimal solution ~xopt to T . In particular, ~x′opt can

easily be transformed back to ~xopt. Also note that ‖~x′opt −
~xpre

opt‖ ≤ δ.
Let (U ′, s) = F(T ′; r). If we could find the optimal solu-

tion ~y′opt to U ′, then we could compute ~x′opt = G(~y′opt, s)

and find ~xopt from it. Note that ‖~y′opt − ~y
pre
opt‖ ≤ ε. Let

P̄ be the polyhedron defined by the constraints of U ′. The
point ~y′opt is determined as the unique intersection point of

a number of hyperplanes bounding P̄ . All these hyperplanes
are at distance of at most ε from the point ~ypre

opt.
We now have to explain the choice of ε. We have selected

it so small, that Pr[rd(P̄) > 2ε] ≥ q, where the probability

1

1

1

xk

xj

xi

P

P1

δ

δ

P0

Figure 1: Results of preparatory transformations to
task T

is taken over the choice of T (sampled from D). Thanks
to this choice, the following claim holds with probability at
least q:

• If a hyperplane bounding P̄ is at distance of at most
ε from the point ~ypre

opt, then this hyperplane contains
~y′opt.

Hence, to find ~y′opt, we measure how far each hyperplane

bounding P̄ is from the point ~ypre
opt, and find the intersection

point of these hyperplanes where the distance is at most ε.
This amounts to solving a system of linear equations, which
is much simpler than solving LP.

Existence of suitable ε.
Let baseε ⊆ Rn be the set of points ~x, where xn = 1 and

1 −∆(ε) ≤ xi ≤ 1 for all i ∈ {1, . . . , n − 1}. Let p′ε be the

probability density function of ~x′opt ∈ baseε, where ~x′opt is
the optimal solution to the LP task T ′, defined as before.
The function p′ε is continuous because it has been obtained
via a continuous transformation from the continuous func-
tion p. For a Boolean value b, let [b] be 1 if b is true, and 0
if b is false. The probability of rd(P̄) being larger than 2ε is

PR(ε) =

∫
baseε

p′ε(~x) · [rdmn (~x; r) > 2ε] d~x .

We see that PR is a continuous function, because it has been
constructed from continuous components in a manner that
preserves continuity. As PR(0) = 1, there must exist some
ε > 0, such that PR(ε) ≥ q.

5. SOME INSECURE TRANSFORMATIONS
We have seen that perfect security is impractical. This

does not yet rule out the existence of transformations with
weaker security (computational), because we had to access
the private randomness in order to obtain the optimal solu-
tion for the LP task.

In this section, we propose certain transformations, ob-
serve why these do not satisfy our privacy , and empirically
derive a further necessary condition for the security of the
transformation. In our opinion, this condition is a very nat-
ural one. The transformations satisfying this condition are
then further explored in Sec. 6.

When aiming for computational security, the privacy has
to follow from a plausible computational hardness assump-
tion. In LP, we work with real numbers, hence the assump-
tions about discrete structures (e.g. the RSA assumption,
various Diffie-Hellman assumptions) etc. are not directly ap-
plicable. Any assumption we base the security of the trans-
formation on, will be a novel one. To reduce the novelty, we
may take some known assumption on processes similar to
transforming LP tasks producing indistinguishable distribu-
tions, and change it by stating that instead of elements of
finite fields or groups, there are real numbers. We must be
careful, though, because real numbers have extra structure
(order) that finite fields lack.

The Strong Secret Hiding Assumption (SSHA) [1] may be
suitable for such change. We refer to the original paper for
its precise statement on the indistinguishability of certain
distributions over matrices over finite fields. We only remark
that if SSHA could be extended to matrices over R, then it
would allow us to hide a LP task by adding many extra
columns (and rows) to the matrix A before applying the
basic transformation. We must be careful, though, to not
change the optimal solution of the task.

Let us now study different ways of performing this aug-
mentation of A. Starting from the task (3), we will change

it to “maximize wj , subject to A′ ~w = ~b′, ~w ≥ 0”, to which
we apply the basic transformation.

