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Abstract—Bilinear pairings are powerful mathematical struc-
tures that can be used in cryptography. Their equational prop-
erties allow constructing cryptographic primitives and protocols
that would be otherwise ineffective or even impossible.

In formal cryptography, the protocols are expressed through
term algebras and process calculi. ProVerif, one of the most
successful protocol analyzers, internally converts them to Horn
theories for the analysis. This approach cannot easily deal with
complex equational theories.

In this paper, we propose an equational theory that models
bilinear pairings in formal cryptography. We also propose a
reduction from the derivation problem for Horn theories modulo
this equational theory to (almost) purely syntactical derivation
problem for Horn theories. This derivation problem can be
readily tackled by ProVerif. We have implemented our analysis
and have demonstrated that it is able to handle several secure
and insecure protocols based on bilinear pairings.

Our approach mostly follows Küsters’s and Truderung’s han-
dling of Diffie-Hellman exponentiation. The greater complexity of
the theory for bilinear pairings introduces several complications;
the arithmetic properties of exponentiation play a much bigger
role in our reduction. Still, our approach has the same kind of
generality as theirs. Similarly to their approach, we do not treat
the group operations as (independent) term constructors. But we
show that access to those operations will not increase the power
of the adversary.

I. INTRODUCTION

The complex algebraic properties of bilinear pairings, com-
bined with well-understood intractability assumptions make
them one of the most versatile components of cryptographic
primitives and protocols, having been used to construct
identity- and attribute-based cryptosystems [1], [2], encryp-
tion systems with keyword search [3], designated verifier
signatures [4], efficient key-agreement protocols [5], [6], etc.
that would be impossible or much less efficient with other
techniques. Therefore it seems surprising that there have been
almost no attempts to treat pairings abstractly in the symbolic
(formal, perfect) cryptography, and to subject systems employ-
ing them to formal verification.

In this work, we propose a model for bilinear pairings in
symbolic cryptography. Compared to the only other model
proposed so far [7], the operations it offers are much closer
to what are used in computational cryptography. Our model
allows for exponentiations and pairings of arbitrary values, and
is sufficiently rich to enable modeling of several pairing-based
protocols proposed in the literature.

We also propose a method for automatically verifying
protocols containing bilinear pairings. We concentrate on
verification tools based on performing derivations according
to Horn theories that the protocol descriptions have been
transformed into; particularly on ProVerif [8], one of the
most successful tools for cryptographic protocol verification.
By extending the theory transformation methods of Küsters
and Truderung [9], we can change the problem of derivation
modulo the equational theory for bilinear pairings into the
problem of syntactic derivation.

Our protocol verification method inherits the strengths and
weaknesses of the method of [9]. It can be used to verify
basic secrecy and authentication (modeled as correspondence)
properties of protocols, because these are easily expressed
through Horn theories. More complex properties, expressed
through observational equivalence, are not so readily ex-
pressed. Our method allows the honest participants to perform
exponentiations and pairings with the values they’ve obtained,
but not multiplications in the group (there is no such constraint
for the adversary, though). Our method also requires that
the number of different exponents used by honest parties is
bounded. However, we have no such restriction on the number
of protocol sessions the parties can execute.

This work has the following structure. After reviewing
related work in Sec. II and Horn theory based protocol
analysis in Sec. III, we describe our symbolic model for
bilinear pairings in Sec. IV. Sec. V–VIII deal with making
the inference modulo properties of bilinear pairings tractable
for ProVerif. Sec. V extends the notion of exponent ground
theories [9] to pairings. Sec. VI presents the ideas of theory
transformation at term level, while Sec. VII and VIII show the
actual transformation and prove its results sound (Sec. VIII)
and complete (Sec. VII) with respect to our theory of bilinear
pairings. We finish the paper with an overview of our experi-
mental results in Sec. IX, with the analysis of the adversarial
power in the presence of group operations (Sec. X) and with
the conclusion in Sec. XI.

II. RELATED WORK

We perform the analysis of protocols in the symbolic cryp-
tography [10] model, using the ProVerif protocol analyzer [8].
Our reduction from Horn theories modulo equational theory
for bilinear pairings to an almost pure Horn theory advances



the methods of Küsters and Truderung who have used similar
reductions to deal with the algebraic properties of XOR [11]
and Diffie-Hellman exponentiation [9] before (see these papers
for a more thorough discussion on XOR- and DH-theories
in protocol verification). Their reduction can handle more
possible adversarial actions than the equational reasoning
ProVerif itself is capable to handle (although this has also
been used for certain protocol analysis [12], [13]). Recently,
however, Mödersheim [14] has shown that in certain well-
tagged [15] cases, ProVerif’s treatment may be equivalent to
Küsters and Truderung [9].

By our knowledge, bilinear pairings in symbolic cryptogra-
phy have been considered only by Mazaré and Kremer [7].
They proposed a signature and an equational theory for it
that did not actually contain the pairing operation e. In-
stead, common uses of pairings (by legitimate participants)
in protocols were modeled by derivation rules. They showed
that their extension is computationally sound against passive
adversaries, thereby extending the seminal reconciliation result
by Abadi and Rogaway [16].

The task considered in this paper is an instance of the
general problem of inference in Horn theories modulo equa-
tional theories. While the static equivalence of terms is usually
decidable [17], [18], it is much harder to perform an actual
protocol analysis modulo an equational theory [13].

III. MODELING PROTOCOLS WITH HORN THEORIES

Let Σ be a finite signature. A term t over Σ is either a vari-
able x from a countable set V , a name m from a countable set
N or f(t1, . . . , tar(f)) for f ∈ Σ. By var(t) we denote the set
of variables occurring in term t. A term is ground if it contains
no variables. When modeling cryptographic protocols, the
signature contains constructors corresponding to cryptographic
operations. E.g. we may have a binary constructor enc(·, ·) for
modeling deterministic encryption and dec(·, ·) for modeling
decryption.

For a predicate P of arity k and terms t1, . . . , tk, we call
P (t1, . . . , tk) an atom. It is ground if t1, . . . , tk are ground. A
Horn clause has the form a1, . . . , an → a0, where a0, . . . , an
are atoms. A Horn theory is a finite set of Horn clauses.

A ground atom a can be (syntactically) derived in theory
T (denoted T ` a) if there exists a derivation π = b1, . . . , bl
where bl = a and for each j ∈ {1, . . . , l}, bj is a ground
atom and there exists a clause a1, . . . , an → a0 ∈ T and a
variable substitution σ, such that σ(a0) = bj and each σ(ai)
(i ∈ {1, . . . , n}) occurs in the set {b1, . . . , bj−1}. A theory
is non-trivial if at least one ground atom can be derived in
it. If ∼ is a congruence relation on terms then we can speak
about derivation modulo ∼ (denoted T `∼ a). In this case, all
term equalities in the the definition of ` are replaced with the
relation ∼.

ProVerif [8] translates protocols into Horn theories for the
purpose of verification. The main predicate symbol it uses is
unary I , denoting intruder knowledge. The initial knowledge
of the intruder is modeled as facts (clauses with zero premises)
in the theory T . The possible operations the intruder can

perform with messages are readily expressed as Horn clauses
— if an attacker knows messages of certain shape, it can
produce other messages from them. The messages of the
protocol can also be represented as clauses — if the intruder
has messages 1,. . . ,i of a protocol session, it can also obtain
the message no. i+ 1 (presumably by handing some previous
message over to a participant). This model introduces certain
abstractions (e.g. one cannot naturally state that sessions are
non-interleaving), but keeps the precision with respect to sizes
of terms and number of sessions (both can be unbounded).
For a protocol P , we let TP be the corresponding Horn theory
(including intruder’s initial knowledge and possible operations
on messages). This theory can be used to answer certain
questions about the protocol, e.g. is the intruder able to learn
a certain message m?

IV. EQUATIONAL THEORY FOR BILINEAR PAIRINGS

In the computational model of cryptography [19], a (sym-
metric) bilinear pairing [5], [1] is an efficiently computable
non-degenerate mapping e : G1 × G1 → GT , where
G1 (written additively) and GT (written multiplicatively)
are cyclic groups of size p. The mapping must satisfy
e(Q1, R1+R2) = e(Q1, R1)e(Q1, R2) and e(Q1+Q2, R1) =
e(Q1, R1)e(Q2, R1) (bilinearity) for any Q1, Q2, R1, R2 ∈
G1. As G1 and GT are cyclic, we immediately obtain
e(aP, bP ) = e(P, P )ab for the generator P of G1 and any
a, b ∈ Z. Weil or Tate pairings [1], [20] are the typical
examples of a bilinear pairing.

Typical intractability assumptions for cyclic groups with
bilinear pairings are the computational Diffie-Hellman (CDH)
assumption or the bilinear computational Diffie-Hellman
(BCDH) assumption (the second implies the first). CDH
assumption postulates the intractability of finding the element
abP ∈ G1 from the elements P, aP, bP ∈ G1. BCDH
assumption postulates the intractability of finding the element
e(P, P )abc ∈ GT from the elements P, aP, bP, cP ∈ G1. In
the symbolic setting, however, it makes sense to model pairing
as an operation that has the bilinear property stated above, and
satisfies no other equations.

For symbolically modeling bilinear pairings and exponenti-
ations, we assume that beside other operations, the signature
Σ contains binary operations ? and ↑ (for modeling multipli-
cation in G1 and exponentiation in GT ), unary operation ·−1

(for modeling negation in G1, inverse in GT , and inverses in
the exponents), and the binary operation e (pairing). Similarly
to [9] (and all other approaches so far), we omit additions in
G1 / multiplications in GT from our signature (see Sec. X for
their treatment). Using our notation, if the term t models an
element Q of G1, and the term u models an integer n, then
the term t ? u models the element nQ of G1. Similarly, if t
modeled an element h of GT instead, then the term t ↑ u
would model the element hn in GT .

The equational theory ∼ for bilinear pairings is the least
congruence on terms containing the following equations,



where the variables x, y, z may be instantiated with any terms.

(x ↑ y) ↑ z ∼ (x ↑ z) ↑ y (x ? y) ? z ∼ (x ? z) ? y

e(x, y) ∼ e(y, x)

(x ↑ y) ↑ y−1 ∼ x (x−1)−1 ∼ x (1)

(x ? y) ? y−1 ∼ x
x−1 ? y ∼ (x ? y)−1 x−1 ↑ y ∼ (x ↑ y)−1

e(x, y ? z) ∼ e(x, y) ↑ z e(x, y−1) ∼ e(x, y)−1

The commutativity of e actually follows from the cyclicity of
G1, but this notion is not available in the symbolic setting.

Associated with the operations in the signature are also the
rules for intruder for composing and decomposing messages.
We let the predicate I(t) denote that the intruder sees the term
t. The rules associated with bilinear pairings are

I(x), I(y)→ I(e(x, y)) I(x), I(y)→ I(x ? y)

I(x), I(y)→ I(x ↑ y) I(x)→ I(x−1)

We let TE denote the theory consisting of the rules above.
Although the groups G1 and GT have different operations,

the intruder has freedom to apply the operation of G1 to the
elements of GT and the operation of GT to the elements of G1.
The theory described in this work allows that, and there are no
type constraints in its description. This ability, however, does
not give the intruder anything useful (as we see in this paper),
and therefore type constraints can be added when applying
this theory with ProVerif.

Given a protocol P and a message m, the fact that TP ∪
TE 0∼ I(m) means that the intruder cannot get the message
m even when employing the algebraic properties of bilinear
mappings.

V. EXPONENT-GROUND THEORY FOR BILINEAR PAIRINGS

Küsters and Truderung [9], constrain the theory for Diffie-
Hellman exponentiation TDH to a theory TC

DH that can be
used only with exponent-ground terms. In the same way, the
theory TE should be constrained to TC

E . First, we need to
define what does it mean for a term to be exponent-ground.
We say that a term is
• reduced, if no equations in last four rows of (1), inter-

preted as reduction rules from left to right, can be applied
to it modulo the equations in the first two rows;

• standard, if its head symbol is neither ?, ↑, −1, nor e;
• pure, if the symbols ?, ↑, −1, and e do not occur in it;
• well-formed if each of its subterms of the form s−1 only

occurs in a context of the form s′ ↑ s−1 or s′ ? s−1 for
some s′;

• exponent-ground if it is well-formed and for each of its
subterms of the form t ↑ s or t ? s it is true that s is of
the form c or c−1, where c is a pure, ground term;

• C-exponent-ground if it is exponent-ground and has ex-
ponents only from the predefined finite set C;

• exponent-reduced if all its subterms in an exponent posi-
tion (right argument of ? or ↑) are reduced.

All these notions are also lifted to atoms, clauses and theories
in the natural way.

We need to define a C-exponent ground theory TC
E that

allows multiplication and exponentiation only with ground
multipliers (exponents). Let C be the set of pure, ground
terms that may be used as multipliers or exponents. The theory
contains the following rules:

1) I(x), I(y)→ I(e(x, y));
2) I(x), I(c)→ I(x ↑ c) for each c ∈ C;
3) I(x), I(c)→ I(x ↑ c−1) for each c ∈ C;
4) I(x), I(c)→ I(x ? c) for each c ∈ C;
5) I(x), I(c)→ I(x ? c−1) for each c ∈ C.
Here ”for each c ∈ C” implies that the number of intruder

rules is linearly dependent on the size of the set C.
In these rules we no longer need the rule that allows the

intruder to find inverses of the elements. We do not need
the inverses of group elements if we are dealing only with
products in exponents, and the rules 3 and 5 actually give
the intruder the ability to find inverses of integers when
performing multiplication (exponentiation).

Let T be a C-exponent-ground theory that represents some
protocol. We need to show that if a C-exponent-ground atom
a can be derived using the properties of bilinear pairings from
a C-exponent-ground theory T (denote it as T ∪ TE `∼ a),
then there exists a C-exponent-ground derivation of a.

Theorem 1. Let C be a set of pure, ground terms. Let T be
a C-exponent-ground Horn theory and a be a C-exponent-
ground atom. If T ∪TE `∼ a, then there exists a C-exponent-
ground derivation for T ∪ TC

E `∼ a, where the substitutions
applied to this derivation are also C-exponent-ground.

In order to prove Theorem 1, we need to show how to
transform arbitrary derivation modulo ∼ to a C-exponent-
ground derivation. We start by defining a function δC that
turns any term into a C-exponent-ground term. Let C−1 ={
c−1|c ∈ C

}
, and let C∗ = C ∪ C−1. The function δC is

defined inductively:

δC(x) = x for a variable or name x
δC(t ↑ s) = δC(t) ↑ s if s ∈ C∗

δC(t ↑ s) = δC(t) if s /∈ C∗

δC(t−1) = δC(t)

δC(t ? s) = δC(t) ? s if s ∈ C∗

δC(t ? s) = δC(t) if s /∈ C∗

δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)) for f /∈
{
↑, ?,−1

}
This function throws away all the non-ground multipliers (ex-
ponents) and gets rid of the −1 operation. We will show now
that applying this function to some derivation T ∪ TE `∼ a
returns a C-exponent-ground derivation T ∪ TC

E `∼ a.

Lemma 2. For any set C of pure, ground terms and for every
term t we have:

1) δC(t) is C-exponent-ground.



2) δC(t) = t iff t is C-exponent-ground.
3) δC(δC(t)) = δC(t).

This lemma summarizes the properties of the function δC .
The proof of each point is based on induction. We have to
look through all the possible cases of application of δC . See
the full version of this paper [21] for the proof.

The lemma shows that the function δC indeed turns arbitrary
terms into C-exponent-ground terms, and does not modify the
terms that have already been C-exponent-ground.

We need to show that if any two terms have been equivalent
before, they still remain equivalent after applying the function
δC to them. We will consider only the terms that are already
exponent-reduced. It is necessary to prove that δC preserves
the equivalence on exponent-reduced terms.

Lemma 3. For any set C of pure, ground terms and for all
exponent-reduced terms t and s, if t ∼ s, then δC(t) ∼ δC(s).

The proof, based on the induction over the size of t and
similar to [9], is given in [21].

Example 1. Let C = {c1, c2}. Let t = enc(x−1 ? c1, x ↑ y ↑
b), where x, y are variables and enc is some function.

δC(t) = δC(enc(x−1 ? c1, x ↑ y ↑ c2))

= enc(δC(x−1 ? c1), δC(x ↑ y ↑ c2))

= enc(δC(x−1) ? c− 1, δC(x ↑ y ↑ c2))

= enc(x ? c1, δC(x ↑ y ↑ c2))

= enc(x ? c1, δC(x ↑ y) ↑ c2)

= enc(x ? c1, δC(x) ↑ c2)

= enc(x ? c1, x ↑ c2)

The function δC has in fact turned x−1 and x ↑ y to x (made
these subterms C-exponent ground). Here we get the same
term x from different exponent-reduced terms x−1 and x. This
example shows why Lemma 3 works only in one direction. �

When ProVerif analyzes the protocol, the variables in terms
are being substituted. We need to show that the function δC
does not affect the substitution, and there is no difference if
we apply δC before or after the substitution.

Lemma 4. Let C be a set of pure, ground terms. Let t be a C-
exponent-ground term, and θ be a substitution. Then δC(tθ) =
tδC(θ).

Here tθ means that the substitution θ is applied to the term
t, and δC(θ) denotes applying the function δC to the terms
that are going to substitute the variables of t. This lemma, an
analogue of [9], is also proved in [21].

Example 2. Let C = {c1, c2}. Let t = e(x, y) ↑ c1, where
x, y are variables. Let θ = {u−1/x, v?w/y} be a substitution.
In this example, it is not important if e denotes pairing or it
is some other function, since δC regards pairing in the same

way like any other functions.