New variables with constraints.
We add a new variable z to the system, and fix its value

with respect to existing variables: we also add a constraint

z = ~dT~x+ r to the system, where ~d ∈ Rn and r ∈ R. In this
manner, we can add any number of variables z1, . . . , zk with

constraints zj = ~dT
j ~x+rj . This corresponds to changing the

task to “maximize xi, subject to
(
A 0
D −I

)
=
(~b
−~r

)
, ~x, ~z ≥ ~0”,

where D = (~d1 · · · ~dk)
T

and ~r = (r1 · · · rk)T.

The inequalities ~z ≥ ~0 set new constraints also for the orig-
inal variables ~x. These must not change the optimal solution
of the LP task. Also, we want to define the transformation
in a manner that does not require it to start solving the
original LP task. Hence we want that the newly introduced

inequalities zj = ~dT
j ~x + rj ≥ 0 are implied by the original

inequalities ~x ≥ ~0. This is possible only if all entries of ~dj
are non-negative and rj ≥ 0.

Why do we add the inequalities ~z ≥ ~0 to the transformed
LP task, instead of allowing these variables to be free? If
we did so, we also would have to leave free the variables in
~y (after performing the basic transformation) corresponding
to variables in ~z. This means that in the transformed task,
we can tell which of the variables ~y correspond to variables
in ~x and which correspond to variables in ~z. If we know
which variables stem from ~z, we can use Gaussian elimina-
tion to get rid of them. This leaves us with just the basic
transformation being applied to the original task, which, as
we saw before, is not sufficiently secure.

If we insist that all entries of D and ~r are non-negative,
the variables from ~x and the variables from ~z can still be
distinguished after the basic transformation. A variable zj
with the constraint zj = ~dT

j ~x+rj can only be 0 if rj is 0 and

xk = 0 for all k ∈ {1, . . . , n} where ~djk 6= 0. If the actual
transformation is such, that the values rj are likely to be
non-zero, then the adversary of Def. 1 has to pick the to-be-
distinguished LP tasks so, that for each variable, there is a
feasible solution where this variable equals 0. To distinguish
variables from ~x and the variables from ~z, the adversary
minimizes each variable one by one (this amounts to solving
a LP) and sees which ones have the minimal value 0. If the
addends rj are 0, but the matrix D is sufficiently dense then
the variables from ~z have “smaller probability” of being 0
than the variables from ~x. In this case, the adversary sam-

ples random vertices of the polyhedron A′~y = ~b′ (by solv-
ing LP tasks with randomly chosen optimization directions,
i.e randomly chosen objective functions) and records which
variables are 0 with larger or smaller frequency. If the matrix
D is sparse then the adversary picks the to-be-distinguished
LP tasks so, that there are no affine relationships among
small sets of initial variables ~x. The transformation, how-
ever, introduces affine relationships among a variable from
~z and small sets of variables from ~x. Such relationships are
straightforwardly detected [15] and based on them, variables
from ~x and variables from ~z can be distinguished.

Hence this way of augmenting the LP task is not sufficient
to achieve privacy, at least when applied alone.

New variables without constraints.
We add k new variables ~z to the system (3) with m con-

straints and n variables, without adding new constraints. In

this case, the original system of equations A~x = ~b must be
modified to include ~z, otherwise the variables corresponding
to the ones in ~z can be recognized after the basic transfor-
mation and easily removed from the system.

We replace the original system of equations with A~x +

C~z = ~b, where C = AV , where V ∈ Rn×k is a random ma-
trix with non-negative entries. We also add the constraints
~z ≥ ~0. Given an optimal solution (~x0, ~z0) of the modified
task, we recover the optimal solution ~xopt of the original
task as ~xopt = ~x0 + V ~z0.

It is easy to see that ~x′ = ~x0 + V ~z0 is indeed the optimal
solution to the original task. First, it satisfies the system

of equations A~x = ~b. Second, the value of the objective
function xi for ~x′ is at least as good as its value in ~xopt,

because (~xopt,~0) is one of the solutions of the modified task
and the i-th component of the vector V ~z0 is non-negative.
Finally, all components of ~x′ are non-negative because both
~x0 and V ~z0 are non-negative.