δC(tθ) = δC((e(x, y) ↑ c1)θ)

= δC(e(u−1, v ? w) ↑ c1)

= δC(e(u−1, v ? w)) ↑ c1
= e(δC(u−1), δC(v ? w)) ↑ c1
= e(u, δC(v ? w)) ↑ c1
= e(u, v) ↑ c1

tδC(θ) = tδC(u−1/x, v ? w/y)

= t(δC(u−1)/x, δC(v ? w)/y)

= t(u/x, v/y)

= e(x, y) ↑ c1(u/x, v/y)

= e(u, v) ↑ c1
It means that it does not matter whether we apply δC after the
derivation in the end or apply it to the initial facts and only
then start the unification process. �

Sketch of proof for Theorem 1 According to the previous
lemmas, we have that:
• δC turns any terms to C-exponent ground terms, and

therefore it can be used to transform a non-C-exponent
ground derivation to a C-exponent ground derivation.

• δC preserves equivalence on exponent-reduced terms.
• It does not matter whether we apply δC to C-exponent

ground terms (including the terms of the initial C-
exponent-ground theory T ) before or after the substitu-
tion.

For any derivation step that uses rules from the initial C-
exponent-ground theory T , we just need to apply δC to the
substitution in order to ensure that we get C-exponent ground
terms. The rules that belong to the theory TE (the intruder
rules) are more complicated, but based on the previous lemmas
it can be shown that we can use the intruder rules from TC

E

instead of the rules from TE . Again, the proof is very similar
to [9], and it is given in the appendix. The proof is based on
induction and case distinction for different kinds of rules.

VI. ENCODING OF TERMS

In this section we present an encoding of terms that hides
most of the algebraic properties of bilinear pairings. The
encoding is similar to [9], but more detailed. The main idea is
to encode the terms in such a way that equivalent terms would
have the same syntactical representation.

Let C = {c1, . . . , cm} be the set of pure, ground terms used
in the derivation according to the theory T using the signature
Σ. Define Σpair = (Σ \

{
↑,−1 , ?

}
) ∪ {0, s, p, exp,mult} as

the new signature.
The constant 0 and the unary functions s and p are used for

encoding integers, as in [9]. The integer n will be encoded as
sn(0) = s(. . . s(0) . . .), and −n as pn(0). This encoding de-
fines two metatheoretical conversion functions i2t(n) (integer
to term) and t2i(t) (term to integer).



The functions mult and exp are of arity m+1, and are used
to encode multiplication in G1 and exponentiation in GT . The
encoding of C-exponent-ground terms will be done over this
signature. We need to consider only C-exponent-ground terms
in the derivations. A term of the form s ↑ c(n1)

1 ↑ . . . ↑ c(nm)
m

will be encoded as exp(s, i2t(n1), . . . , i2t(nm)) over Σpair.
Similarly, a term of the form s ? c

(n1)
1 ? . . . ? c

(nm)
m will be

encoded as mult(s, i2t(n1), . . . , i2t(nm)).

Example 3. Let C = {c1, c2, c3}. Let t = e(x, y) ↑ c1 ↑ c1 ↑
c−1
3 .

The term t will be encoded as exp(e(x, y), s2(0), 0, p(0)). �

There are two more metatheoretical functions that have
been defined for increasing and decreasing integers: incr(t) =
i2t(t2i(t) + 1) and decr(t) = i2t(t2i(t)− 1). Formally, they
are defined:
• incr(t) = t′, if t = p(t′), and incr(t) = s(t) otherwise;
• decr(t) = t′, if t = s(t′), and decr(t) = p(t) otherwise.
For each i ∈ {1, . . . ,m} we define the metatheoretical func-

tions incrXi and decrXi , where X ∈ {mult, exp}. Applying
the function incrXi to a term t increases the power of the
exponent (multiplier) ci in the term t by 1, and decrXi is
the inverse of incrXi . Formally, these functions are defined as
follows.

incrXi (X(t0, . . . , tm)) ={
t0, if ti = p(0) and tj = 0 for all j 6= i
X(t0, . . . , ti−1, incr(ti), ti+1, . . . , tm), otherwise

decrXi (X(t0, . . . , tm)) ={
t0, if ti = s(0) and tj = 0 for all j 6= i
X(t0, . . . , ti−1, decr(ti), ti+1, . . . , tm), otherwise.

If t is not of the form X(t0, . . . , tm) then

incrXi (t) = incrXi (X(t, 0, . . . , 0)) and

decrXi (t) = decrXi (X(t, 0, . . . , 0)) .

Example 4. Let C = {c1, c2, c3}. Then m = |C| = 3. Let
x, y be variables.
• increxp2 (exp(e(x, y), 0, p(0), 0)) = exp(e(x, y), 0, 0, 0);
• incrmult

1 (x) = mult(x, s(0), 0, 0);
• decrexp1 (exp(y, s(s(0)), 0, 0)) = exp(y, s(0), 0, 0). �

The transformation of a C-exponent-ground term t to a term
ptq over Σpair is given below.
• pxq = x for a variable or name x;
• pf(t1, . . . , tn)q = f(pt1q, . . . , ptnq) (f /∈

{
↑,−1 , ?, e

}
);

• pt ↑ ciq = increxpi (ptq);
• pt ↑ c−1

i q = decrexpi (ptq);
• pt ? ciq = incrmult

i (ptq);
• pt ? c−1

i q = decrmult
i (ptq);

• pe(t1 ? ci, t2)q = pe(t1, t2) ↑ ciq;
• pe(t1, t2 ? ci)q = pe(t1, t2) ↑ ciq;
• pe(t1, t2)q = e(pt1q, pt2q) (only if the two previous rules

do not apply);

• pp(t)q = p(ptq), for an atom p(t).

We need to show that the function p·q preserves equivalence
on the encoded terms.

Lemma 5. For C-exponent-ground terms t and s, if t ∼ s,
then ptq ∼ psq.

The proof of this lemma is similar to the proof of [9], and it
can be found in [21]. The proof becomes more complex since
there are additional definitions regarding the terms whose head
symbol is pairing function e.

Example 5. Let C = {c1}. Let t = enc(e(g ? c1, g ? c
−1
1 ),m)

where g and m are some variables.

ptq = penc(e(g ? c1, g ? c
−1
1 ),m)q

= enc(pe(g ? c1, g ? c
−1
1 )q, pmq)

= enc(pe(g, g ? c−1
1 ) ↑ c1q,m)

= enc(increxp1 (pe(g, g ? c−1
1 )q),m)

= enc(increxp1 (pe(g, g) ↑ c−1
1 q),m)

= enc(decrexp1 (increxp1 (pe(g, g)q)),m)

= enc(decrexp1 (increxp1 (e(pgq, pgq))),m)

= enc(decrexp1 (increxp1 (e(g, g))),m)

= enc(e(g, g),m) �

VII. DERIVATION RULES FOR ENCODED TERMS

Given a theory T , we will now present the construction of
a theory TC , such that a derivation `∼ according to theory
T ∪ TE is equivalent to an almost purely syntactic derivation
`c according to TC . Formally, the derivation `c is according to
an equational theory that is generated by the single equation
e(x, y) = e(y, x). This theory is much simpler than ∼ and
can be readily handled by ProVerif. The precise meaning of
the equivalence of definitions is given by Theorem 7 below.
Theory TC is generally similar to the one defined in [9],
but contains significant new details for handling the algebraic
properties of pairings. The clauses of the theory TC that do
not depend on the clauses of T are given in Fig. 1.

The rules (2)–(4) deal with integers: the intruder must be
able to derive any integer term. The rules (5)–(8) enable the
intruder to switch between t and exp(t, 0, . . . , 0), between t
and mult(t, 0, . . . , 0).

If the intruder knows ci, he is allowed to multi-
ply (exponentiate) the term with c

(n)
i for any integer n.

This kind of reduction works better with ProVerif than
just multiplying (exponentiating) a term with ci n times.
Given a term exp(x, x1, ..., xm), the intruder can produce
exp(x, x1, ..., s(xi), ..., xm) by exponentiating with ci. Hence
he can non-deterministically change the i-th counter to any
other integer. The rule (9) deals with exponentiation, and the
rule (10) deals with multiplication.

At this point we start diverging from [9]. Namely, we must
handle the addition of exponents. The term e(x ? c(x1) ? . . . ?
c(xm), y ? c(y1) ? . . . ? c(ym)) is equivalent to e(x, y) ↑ c(z1) ↑
. . . ↑ c(zm), where for each i: zi = xi + yi; these terms have
the same encoding. We handle the addition by introducing



I(0) (2)
I(x) → I(s(x)) (3)
I(x) → I(p(x)) (4)
I(x) → I(exp(x, 0, . . . , 0)) (5)

I(exp(x, 0, . . . , 0)) → I(x) (6)
I(x) → I(mult(x, 0, . . . , 0)) (7)

I(mult(x, 0, . . . , 0)) → I(x) (8)
I(ci), I(y), I(exp(x0, x1, . . . , xm)) → I(exp(x0, . . . , xi−1, y, xi+1, . . . , xm)) (9)
I(ci), I(y), I(mult(x0, x1, . . . , xm)) → I(mult(x0, . . . , xi−1, y, xi+1, . . . , xm)) (10)

INCR(x, incr(x)) for x ∈ {0, s(y), p(y)} (11)
DECR(x, decr(x)) for x ∈ {0, s(y), p(y)} (12)
A(x, 0, x) (13)

A(x, y, z), INCR(z, w) → A(x, s(y), w) (14)
A(x, y, z), DECR(z, w) → A(x, p(y), w) (15)

A(x1, y1, z1), . . . , A(xm, ym, zm), I(mult(x, x1, . . . , xm)), I(mult(y, y1, . . . , ym))→ I(exp(e(x, y), z1, . . . , zm)) (16)

E(t, ci, incr
exp
i (t)) for each ci ∈ C and t ∈ {x, exp(x0, . . . , xm), exp(x0, . . . , p(xi), . . . , xm), px ↑ c−1

i q} (17)

E(t, ci, decr
exp
i (t)) for each ci ∈ C−1 and t ∈ {x, exp(x0, . . . , xm), exp(x0, . . . , s(xi), . . . , xm), px ↑ ciq} (18)

M(t, ci, incr
mult
i (t)) for each ci ∈ C and t ∈ {x,mult(x0, . . . , xm),mult(x0, . . . , p(xi), . . . , xm), px ? c−1

i q} (19)

M(t, ci, decr
mult
i (t)) for each ci ∈ C−1 and t ∈ {x,mult(x0, . . . , xm),mult(x0, . . . , s(xi), . . . , xm), px ? ciq} (20)

P (x, y, e(x, y)) (21)
P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)) (22)
P (x,mult(y, y1, . . . , ym), exp(e(x, y), y1, . . . , ym)) (23)

A(x1, y1, z1), . . . , A(xm, ym, zm) → P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)) (24)
A(x1, y1, 0), . . . , A(xm, ym, 0) → P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)) (25)

Fig. 1. Generic clauses of the theory TC

a predicate A. Metatheoretically, A(x, y, z) is true iff z =
i2t(t2i(x) + t2i(y)).

The predicate A cannot be defined through case enumer-
ation. We define it recursively, using auxiliary predicates
INCR and DECR. These definitions are expressed by the
rules (11) — (15).

With help of the predicate A we can describe the intruder’s
ability to compute the pairing of two terms by introducing the
rule (16).

Similarly to [9] we define predicates E, M , and P that
will express exponentiation, multiplication and pairing for C-
exponent-ground terms. Metatheoretically,
• E(x, y, z) is true iff x ↑ y ∼ z.
• M(x, y, z) is true iff x ? y ∼ z.
• P (x, y, z) is true iff e(x, y) ∼ z.

The main purpose of these predicates is to bring terms to
normal form, so that two terms are equivalent modulo TC iff
they are syntactically equivalent modulo e(x, y) = e(y, x).
This allows ProVerif to unify equivalent terms without using

the other equations of TC . In the original protocol (the theory
T ), all the terms of the form x ↑ y, x ? y, and e(x, y) will
be replaced with the corresponding terms z that are equivalent
according to the definitions of the predicates E, M , and P .

Predicates E and M are simple to express in theory TC . The
predicate E has already been defined in [9], and M is defined
analogously. The rules (17) and (18) deal with exponentiation,
and the rules (19) and (20) deal with multiplication.

The rules for bilinear mappings are a little bit longer,
because we have to add multipliers for each ci ∈ C separately.
This is the main reason why derivation time with ProVerif
grows so rapidly with increasing the set C. The rules (21)—
(23) refer to the simpler part of the definition of P , where at
most one of the paired terms has mult as its head operation.
We do not need to use addition of exponents in these rules.

If we define in the same way the case where the head
operation of both arguments of the pairing function is mult,
we would get an infinite number of clauses. We need to
describe this case in another way, using the auxiliary predicate



A that we have already defined above. We do it by introducing
the rule (24).

This rule alone is still not enough for the full de-
scription of the predicate P . It may give us an-
swers like exp(e(x, y), 0, . . . , 0). Metatheoretically, the terms
exp(e(x, y), 0, . . . , 0) and e(x, y) denote the same quantity,
but exp(e(x, y), 0, . . . , 0) 6= e(x, y). It is not a problem
for the intruder rules since he has rules for transforming
exp(e(x, y), 0, . . . , 0) to e(x, y), but some congruences within
the initial protocol T would be lost. For example, there
would be no syntactical equivalence between e(x, y) ↑ c−1

1 ↑
c1 = e(x, y) and e(x ? c1, y ? c

−1
1 ) = exp(e(x, y), 0, . . . , 0).

Therefore, we need to define a separate rule for this case —
the rule (25).

Finally, we describe how the rules of the theory T are
encoded as rules in theory TC . This encoding is again similar
to [9]. ProVerif is able to handle the encoded rules without
difficulty.

Any clause r1, . . . , rn → r0 from a theory T is encoded by
substituting all non-ground, non-standard subterms with their
C-exponent-ground encodings. Similarly to [9], the encoded
clause is

pθ(r1)q, . . . , pθ(rn)q, C → pθ(r0)q, (26)

where θ is the substitution from non-ground non-standard
subterms to new variables, and C is a set of clauses establish-
ing that these variables equal the subterms they’ve replaced.
Formally, let R be the set of all subterms of r0, . . . , rn of the
form s ? c, s ↑ c or e(s1, s2), where c ∈ C∗ and s, s1 or s2

is non-ground. For each term t ∈ R let xt be a new variable.
The substitution θ works in a top-down manner:

θ(u) = u for name or variable u
θ(t) = xt if t ∈ R

θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)) otherwise
θ(p(t1, . . . , tn)) = p(θ(t1), . . . , θ(tn)) for predicate p.

The set of clauses C is defined as follows:

C = {M(pθ(s)q, c, xs?c) | s ? c ∈ R}
∪ {E(pθ(s)q, c, xs↑c) | s ↑ c ∈ R}
∪ {P (pθ(s1)q, pθ(s2)q, xe(s1,s2)) | e(s1, s2) ∈ R} .

We see that the substitution θ and encoding p·q are applied
also in the arguments of predicates M , E, P . In this manner
more complex expressions involving the operations ?, ↑, e can
be encoded.

The following lemma states that if an instance of nor-
malization predicates E,P,M is defined correctly in T (its
metatheoretical meaning holds), then it can be derived in TC .

Lemma 6. Let t and s be C-exponent-ground terms, c ∈
C ∪ C−1. Then E(ptq, c, pt ↑ cq), M(ptq, c, pt ? cq),
P (ptq, psq, pe(t, s)q) can be derived from the theory TC .

Proof:
We need this lemma in order to show that bringing the terms

to normal form can indeed be performed by the rules of theory

TC . It shows that it can be done only for some particular uses
of E, M , and P . For example, E(t, s, s ? s) is not an instance
of a fact of TC . The further lemmas will show that we actually
do not need it to hold for all possible cases. There are more
cases that should be looked through compared to the analogous
lemma in [9].

The proof is based on the definition of the encoding function
p·q. In the rules, we may substitute the variables with any
terms. Let c ∈ C, and let t, s be C-exponent-ground terms.
• E(ptq, c, pt ↑ cq) = E(ptq, ci, incr

exp
i (ptq))). This is an

instance of the rule (17) for some i where c = ci.
• E(ptq, c−1, pt ↑ c−1q) = E(ptq, ci, decr

exp
i (ptq))). This

is an instance of (18) for some i where c = ci.
• M(ptq, c, pt ? cq) = M(ptq, ci, incrmult

i (ptq))). This is
an instance of (19) for some i where c = ci.

• M(ptq, c−1, pt ? c−1q) = M(ptq, ci, decrmult
i (ptq))).

This is an instance of (20) for some i where c = ci.
• If the head symbols of both s and t are not ?, then
P (ptq, psq, pe(t, s)q) = P (ptq, psq, e(psq, ptq)), which
is an instance of (21).

Let C be a multiset {|ci1, . . . , cik|} where each cij is an
element of C ∪ C−1. If t is a term then let t ? C denote
the term t ? ci1 ? · · · ? cik (it is well-defined up to ∼) and
t ↑ C denote the term t ↑ ci1 ↑ · · · ↑ cik. We also define the
metatheoretical functions incrXC , where X ∈ {mult , exp}, as
follows:

incrX∅ (t) = t

incrXC∪̇{|ci|}(t) = incrXi (incrXC(t)) ci ∈ C
incrX

C∪̇{|c−1
i |}

(t) = decrXi (incrXC(t)) ci ∈ C .

Again, the functions incrmult
C and increxpC are well-defined

due to the commutation properties of the functions incrXi and
decrXi . We use the defined notions to treat more complex cases
of applying the predicate P .
• If the head symbol of s is not ?, then
P (pt ?Cq, psq, pe(t, s) ↑ Cq) =
P (incrmult

C (ptq), psq, increxpC (e(ptq, psq))),
which is an instance of (22), according to the definition
of increxp and incrmult.

• If the head symbol of t is not ?, then
P (ptq, ps ?Cq, pe(t, s) ↑ Cq) =
P (ptq, incrmult

C (psq), increxpC (e(ptq, psq))),
which is an instance of (23).

• P (pt ?C1q, ps ?C2q, pe(t, s) ↑ C1 ↑ C2q) =
P (incrmult

C1
(ptq), incrmult

C2
(psq), increxp

C1∪̇C2
(e(ptq, psq))).