If we could distinguish the variables in ~x from the vari-
ables in ~z after the basic transformation, then we could re-
move the variables in ~z by setting them equal to 0, and
obtain the original LP task with basic transformation. Un-
fortunately, we can indeed distinguish them. There are no
upper bounds for variables in ~z. If the adversary picks the
to-be-distinguished LP tasks so, that their feasible solution
sets are bounded, then it has to maximize each variable one
by one to distinguish variables in ~x from those in ~z.

The two augmentations could both be applied to the origi-
nal LP task before the basic transformation. It is easy to see
that the order of application does not matter here. Unfortu-

nately, the application of both of them does not increase the
security of the transformation — the variables introduced
by both augmentations can still be located and removed.

Splitting the variables.
In previous transformations, each variable of the origi-

nal LP task gave us one variable in the transformed task,
while the transformation introduced new variables. We can
also consider transformations where each variable xj in the
original task gives several variables zj1, . . . , zjk of the trans-
formed task. In this case, the transformation picks non-
negative rj1, . . . , rjk and replaces xj with rj1zj1+· · ·+rjkzjk
in all equations of the original task (3). This replacement
can be made for some, or all variables in the original system.
After this replacement, we again apply the basic transfor-
mation to the system.

Unfortunately, the splitting of the variables can be un-
done, at least partially, even after the basic transformation,
even if other transformations described above have also been
applied. The adversary will pick the original tasks T0, T1 so
that the set of feasible solutions is bounded. Let xj be one
of the original variables, with the upper bound xmax

j . Af-
ter the replacement, the variable zjt is upper-bounded by
zmax
jt = xmax

j /rjt (recall that the upper bounds can easily be
found). A pair of variables zjt, zju satisfies the inequality
rjtzjt + rjuzju ≤ xmax

j or zmax
ju · zjt + zmax

jt · zju ≤ zmax
jt zmax

ju .
The basic transformation permutes the variables. To undo

the splitting of variables, we have to detect whether two
variables yj1 and yj2 could have resulted from the splitting of
the same variable xj . We just saw that a necessary condition
for this is, that all feasible solutions of the transformed task
satisfy the condition ymax

j2 · yj1 + ymax
j1 · yj2 ≤ ymax

j1 ymax
j2 . In

other words, this inequality must be redundant with respect
to the constraints of the transformed task. The redundancy
of an inequality constraint is easy to check (it corresponds
to a LP task).

While this analysis may not be sufficient to completely
identify which variables in ~y correspond to the same vari-
able in ~x (we may get false positives due to certain pairs
of original variables xj1 and xj2 also satisfying the inequal-
ity xmax

j2 · xj1 + xmax
j1 · xj2 ≤ xmax

j1 xmax
j2), it is sufficient to

distinguish two LP tasks selected by the adversary.

A further condition.
We see that all our attempts so far have failed because in

the transformed task, different variables had different roles.
These roles could be determined and the variables elimi-
nated. Thus we set an extra requirement that in the trans-
formed task (in the polyhedron corresponding to this task),
all variables “look the same”. Besides the variables, we want
the same condition to hold for (small) sets of variables, as
the failure of our last attempt in augmenting A showed.

We need the following notions to formally define our re-
quirement. Let ~eki = (0, . . . , 0, 1, 0, . . . , 0) be the i-th unit
vector in the k-dimensional space Rk (the length of ~eki is k
and the only 1 is on i-th position). For I ⊆ N and i ∈ I let
idxI i be the index of i in the ordered set I, meaning that
I has exactly idxI i elements less than or equal to i. For
I ⊆ {1, . . . , k}, |I| = n let πkI : Rk → Rn be the projec-
tion to dimensions in I. It is a linear mapping defined by
πkI (~eki) = ~enidxI i if i ∈ I, and πkI (~eki) = 0 otherwise. For a
permutation σ ∈ Sn let σ̂ : Rn → Rn be the permutation of

dimensions given by σ, i.e. σ̂ is the linear mapping defined
by σ̂(~eni) = ~enσ(i).

Definition 2. Let t ∈ N. A set of points X ⊆ Rk is t-
symmetric, if for any I, I ′ ⊆ {1, . . . , k}, |I| = |I ′| = t, and
σ ∈ St we have πkI (X) = σ̂(πkI′(X)).

There is also a computational analogue to this definition.

Definition 3. Let t, k : N → N. A family of probabil-
ity distributions over sets of points {Xn}n∈N, where each

element Xn ∈ supp(Xn) ⊆ Rk(n) has a polynomial-size de-
scription, is computationally t-symmetric, if for any prob-
abilistic polynomial-time (in n) algorithm A, the following
probability is negligible:

Pr[x ∈ πk(n)
I (X)\σ̂(π

k(n)

I′ (X)) |X ← Xn, (x, I, I ′, σ)← A(X)],

where x ∈ Rt(n), I, I ′ ⊆ {1, . . . , k(n)}, |I| = |I ′| = t(n),
σ ∈ St(n).

The previous definition says that computationally, t-symmetry
is broken if an efficient algorithm can find two projections
that are different, as well as a certificate of the non-emptiness
of their difference. We want the transformation of a LP task
be such, that the possible set of results of the transforma-
tion is computationally t-symmetric for small values of t,
where the asymmetry could be exploited for classifying the
variables in the transformed LP task. In particular, we want
the transformed LP task to be computationally 1-symmetric
(hence the bounding box of the transformed task must be a
hypercube) and 2-symmetric.

6. 2-SYMMETRIC TRANSFORMATIONS
Let us now consider transformations that are 2-symmetric

and see what properties of the feasible regions of transformed
tasks this implies. From now on, let the constraints of the

transformed LP task be A~x = ~b, ~x ≥ ~0.

6.1 A computable property of polyhedra
Consider the polyhedron P determined by A~x = ~b, ~x ≥

~0, with m equality constraints and n variables. Let i, j ∈
{1, . . . , n} be two coordinates, such that xi = xj = 0 does
not contradict the constraints, and consider the projection
of P to the (xi, xj)-plane. Assume the projection does not
equal the whole first quadrant of the plane. Also assume
that it is not a point or a line (segment). In this case, the
projection is a convex, possibly unbounded polygon. Let O1

be the vertex of the polygon at the coordinates (0, 0). Let
O2 be the next vertex of the polygon, at the coordinates
(c, 0). It is possible that O2 coincides with O1; this happens
if xj = 0 implies xi = 0. Let O3 be the next vertex of the
polygon after O2. Let αPij ∈ R be such, that the side O2O3

lies on the line xi + αPijxj = c.

Lemma 1. There exists a polynomial-time algorithm that

on input A, ~b, i and j, satisfying the conditions above, com-
putes αPij (to an arbitrary level of precision).

Proof. The algorithm works as follows. It will first find
the coordinate c by solving the LP task “maximize xi, sub-
ject to ~x ∈ P , xj = 0”.

LetD(~x, γ) denote the direction (cos γ)·xi+(sin γ)·xj . Us-
ing binary search, the algorithm will then find γ ∈ [−π

2
, π

2
],

�
�
�
�

xj

xi

c

c

xi + αP
ijxj = c

O3

O1 O2

γ

Figure 2: Finding the value of αPij

such that the optimal solution for the LP task “maximize
D(~x, γ − ε) subject to ~x ∈ P” is in a point ~x′ with x′i = c
and x′j = 0, while the optimal solution for the LP task“max-

imize D(~x, γ + ε), subject to ~x ∈ P” is in a point ~x′′ with
(x′′i , x

′′
j) 6= (c, 0). Here ε > 0 is an arbitrarily small (depend-

ing on the required precision) angle. Fig. 2 depicts all these
quantities.

On (xi, xj)-plane, the direction D(~x, γ) is (almost) per-
pendicular to the line xi+α

P
ijxj = c. Hence αPij ≈ tan γ.