Therefore it can be derived from (24).
• P (pt ?C1q, ps ?C2q, pe(t, s)q) =
P (incrmult

C1
(ptq), incrmult

C2
(psq), e(ptq, psq)). Hence it

can be derived from the rule (25).

Let us consider the clauses given by the translation (26)
for some clause A = (r1, . . . , rn → r0). Denote the clause
in TC resulting from A by A∗. First, if A does contain
neither multiplication, exponentiation nor the bilinear pairing



operations, then A∗ = A. If A contains some term t ↑ d with a
non-ground term t, it is replaced by a fresh variable y, and the
relation between t, d, and y is captured by adding E(t, d, y) to
the clause. Similarly, a term t?d adds a new clause M(t, d, y),
and e(s, t) adds a new clause P (s, t, y). All terms are encoded
using p.q to obtain terms over Σpair.

Example 6. Let C = {c1, c2}. Let secret be a constant of T .
Suppose that T contains the fact

R := I(e(x, y ? a))→ I(secret).

For this clause, we get the rule

R′ := M(pθ(y)q, c1, z), P (pθ(x)q, pθ(y ? c1)q, v),

pθ(I(e(x, y ? c1)))q→ pθ(I(secret))q.

Here z, v are newly introduced variables. They define the
substitution θ = {z/y ? c1, v/e(x, y ? c1)}. We get

R′ = M(pyq, c1, z), P (pxq, pzq, v), pI(v)q→ pI(secret)q.

Since x, y are variables, the function p·q does not do
anything interesting, and we get

R′ = M(y, c1, z), P (x, z, v), I(v)→ I(secret).

Note that there are no instances of predicate E since expo-
nentiation symbol ↑ is not used in the initial clause.

Consider now the application of R / R′ during the deriva-
tion. Let σ = {g ? c−1

1 /x, g ? c2/y} be the substitution
that gives the values of x and y for which we want to
apply the rule R′. If the derivation is being done ac-
cording to the theory TC , we have the substitution σ′ =
{mult(g, p(0), 0)/x,mult(g, 0, s(0))/y} instead. Applying σ′

to R′ gives the instantiation

σ′(R′) ≡ M(mult(g, 0, s(0)), a, z),

P (mult(g, p(0), 0), z, v),

I(v)→ I(secret).

The variables z, v are auxiliary, and they remain free in
σ′(R). In order to establish the truth of the right hand side
of this rule, the derivation engine (ProVerif) needs to find
appropriate values for z, v. According to the definition of
M and P , there is only one way to evaluate them to true
— I(secret) will be established if z = mult(g, s(0), s(0)))
and v = exp(e(g, g), 0, s(0)). In fact, we get the clause
I(exp(e(g, g), 0, s(0))) → I(secret) assuming that M(. . .)
and P (. . .) are true. This rule belongs to TC . �

Theorem 7. Let T be a non-trivial, C-exponent-ground theory
over Σ and b = p(t) be a C-exponent-ground atom over Σ,
with p being a predicate occurring in T . Then, T ∪ TE `∼ b
iff TC `c pbq.

If we prove this theorem, it means that any derivation
modulo ∼ (using the properties of bilinear mappings) can be
reduced to an almost purely syntactical derivation and can be
analyzed by ProVerif. First, we need to prove several lemmas.

Lemma 8. If there exists a C-exponent-ground derivation for
T ∪TC

E `∼ b obtained using C-exponent-ground substitutions,
then TC ` pbq.

Proof: The proof of the lemma contains a larger number
of different cases than the similar proof in [9]. It shows that
using facts and rules encoded by p·q one can derive all the
C-exponent-ground atoms that can be derived by T ∪TC

E , and
the only difference is that the derived term will be encoded.

Let π = b1, . . . , bl be a C-exponent-ground derivation for
T ∪TC

E `∼ b obtained using C-exponent-ground substitutions.
The lemma can be proved by induction over the length of π:

• Base: If l = 0, there is no derivation
• Step: Let π<l = b1, . . . , bl−1. We know that b ∼ bl can

be derived from π<l by applying a clause from T ∪ TC
E

using a C-exponent-ground substitution σ. It is enough
to show that pbq can be syntactically derived from pπ<lq
using TC . There are two cases to consider:

1) If b is obtained using a clause of TC
E , then b = I(t)

for some C-exponent-ground term t. There are three
subcases:
a) The set π<l contains atoms I(r) for a C-exponent-

ground r and I(ci) for ci ∈ C, such that t ∼ r ↑ ci or
t ∼ r ↑ c−1

i . The atom I(ptq) can be obtained from
I(prq) and I(pciq) using the following clauses:
i) (5) if the reduced form of r is standard.

ii) (9) is used with an appropriate integer term derived
by integer-derivation clauses (2)—(4).

iii) If the reduced form of t is standard, then (6) is
applied.

b) The set π<l contains atoms I(r) for a C-exponent-
ground r and I(ci) for ci ∈ C, such that t ∼ r ? ci
or t ∼ r ? c−1

i . The atom I(ptq) can be obtained from
I(prq) and I(pciq) using analogical clauses that are
defined for multiplication in TC .

c) The set π<l contains atoms I(r) and I(s) for C-
exponent-ground r and s, such that t ∼ e(r, s). The
atom I(ptq) can be obtained from I(prq) and I(psq)
using the following clauses:
i) If r(or s) is not of the form mult(x0, x1, . . . , xm),

then (7) must be applied to r(or s)
in order to get I(mult(r0, r1, . . . , rm))
and I(mult(s0, s1, . . . , sm)), where
r ∼ mult(r0, r1, . . . , rm) and s ∼
mult(s0, s1, . . . , sm).

ii) Apply the rule (16) to mult(r0, r1, . . . , rm) and
mult(s0, s1, . . . , sm).

2) If b is obtained by some C-exponent-ground clause
r1, . . . , rn → r0 of T , there exists a C-exponent-
ground substitution σ such that b ∼ σ(r0) and all
σ(r1), . . . , σ(rn) belong to π<l (everything modulo ∼).
The pbq can be obtained by using the clause that uses
predicates E,M , and P . Denote the clause r1, . . . , rn →
r0 as R→ S. We will write out the rule (26):
M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj , xj),



E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),
P (pθ(u′1)q, pθ(v′1)q, z1), . . . , P (pθ(u′l)q, pθ(v

′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q.
Define a substitution σ∗, which will be applied to R→ S
to obtain pbq as follows:
• σ∗(x) = pσ(x)q, for x ∈ var(r1, . . . , rn);
• σ∗(xi) = pσ(si)q;
• σ∗(yi) = pσ(ti)q;
• σ∗(zi) = pσ(wi)q.

It is easy to show by induction that, for each subterm u
of r0, . . . , rm, which is not of the form w−1, we have
σ∗(pθ(u)q) = pσ(u)q:
a) If u is standard, the claim immediately follows by

induction hypothesis.
b) if u is a ground, non-standard subterm, then both
σ∗(pθ(u)q) and pσ(u)q are equal to puq.

c) If u is non-ground and non-standard, then:
i) if u ∈ {s1, . . . , sk}, then θ(u) = xi for some i.

ii) if u ∈ {t1, . . . , tk}, then θ(u) = yi for some i.
iii) if u ∈ {w1, . . . , wk}, then θ(u) = zi for some i.
The claim follows from the definition of σ∗.

Now we have that σ∗(pθ(ri)q) = pσ(ri)q for each i ∈
{0, . . . , n}; in particular, σ∗(pθ(ri)q) ∈ pπ<lq for each
i ∈ {1, . . . , n}, and we obtain σ∗(pθ(ri)q) = pσ(r0)q =
pbq by applying R→ S with substitution σ∗ (the equality
follows from Lemma 5). It remains to prove that:

E∗ := σ∗(E(pθ(t′i)q, di, yi)),

M∗ := σ∗(M(pθ(s′i)q, bi, xi)),

P ∗ := σ∗(P (pθ(u′i)q, pθ(v
′
i)q, zi))

can all be derived from TC .
• For exponentiation, we have: E∗ =
σ∗(E(pθ(t′i)q, di, yi)) = E(σ∗(pθ(t′i)q), di, σ

∗(yi)) =
E(pσ(t′i)q, di, pσ(ti)q) = E(pσ(t′i)q, di, pσ(t′i) ↑
diq). By Lemma 6, the last fact is an instance of (17)
or (18), depending on whether di belongs to C or
C−1.

• Analogically, for multiplication we have: M∗ =
M(pσ(s′i)q, bi, pσ(s′i) ? biq). By Lemma 6, this fact
is an instance of (19) or (20), depending on whether
bi belongs to C or C−1.

• For pairing, we have P ∗ =
σ∗(P (pθ(u′i)q, pθ(v

′
i)q, zi)) =

P (σ∗(pθ(u′i)q), σ
∗(pθ(v′i)q), σ

∗(zi)) =
P (pσ(u′i)q, pσ(v′i)q, pσ(wi)q) =
P (pσ(u′i)q, pσ(v′i)q, pe(σ(u′i), σ(v′i))q). By Lemma 6,
this fact is an instance of:

– (21) if the head symbol of both u′i and v′i is not ?.
– (22) if the head symbol of u′i is ?, and the head

symbol of v′i is not ?.
– (23) if the head symbol of v′i is not ?, and the head

symbol of u′i is ?.
– (24) if the head symbols of both u′i and v′i are ?.
– (25) if the head symbols of both u′i and v′i are ?,

and after the pairing all the multipliers are going
to be cancelled out (A(x1, y1, 0), . . . , A(xm, ym, 0)
are true).