The existence of this algorithm shows that if a transforma-
tion producing the polyhedron P ⊆ Rn is computationally
2-symmetric, then the value αPij must be the same for all
coordinate pairs i, j. Let us denote it by α.

6.2 Scarcity
We show that any polyhedron whose αPij is the same for

all coordinate pairs i, j is a set of the form

{(x1, . . . , xn) | x1 + . . .+ xn ≤ c} (4)

for some c ≥ 0 (c ∈ R) or c =∞.
This result implies that any computationally 2-symmetric

transformation (F ,G) can be easily turned to a LP solving
algorithm. Given a LP task, the solver will first apply F to
it, resulting in the polyhedron (4) and an objective function.
This polyhedron has at most n+1 vertices and the algorithm
finds the optimal one by applying the objective function to
each of them. The value c can also be straightforwardly
found by adding the constraints x1 = . . . = xn−1 = 0 and
then finding the maximum value of xn (either by substitut-
ing 0 to x1, . . . , xn−1, or by binary search).

Let the transformed polyhedron P be defined by A~x = ~b,
~x ≥ ~0, where A is a non-singular m×n matrix for m ≤ n−1.
If m = n−1, then P is one-dimensional, hence it has at most
2 vertices which can be easily found and (F ,G) can again be
turned into a LP solving algorithm. Thus we let m ≤ n− 2.

If m ≤ n − 2 and P contains at least one basic feasible
solution, then at least two variables in this solution are 0.
The reason is that basic solutions occur only on the inter-

sections of constraining hyperplanes, and the system A~x = ~b
provides at most m of them, so at least n −m come from
xj ≥ 0.

If there are two variables that can simultaneously have the
value 0 in P , then any pair of two variables must have the

�
�
�
�

xj

0

xi

c

c

xi + αxj ≤ c

αxi + xj ≤ c

Figure 3: Symmetry property of a projection to
(xi, xj)

same property, otherwise the (computational) 2-symmetry
would be broken. For arbitrary i, j, consider the projection
of P to the dimensions xi and xj . Since P is a convex poly-
hedron, this projection is a convex polygon. As discussed
before, it contains the point (0, 0).

Let O2, O3, c, αPij = α and γ = arctanα be defined as in
Sec. 6.1. One of the sides of the polygon is located on the
line xi + αxj = c. By symmetry, there also exists a side of
the polygon that lies on the line xj + αxi = c. Due to the
convexity of the polygon, α ≤ 1, otherwise these lines pass
through the interior of the convex hull of the points (0, 0),
(c, 0) and (0, c) that are contained in the polygon.

Since all projections onto any pair of variables (xi, xj)
should have exactly the same angle γ and therefore the same
tan γ = α, and exactly the same distance from the origin
point c, a system of 2·

(
n
2

)
inequalities of the form xi+αxj ≤

c is implied by the constraints defining the polyhedron P .
Here

(
n
2

)
is the number of possible pair choices. This number

is multiplied by 2 since the inequality xi + αxj ≤ c implies
existence of the inequality αxi+xj ≤ c due to the symmetry
requirement, as shown in Fig. 3. Due to convexity of the
projection, any valuation (vi, vj) of xi and xj such that vi+
vj ≤ c must be possible.

Given n variables, any inequality xi+αxj ≤ c comes from
some equation of the form a1x1 +a2x2 + . . .+xi+ . . .+αxj+
. . .+ anxn = c implied by the constraints defining P , where
ak ≥ 0 for any k, and a` > 0 for some ` (the variable x` acts
as a slack variable for the inequality). In total, we get 2 ·

(
n
2

)
equations that all follow from these constraints:

αx1 + x2 + a123x3 + . . .+ a12(n−1)xn−1 + a12nxn = c
x1 + αx2 + a213x3 + . . .+ a21(n−1)xn−1 + a21nxn = c
a231x1 + αx2 + x3 + . . .+ a23(n−1)xn−1 + a23nxn = c
a321x1 + x2 + αx3 + . . .+ a32(n−1)xn−1 + a32nxn = c
. .

an(n−1)1x1 + an(n−1)2x2 + . . .+ αxn−1 + xn = c
a(n−1)n1x1 + a(n−1)n2x2 + . . .+ xn−1 + αxn = c

(5)
where aijk ≥ 0 for all i, j, k ∈ {1, . . . , n}, and each equation
contains at least one strictly positive aijk. We will show
that these equations imply x1 + . . .+ xn = c. Consider the
possible values of α.

�
�
�
�

xj

0

xi + αxj = c

xi

c

c

Figure 4: The case α ≤ 0

�
�
�
�

xj

0

xi + αxj = c

ε (c− αε, ε)

xi

c

c− αεc

Figure 5: A point that exists on the line xi +αxj = c
for α ≤ 0

1. The case α ≤ 0. The side of the polygon represented
by the line xi + αxj = c is either parallel to the xj
axis, or is tilted in the direction opposite from the xj
axis. This is illustrated by Fig. 4.

Consider a point v = (v1, . . . , vn) ∈ P where (vi, vj) =
(c − αε, ε) for some ε > 0. Depending on ε, this can
be any point that is located on the side on the line
xi + αxj = c. There definitely exist points on this
side, otherwise that side would not be present on the
projection at all. A possible location of such a point is
shown in Fig. 5. Consider the equation E ≡ aij1x1 +
. . .+xi + . . .+αxj + . . .+ aijnxn = c from the system
(5). Since each equation represents an inequality, there
exists some ak = aijk > 0 that corresponds to some
variable xk, k 6= i, k 6= j (xk acts as a slack variable).

(a) The case α = 0. Due to the symmetry of the pro-
jections, there must exist a point v′ = (v′1, . . . , v

′
n) ∈

P such that (v′i, v
′
k) = (c − αε, ε) = (c, ε). But

the point v′ cannot possibly satisfy the equation
E because already v′i + akv

′
k = c + akε > c and

all other coefficients in E are non-negative.

(b) The case α < 0. We have vi+αvj = c−αε+αε =
c. The point v must satisfy the equation E. Hence
vk = 0, because ak > 0. Now we have (vi, vk) =

(c − αε, 0). The point v must also satisfy other
equations of the system (5), including aik1x1 +
. . .+ xi + . . .+ αxk + . . .+ aiknxn = c. We have
vi + αvk = c− αε+ 0 > c, hence this equation is
violated.

Thus the only possible case is α > 0.

2. The case α > 0. If c = 0, then the only possible
solution for the system (5) would be x1 = . . . = xn =
0, since there are no negative entries at all. Consider
the case c > 0.

Let v = (v1, . . . , vn) ∈ P be a point where vi = c. For
any j 6= i, consider the equation aij1x1 + . . . + xi +
. . .+ αxj + . . .+ aijnxn = c. As vi = c, the left hand
side of this equation, when applied to v, will be at
least c. As it cannot be larger, we must have αvj = 0.
This implies vj = 0, because α > 0. As j was arbi-
trary, we obtain v = (v1, . . . , vi−1, vi, vi+1, . . . , vn) =
(0, . . . , 0, c, 0, . . . , 0).

If the system (5) contains any equation where the co-
efficient of xi is a 6= 1, then the point v cannot satisfy
this equation, because avi 6= vi = c, and the other
components of v cannot affect the left hand side of the
equation since they are all 0. We get that the coeffi-
cient of xi should be 1 in each equation.

In the same way, we get that the coefficients of all the
variables in all equations should be 1. This means that
the only equation that remains is x1 + . . .+ xn = c.

Another thing that we would like to show is that if the
equation system defined by P contains a constraint x1 +
. . . + xn = c for some c > 0, then it is not allowed to have
any other constraints. Suppose that the system contains the
following two equations:

x1 + . . .+ xn = c (6)

a1x1 + . . .+ anxn = b (7)

where ai, b ∈ R. We will show that the equation (7) can
be at most a multiple of the equation (6), representing the
same constraint.

Without loss of generality, let a1 = mini ai, a2 = maxi ai.
We may assume that a2 > a1 since if it was the case a2 = a1,
then all the ai would be equal, and the only possible way
to avoid contradiction with (6) would be to assign b = aic,
making the (7) a multiple of (6).