Theorem 1 states that the existence of derivation T ∪TE `∼
b implies the existence of derivation T ∪ TC

E `∼ b. Together
with Lemma 8, this proves one direction of Theorem 7.

We need to show that the other direction also holds, thus
establishing the soundness of the reduction. The next section
describes decoding of the terms.

VIII. DECODING THE TERMS: SOUNDNESS OF THE
REDUCTION

We have proved that T ∪ TE `∼ b implies TC `c pbq,
but this is not sufficient. Now we are going to prove that
TC `c pbq implies T ∪ TE `∼ b. It is very important since
it proves the soundness of our reduction. In order to do that,
we need to define a decoding function that would turn terms
over Σpair back into terms over Σ.

In the process of decoding, we will use the non-triviality of
the protocol theory T : there exists some u such that T∪TE `∼
I(u). If T was empty, the verification task would be trivial.

Previously, the function t2i was defined only on integer
terms. Now the domain of t2i will be extended to all terms
in the same way as it has been done in [9]. If the term is not
an integer term, then t2i turns it to 0.

• t2i(0) = 0;
• t2i(s(t)) = t2i(t) + 1;
• t2i(p(t)) = t2i(t)− 1;
• t2i(t) = 0, for any term t /∈ {0, s(t′), p(t′)} for some

term t′.

Now we can define the decoding function, a mapping x·y
from terms over Σpair to terms over Σ.

• xxy = x, for a variable x;
• x0y = u;
• xs(t)y = u;
• xp(t)y = u;

• xexp(t, s1, . . . , sm)y = xty ↑ ct2i(s1)
1 ↑ . . . ↑ ct2i(sm)

m ;

• xmult(t, s1, . . . , sm)y = xty ? ct2i(s1)
1 ? . . . ? c

t2i(sm)
m ;

• xf(t1, . . . , tn)y = f(xt1y, . . . , xtny),
where f /∈ {0, s, p, exp,mult} ;

• xp(t)y = p(xty), for an atom p(t).

In this definition, we need u only to express that if an
integer term occurs somewhere outside of multiplication or
exponentiation, then its decoding can also be derived from
T . The decoding is meaningless for the actual protocol, and is
only necessary for the formal statement of the further lemmas:
since the intruder can derive any integer term in TC , we need
to show that he can derive the same term in its decoded form.
This has been done in the same way in [9].

Example 7. Let C = {c1, c2}. Suppose that we are given a
term t := exp(f(p(0), x), 0, s(s(0))) over Σpair, where x is a



variable and f is arbitrary functional symbol. We have:

xty = xexp(f(p(0), x), 0, s(s(0)))y

= xf(p(0), x)y ↑ c22
= f(xp(0)y, xxy) ↑ c22
= f(u, x) ↑ c22 �

There must be a relationship between the functions p.q
and x.y. Everything that was encoded may be later decoded.
These functions are not the inverse functions of each other
because syntactically different, but congruent terms have the
same encoding. But we do not need the syntactical equality
of the terms t and xptqy, equivalence modulo ∼ is sufficient.

Lemma 9. Let t be a C-exponent-ground term over Σ. Then
xptqy ∼ t.

This lemma can be proved by structural induction over t. If t
is standard, the statement immediately follows by the induction
hypothesis. If t is not standard, let t′ be its reduced form.
We have to look through three cases for a non-standard form:
exponentiation, multiplication and pairing. The proof is similar
to [9], but it includes additional cases for pairing. It can be
found in [21].

The next lemma shows that if any instance of the predicates
E,M , or P can be derived from TC , then this instance is
defined correctly according to the the metatheoretical meaning
of E,M ,P (it indeed represents exponentiation, multiplication,
or pairing). There is an analogous lemma in [9] without the
proof.

Lemma 10. Let t,d, and s be ground terms over Σpair. Let
C∗ = C ∪ C−1.
• If E(t, d, s) can be derived from TC , then d ∈ C ∪ C−1

and xsy ∼ xty ↑ d.
• If M(t, d, s) can be derived from TC , then d ∈ C ∪C−1

and xsy ∼ xty ? d.
• If P (r, s, t) can be derived from TC , then
xty ∼ e(xry, xsy).

The proof of each point can be carried out by case distinc-
tion, and it can be found in [21].

Example 8. Let C = {c1, c2}. According to the definition of
TC , the fact

P (x,mult(y, y1, y2), exp(e(x, y), y1, y2)),

where x, y, y1, y2 are variables, is a fact of TC .
Consider substitution

σ = {g/x, g/y, s(0)/y1, g/y2}

for a constant g. Then,

P (g,mult(g, s(0), g), exp(e(g, g), s(0), g))

is an instance of the previous fact. We have that

xexp(e(g, g), s(0), g)y = xe(g, g)y ↑ ct2i(s(0))
1 ↑ ct2i(g)

2

= e(xgy, xgy) ↑ c11 ↑ c02
= e(g, g) ↑ c1.

e(xgy, xmult(g, s(0), g)y) = e(g, xgy ? ct2i(s(0))
1 ? c

t2i(g)
2 )

= e(g, g ? c11 ? c
0
2)

= e(g, g ? c1)

∼ e(g, g) ↑ c1. �

Now we need to show that each fact that can be derived
in TC , can also be derived in T in its decoded form. We
cannot say that the fact derived in T will be exactly the same
after decoding. As it was said before, there is no one-to-one
correspondence between p·q and x·y, but the facts derived from
T and TC will be equivalent modulo ∼.

Lemma 11. Let a = p(t) be an atom, such that p occurs in
T . Then, TC `c a implies T ∪ TE `∼ xay.

Proof: We need to take the derivation of a in TC , remove
all the atoms of the form E(. . .), M(. . .), and P (. . .), and
replace all the remaining atoms ai by xaiy. The proof can
be carried out by induction and case distinction, in the same
way as it has been done in [9]. There are additional cases for
pairing.

Let π = a1, . . . , al be a derivation for TC `c a. The proof
proceeds by induction over the length of π. The induction
base is l = 0, there is nothing to show. For the induction
step, we need to show that xaly can be derived from xπ<ly,
where π<l = a1, . . . , al−1, and xπ<ly is the sequence of atoms
obtained from π<l by removing all atoms of the form E(. . .),
M(. . .), and P (. . .), by replacing all the remaining atoms ai
by xaiy.
By assumption, predicate symbols E, M , and P do not occur
in T . It suffices to consider different cases of how al is
obtained.

Here we list all the possible cases that we have to consider,
including those that have been proved in [9].

1) If al is obtained using the integer derivation rules (2)—
(4), it must be of the form I(0), I(s(t)), or I(p(t)).
Therefore, xaly = u, and we have T ∪ TE `∼ I(u).

2) If al is obtained using the rules (4)—(8), it is
enough to note that xty = xexp(t, 0, . . . , 0)y =
xmult(t, 0, . . . , 0)y.

3) If al is obtained using the rule (9), the atom al is of the
form I(exp(s0, . . . , si−1, s

′
i, si+1, . . . , sm)), such that

I(exp(s0, . . . , sm)), I(ci), and I(s′i) occur in π<l. Set b =
I(exp(s0, . . . , sm)). Then, xby = I(xexp(s0, . . . , sm)y)
and xI(ci)y = I(ci) are elements of xπ<ly.
Now we need to derive xaly from xby and I(ci).
• If t2i(s′i) > t2i(si), apply the clause I(x), I(y) →
I(x ↑ y) from TE t2i(s′i)− t2i(si) times.

• If t2i(s′i) < t2i(si), apply the clause I(x) → I(x−1)
to I(ci), then apply the rule I(x), I(y) → I(x ↑ y)
from TE t2i(si)− t2i(s′i) times.

• If t2i(s′i) = t2i(si), then xaly is a repetition of xby.
4) If al is obtained using the rule (10) the proof is analogical

to exponentiation.
5) If al is obtained using the rule: (16) then the

atom al is of the form exp(e(u0, v0), s1, . . . , sm),



such that I(mult(u0, u1, . . . , um)) and
I(mult(v0, v1, . . . , vm)) occur in π<l, and the
predicates A(u1, v1, s1), . . . , A(um, vm, sm) are true.
By definition of the predicate A(. . .), they are true iff
si = i2t(t2i(u1) + t2i(vi)) for each i.
Now denote b1 = I(mult(u0, u1, . . . , um)),b2 =
I(mult(v0, v1, . . . , vm)). We get that xb1y =
I(xmult(u0, u1, . . . , um)y) and xb2y =
I(xmult(v0, v1, . . . , vm)y) are elements of xπ<ly.
Then, xaly can be derived from xb1y and xb2y by
applying the rule I(x), I(y)→ I(e(x, y)) from TE .
We get a term of the form e(. . . , . . .) without any expo-
nents, but using equations e(x, y ? z) = e(x, y) ↑ z and
e(x, y) = e(y, x) we get that the result is actually equiv-
alent to xaly. Each exponent ci is taken out from xb1y
ui times, and from xb2y vi times. As the result, we get
xexp(e(u0, v0), i2t(t2i(u1)+t2i(v1)), . . . , i2t(t2i(um)+
t2i(vm)))y = xexp(e(u0, v0), s1, . . . , sm))y = xaly.