Multiplying (6) by a1 and subtracting the result from (7),
we get

(a2 − a1)x2 + . . .+ (an − a1)xn = b− a1c

Since a2 6= a1, we may express the variable x2 in terms of
other variables:

x2 =
b− a1c−

∑n
i=3(ai − a1)xi

a2 − a1

We know that the only allowed valuations of xi are posi-
tive.

• Since x2 ≥ 0 and a2 > a1, the constraints defining the
polyhedron P imply

b− a1c ≥
n∑
i=3

(ai − a1)xi

• From (6), x1 = c−
∑n
i=2 xi. We get

x1 = c−
b− a1c−

∑n
i=3(ai − a1)xi

a2 − a1
−

n∑
i=3

xi

=
a2c− b−

∑n
i=3(a2 − ai)xi

a2 − a1

• Since x1 ≥ 0 and a2 > a1, the constraints defining the
polyhedron P imply

a2c− b ≥
n∑
i=3

(a2 − ai)xi

Recall that any variable must be allowed to take any value
in the span [0, c]. Consider the valuation where xi = c for
some i. From (6) and the requirement ~x ≥ 0, we get that
∀j 6= i : xj = 0.{
b− a1c ≥

∑n
i=3(ai − a1)xi

a2c− b ≥
∑n
i=3(a2 − ai)xi

=⇒

{
b− a1c ≥ aic− a1c

a2c− b ≥ a2c− aic

=⇒

{
b ≥ aic
−b ≥ −aic

=⇒ ai =
b

c
.

Similarly, we can show that for any i 6= 1, 2 we have ai =
b
c
. What about a1 and a2?
From (6), we get that x3 + . . .+ xn = c− x1 − x2.

a1x1 + . . .+ anxn = b

a1x1 + a2x2 +
b

c
x3 + . . .+

b

c
xn = b(

a1 −
b

c

)
x1 +

(
a2 −

b

c

)
x2 = 0

If either
(
a1 − b

c

)
6= 0 or

(
a2 − b

c

)
6= 0, then one variable

may be expressed in terms of the other one, meaning that
the projection to (x1, x2) can be only a line segment. This
would mean that the entire polygon P is actually a line
segment. We have explored this case before. But if this is
not the case, then a1 = a2 = b

c
.

We have obtained an equation b
c
x1 + . . . + b

c
xn = b, and

multiplying both sides by c
b

we get the same equation (6).

7. CONCLUSIONS
We have shown that the current approaches towards privacy-

preserving outsourcing or multiparty linear programming
are unlikely to be successful. Success in this direction re-
quires some radically new ideas in transforming polyhedra
and/or in cryptographic foundations violating the rather
generous assumptions we have made in this paper. Alter-
natively, it may be fruitful to optimize privacy-preserving
implementations of LP solving algorithms in order to have
universal privacy-preserving optimization methods for large
classes of tasks.

8. ACKNOWLEDGEMENTS
This work was supported by the European Regional De-

velopment Fund through the Estonian Center of Excellence
in Computer Science, EXCS, and through the Software Tech-
nologies and Applications Competence Centre, STACC. It
has also received funding from the European Union Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement no. 284731.

9. REFERENCES
[1] Mikhail J. Atallah and Keith B. Frikken. Securely

outsourcing linear algebra computations. In Dengguo
Feng, David A. Basin, and Peng Liu, editors,
ASIACCS, pages 48–59. ACM, 2010.

[2] Mikhail J. Atallah and Jiangtao Li. Secure
outsourcing of sequence comparisons. Int. J. Inf. Sec.,
4(4):277–287, 2005.

[3] Alice Bednarz. Methods for two-party
privacy-preserving linear programming. PhD thesis,
University of Adelaide, 2012.

[4] Alice Bednarz, Nigel Bean, and Matthew Roughan.
Hiccups on the road to privacy-preserving linear
programming. In Proceedings of the 8th ACM
workshop on Privacy in the electronic society, WPES
’09, pages 117–120, New York, NY, USA, 2009. ACM.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway.
Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM
Conference on Computer and Communications
Security, pages 784–796. ACM, 2012.

[6] Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and
Wenjing Lou. New algorithms for secure outsourcing
of modular exponentiations. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, ESORICS,
volume 7459 of Lecture Notes in Computer Science,
pages 541–556. Springer, 2012.

[7] Yao Chen and Radu Sion. On securing untrusted
clouds with cryptography. IEEE Data Eng. Bull.,
35(4):9–20, 2012.

[8] Jannik Dreier and Florian Kerschbaum. Practical
privacy-preserving multiparty linear programming
based on problem transformation. In
SocialCom/PASSAT, pages 916–924. IEEE, 2011.

[9] Wenliang Du. A Study Of Several Specific Secure
Two-Party Computation Problems. PhD thesis,
Purdue University, 2001.

[10] Wenliang Du and Zhijun Zhan. A practical approach
to solve secure multi-party computation problems. In
New Security Paradigms Workshop, pages 127–135.
ACM Press, 2002.

[11] Sergei Evdokimov and Oliver Günther. Encryption
techniques for secure database outsourcing. In
Joachim Biskup and Javier Lopez, editors, ESORICS,
volume 4734 of Lecture Notes in Computer Science,
pages 327–342. Springer, 2007.

[12] Susan Hohenberger and Anna Lysyanskaya. How to
securely outsource cryptographic computations. In Joe
Kilian, editor, TCC, volume 3378 of Lecture Notes in
Computer Science, pages 264–282. Springer, 2005.

[13] Yuan Hong and Jaideep Vaidya. An inference-proof
approach to privacy-preserving horizontally
partitioned linear programs. Optimization Letters,
2013. To appear. Published online 05 October 2012.

[14] Yuan Hong, Jaideep Vaidya, and Haibing Lu. Secure
and efficient distributed linear programming. Journal
of Computer Security, 20(5):583–634, 2012.

[15] Peeter Laud and Alisa Pankova. New Attacks against
Transformation-Based Privacy-Preserving Linear
Programming. In Rafael Accorsi and Silvio Ranise,
editors, Security and Trust Management (STM) 2013,
9th International Workshop, volume 8203 of Lecture
Notes in Computer Science. Springer, 2013.

[16] Jiangtao Li and Mikhail J. Atallah. Secure and private
collaborative linear programming. In International
Conference on Collaborative Computing, pages 1–8,
2006.

[17] Wei Li, Haohao Li, and Chongyang Deng.
Privacy-preserving horizontally partitioned linear
programs with inequality constraints. Optimization
Letters, 7(1):137–144, 2013.

[18] Olvi L. Mangasarian. Privacy-preserving linear
programming. Optimization Letters, 5(1):165–172,
2011.

[19] Olvi L. Mangasarian. Privacy-preserving horizontally
partitioned linear programs. Optimization Letters,
6(3):431–436, 2012.

[20] Tomas Toft. Solving linear programs using multiparty
computation. In Roger Dingledine and Philippe Golle,
editors, Financial Cryptography and Data Security,
pages 90–107, Berlin, Heidelberg, 2009.
Springer-Verlag.

[21] Jaideep Vaidya. Privacy-preserving linear
programming. In Sung Y. Shin and Sascha Ossowski,
editors, SAC, pages 2002–2007. ACM, 2009.

[22] Cong Wang, Kui Ren, and Jia Wang. Secure and
practical outsourcing of linear programming in cloud
computing. In INFOCOM, 2011 Proceedings IEEE,
pages 820–828, 2011.

[23] Andrew Chi-Chih Yao. Protocols for secure
computations (extended abstract). In FOCS, pages
160–164. IEEE, 1982.

	Introduction
	Preliminaries
	Linear Programming
	Existing Types of Transformations

	Desired Security Definition
	No Perfect Secrecy
	Some Insecure Transformations
	2-symmetric Transformations
	A computable property of polyhedra
	Scarcity

	Conclusions
	Acknowledgements
	References