6) Suppose that al is obtained using the rule (26). We write
this rule out in more details:
M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj , xj),
E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),
P (pθ(u′1)q, pθ(v′1)q, z1), . . . , P (pθ(u′l)q, pθ(v

′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q.
Assume that this clause was instantiated with a sub-
stitution σ: it means that al = σ(pr0q). Furthermore,
all the σ(pθ(ri)q) for all i ∈ {1, . . . , n}, and all the
E(σ(pθ(t′i)q), di, σ(yi)), M(σ(pθ(s′i)q), bi, σ(xi)), and
P (σ(pθ(u′i)q), σ(pθ(v′i)q), σ(zi)) for all corresponding
indices i, are in π<l. Therefore, xσ(pθ(ri)q)y for all
i ∈ {1, . . . , n} are in xπ<ly.
By Lemma 10, we have that xσ(yi)y ∼ xσ(pθ(t′i)q)y ↑
di, xσ(xi)y ∼ xσ(pθ(s′i)q)y ? bi, xσ(zi)y ∼
e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y).
Let σ∗(x) = xσ(x)y. For each subterm t of r0, . . . , rn
such that t is not of the form w−1, we show by induction
over the size of t, that σ∗(t) ∼ xσ(pθ(t)q)y:
a) If t = x is a variable: pθ(x)q = x, and thus σ∗(x) =
xσ(pθ(x)q)y, by definition of σ∗.

b) If t = f(t1, . . . , tn) for f /∈ {↑, ?, e}: the claim easily
follows by induction.

c) If t = t′ ↑ d and t is ground: xσ(pθ(t)q)y = xptqy,
and σ∗(t) = t. We know that xptqy ∼ t by Lemma 9.

d) If t = t′ ?d and t is ground: similar to exponentiation.
e) If t = ti = t′i ↑ di:

by the induction hypothesis, we have
σ∗(ti) = σ∗(t′i) ↑ di ∼ xσ(pθ(t′i)q)y ↑ di.
We have xσ(yi)y ∼ xσ(pθ(t′i)q)y ↑ di. Therefore,
σ∗(ti) ∼ xσ(yi)y = x(pθ(ti)q)y.

f) If t = si = s′i ? bi: similar to exponentiation.
g) If t = wi = e(u′i, v

′
i):

by the induction hypothesis, we have
σ∗(wi) = e(σ∗(u′i), σ

∗(v′i))
∼ e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y).
We have xσ(zi)y ∼ e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y).

Therefore, σ∗(wi) ∼ xσ(zi)y = x(pθ(wi)q)y.
By the above, we have that σ∗(ri) ∼ xσ(pθ(ri)q)y (ri
can not be of the form w−1 since it is C-exponent-
ground). We have that all the xσ(pθ(ri)q)y for all
i ∈ {1, . . . , n} are in xπ<ly, which means that we can
apply the clause r1, . . . , rn → r0 with σ∗ to obtain
σ∗(r0) ∼ xσ(pθ(r0)q)y = xaly.

Example 9. Let C = {c1, c2}. Let secret be a constant of
T . Let f be an arbitrary functional symbol. Suppose that the
atom ã ≡ I(exp(e(g, g), 0, s(0))) has been derived from TC
using the rule

R′ = I(f(x, y)),M(y, c1, z), P (x, z, v)→ I(v).

Assume that TC contains a fact

I(f(mult(g, p(0), 0),mult(g, 0, s(0)))),

and the substitution obtained in the derivation process is

σ = {mult(g, p(0), 0)/x,

mult(g, 0, s(0))/y,

mult(g, s(0), s(0))/z,

exp(e(g, g), 0, s(0))/v}.

Note that after fixing x or y, the value of z is uniquely
determined since otherwise the predicates M(. . .) and P (. . .)
would be false, and the atom ã could not have been obtained
in this derivation.

Applying σ and removing the instances of M and P from
the derivation leaves the rules:

1) I(f(mult(g, p(0), 0),mult(g, 0, s(0))));
2) I(f(mult(g, p(0), 0),mult(g, 0, s(0))))
→ I(exp(e(g, g), 0, s(0))).

After decoding the terms, we get:
1) I(f(g ? c−1

1 , g ? c2))→ I(e(g, g) ↑ c2);
2) I(f(g ? c−1

1 , g ? c2)).
These two rules belong to the theory T , and the clause
I(e(g, g) ↑ c2) can be obviously derived from T . On the other
hand, I(e(g, g) ↑ c2) ∼ xãy. �

Proof of Theorem 7: We have used Lemma 8 to prove that
T∪TE `∼ b implies TC `c pbq. Now suppose that TC `c pbq.
By assumption, b = p(t), where p occurs in T . Lemma 11
implies that T ∪ TE `∼ xpbqy. By Lemma 9, xpbqy ∼ b, and
therefore T ∪ TE `∼ b. �

As the result, we can say that instead of analyzing the C-
exponent-ground protocol that uses bilinear pairings in T∪TE ,
it can be analyzed in T ∪TC

E without any loss of information.

IX. EXPERIMENTS

We have extended the Horn theory transformer by Küsters
and Truderung [9] to also handle pairing operations. In their
transformer, the protocol is written first as an ordinary Prolog
program, and afterwards it is translated to a file that can be
tested by ProVerif.



With the help of this extended transformer, we have used
ProVerif to analyze several protocols employing bilinear pair-
ings. All of them are key-agreement protocols. In our experi-
ments, we have asked whether the attacker (an insider in the
system) is capable of finding or determining the session key.
Namely, at the end of the session, each party encrypts a secret
value sec with the key determined during the session, and
releases it to the network. We query whether I(sec) can be
derived. The results of our tests are the following:
• Joux’s protocol. This [5] is the original three-party

Diffie-Hellman key exchange protocol without any au-
thentication of messages. Our analysis finds it secure
if the channels between parties are authenticated, and
insecure otherwise.

• A variation of Shim’s protocol. We consider the repaired
version [22] of Shim’s three-party certificate-based one-
pass key-exchange protocol [23]. Our analysis finds it
secure. There is an interesting detail in the model of this
protocol. Namely, when a party receives the messages
from other parties, it is supposed to verify whether two
terms t1 and t2, both constructed by this party as t1 =
e(t11, t12) and t2 = e(t21, t22), are equal. In symbolic
model, obviously the equality modulo ∼, not the syntactic
equality (supported natively by ProVerif) has to be used.
We thus add the atoms P (t11, t12, T ) and P (t21, t22, T )
as premises to the clause corresponding to the protocol
action that depends on the results of this comparison.

• TAK 1. This certificate-based three-party key-exchange
protocol by Al-Riyami and Paterson [6] includes the
public keys in the generated session key. It was found
to be secure.

• TAK 2. This protocol by the same authors [6], although
similar to the previous one, is insecure [24]. We were
able to find the same attack using the theory transformer
and ProVerif.

• A Six Pass Pairing Based AKC Protocol. This protocol
is also proposed by Al-Riyami and Paterson [6]. It was
found to be secure.

Our implementation is available from http://comserv.cs.ut.ee/
forms/ati report//index.php?year=2011.

Efficiency

We have tested the running time of the analysis on the
listed protocols. Similarly to [9], our Horn theory transformer
has negligible running time. Unfortunately, the situation is
different for ProVerif’s running time on transformed protocols.
In our experiments, the running time of ProVerif seems to grow
fast with the number of pairing operations in the protocols.

Our experiments were performed with ProVerif 1.84 on a
2.21 GHz AMD Athlon 64X2 Dual Core Processor 4400+
with 2GB of RAM. The running time for the simplest of the
protocols — Joux’s key exchange — was still a fraction of a
second. In this protocol, each participant has to perform just a
single pairing per session. TAK 1, six-pass AKC, and repaired
Shim’s protocol each required time between 6 and 23 minutes.
TAK 2 protocol makes the most use of pairings (the agreed key

in this protocol is the hash of the concatenation of results of
three different pairing operations). The time to find the attack
in this protocol amounted to several hours.

In our experiments, we did away with the commutation
rule e(x, y) ∼ e(y, x). This means that ProVerif performed
a purely syntactic derivation. This change was sound because
in all protocols, only a single generator p of the group G1 was
considered. This meant that e(p, p) was the only considered
generator for the group GT . Our transformation p·q thus brings
all terms involving pairings to the form exp(e(p, p), . . .).
Getting rid of the commutation rule improved the running time
of ProVerif a couple of times, but the more complex protocols
still required a long time to analyze.

X. ADDITION IN G1 AND MULTIPLICATION IN GT

Our treatment allows neither the protocol participants nor
the adversary to apply the full set of operations available in
the groups G1 and GT “in real life”. Namely, similarly to
previous approaches [9], we have very much concentrated on
Diffie-Hellman-like protocols and exponentiation operations in
groups. Addition in G1 and multiplication in GT have not been
a part of the signature, meaning that no-one could apply those.
As these operations can interfere with existing operations in
our signature (meaning: there are equations involving both of
them and the exponentiation operations) we may ask whether
an adversary capable of applying them could attack protocols
that our analysis has found to be secure. This issue would not
have arisen if there were no such interference [25].

We will now extend the signature Σ with addition ‘+’ in
G1 and multiplication ‘·’ in GT , introducing the equations and
intruder theory which make them behave as the corresponding
operations in cyclic groups. If ∼] is the new equivalence of
terms, and TE] is the new intruder theory, then we show that
for a protocol P that does not contain operations of addition in
G1 and multiplication in GT , and for an atom a that similarly
does not contain these operations, TP ∪ TE] `∼] a implies
TP ∪ TE `∼ a. Hence these operations do not help the
adversary.

The equations involving + and · are given below. We
additionally make use of two free constants 0 and 1, denoting
the zero element in G1 and the unit element in GT .

x+ y ∼] y + x x · y ∼] y · x
(x+ y) + z ∼] x+ (y + z) (x · y) · z ∼] x · (y · z) (27)

(x+ y)−1 ∼] x−1 + y−1 (x · y)−1 ∼] x−1 · y−1

x+ 0 ∼] x x+ x−1 ∼] 0 x · 1 ∼] x x · x−1 ∼] 1

(x+ y) ? z ∼] (x ? z) + (y ? z) e(x+ y, z) ∼] e(x, z) · e(y, z)
(x · y) ↑ z ∼] (x ↑ z) · (y ↑ z)

The additions to the intruder theory due to these operations
are straightforward. The theory TE] consists of the rules of
the theory TE , plus the following rules:

I(x), I(y)→ I(x+ y) I(x), I(y)→ I(x · y) .

As the protocol P does not contain + or ·, they can be
introduced into a derivation only through adversarial rules.



We will show now that there is no reason for the adversary to
introduce those operations — if the goal of the adversary is to
establish an atom a not containing + or ·, then any derivation
where + and · are introduced can be repeated without their
introduction. The necessary definitions for formally stating and
establishing these results are given below, while their proofs
are given in the appendix.

We will extend the definition of a reduced term to the
terms that contain + and · operations. We call a term over Σ
reduced if no equations in last four rows of (1) and last four
rows of (27) can be applied to it from left to right modulo the
equations in the first two rows of (1) and first two rows of
(27). Hence in a reduced term, when several operations in and
between G1 and GT have to be performed, we first perform
the pairings e, then the exponentiation-like operations ? and
↑, then the inversions, and finally the multiplication-like
operations + and ·. Each term can be brought to a reduced
form and the reduced form is determined uniquely modulo
the associativity and/or commutativity of ?, ↑, +, · and e.

Example 10. Suppose that we are given a term

t := e((p ? a+ p ? b) ? c, p ? a ? c) ↑ a−1 .

We will bring the term t to its reduced form:

t = e((p ? a+ p ? b) ? c, p ? a ? c) ↑ a−1

∼] e(p ? a ? c+ p ? b ? c, p ? a ? c) ↑ a−1

∼] e(p ? a ? c+ p ? b ? c, p) ↑ a−1 ↑ a ↑ c
∼] e(p ? a ? c+ p ? b ? c, p) ↑ c
∼] (e(p ? a ? c, p) · e(p ? b ? c, p)) ↑ c
∼] e(p ? a ? c, p) ↑ c · e(p ? b ? c, p) ↑ c
∼] e(p, p) ↑ c ↑ a ↑ c · e(p, p) ↑ c ↑ b ↑ c
∼] e(p, p) ↑ a ↑ c2 · e(p, p) ↑ b ↑ c2

In this example, the + operation has disappeared from t
because it has been applied to terms under pairing. Note that
the operation + may still remain in the reduced form. The +
and · operations are also not restricted to head operations. They
can be hidden inside the term, and they may remain there after
the reduction. For example, f(a+ b) ↑ c is a reduced term. �

According to this new definition of reduced form, the terms
(and their subterms) that do not contain the operations + and
· are reduced in the same way as according to the previous
definition (without + and ·).

We define a function DF (”decomposed form”) that we will
use to remove all the + and · operations and replace them
with single addends and factors. This can be done by defining
special functions that will select particular elements from the
sums and the products. Additionally, we need to ensure that
applying these functions will keep equivalence modulo the
equations of (27).

Let Trm+· be the set of reduced terms whose head symbol
is not + or ·. Let P 6=∅fin (X) denote the set of all the finite
non-empty subsets of X . We define Sel+· as the set of pairs

of functions (g+, ġ) from P 6=∅fin (Trm+·) to Trm+·, satisfying
the following conditions for all X,Y ∈ P 6=∅fin (Trm+·):
• g+(X) ∈ X and ġ(X) ∈ X;
• g+(X ∪ {0}) = g+(X) and ġ(X ∪ {1}) = ġ(X);
• if Y = {x ? t|x ∈ X}, then g+(Y ) = g+(X) ? t;
• if Y = {x ↑ t|x ∈ X}, then ġ(Y ) = ġ(X) ↑ t;
• if Y = {e(x, t)|x ∈ X}, then ġ(Y ) = e(g+(X), t).

We use the functions g+ and ġ to select addends from sums
and factors from products. For a term t in reduced form
and a pair of functions (g+, ġ) ∈ Sel+· we define a term
DF (t, g+, ġ) as follows:
• DF (u, g+, ġ) = u

(for a variable or a name u);
• DF (f(t1, . . . , tk), g+, ġ) =

= f(DF (t1, g
+, ġ), . . . ,DF (tk, g

+, ġ))
(for f /∈ {+, ·});

• DF (t1 + . . .+ tk, g
+, ġ) = DF (g+({t1, . . . , tk}), g+, ġ)

(where the head symbol of ti is not +);
• DF (t1 · . . . · tk, g+, ġ) = DF (ġ({t1, . . . , tk}), g+, ġ)

(where the head symbol of ti is not ·).
We see that the term DF (t, g+, ġ) is a “simplified” form

of t in the sense that wherever in t a sum or a product
is contained, the term DF (t, g+, ·g) only contains a single
addend or factor of this sum or product.
For an atom a = P (t1, . . . , tk) and functions g+, ġ
we define the new atom DF (P (t1, . . . , tk), g+, ġ) =
P (DF (t1, g

+, ġ), . . . ,DF (tk, g
+, ġ)).

Example 11. Suppose that we have a term

s := enc(p ? a+ f(c · d) ? b,msg) ,

the function DF will decompose the reduced form of s to
addends:

s′ = DF (s, g+, ġ)

= DF (enc(p ? a+ f(c · d) ? b,msg), g+, ġ)

= enc(DF (p ? a+ f(c · d) ? b, g+, ġ),DF (msg, g+, ġ))

= enc(DF (g+({p ? a, f(c · d) ? b}), g+, ġ),msg)

Depending on the definition of g+, we select either the first
or the second argument of addition.
If we select p ? a:

s′ = enc(DF (p ? a, g+, ġ),msg)

= enc(DF (p, g+, ġ) ? a,msg)

= enc(p ? a,msg)

If we select f(c · d) ? b:

s′ = enc(DF (f(c · d) ? b, g+, ġ),msg)

= enc(f(DF (c · d, g+, ġ)) ? a,msg)

= enc(f(DF (ġ({c, d}), g+, ġ)) ? a,msg)

Here we again select either c or d, depending on the definition
of ġ:

enc(f(DF (c, g+, ġ)) ? a,msg) = enc(f(c) ? a,msg)



enc(f(DF (d, g+, ġ)) ? a,msg) = enc(f(d) ? a,msg)

The obtained terms do not contain the addition operation. �

Now we need to show that if a protocol TP does not contain
the operations + and ·, then there is no difference whether the
intruder uses his additional power from TE] or not. The main
idea is to show that if the intruder just stores addends and
factors and does not apply +, · to them (this will be modeled
by function DF ), he can still derive a if he could do it before.

First of all, we state an auxiliary lemma that we need to
prove in order to get the promised result.

Lemma 12. Let R ≡ r1, . . . , rk → r be a rule
in the theory TP ∪ TE . Let a1, . . . , ak → a be a
ground instance of this rule. Let (g+, ġ) ∈ Sel+·. Then
DF (a1, g

+, ġ), . . . ,DF (ak, g
+, ġ) → DF (a, g+, ġ) is an in-

stance of R.

Proof: Let x1, . . . , xj be the variables occurring in the
rule R. Let θ be the substitution of x1, . . . , xj with ground
terms, such that riθ ∼] ai and rθ ∼] a. Define the substitution
θ̃ by xiθ̃ = DF (xiθ, g

+, ġ). One can easily verify that riθ̃ =
DF (ai, g

+, ġ) and rθ̃ = DF (a, g+, ġ).
We can now state a lemma that immediately implies the

result we promised to show in this section.

Lemma 13. If P is a protocol that does not contain the
operations + and ·, then for any reduced atom a and any
pair of functions (g+, ġ) ∈ Sel+·:

TP ∪ TE] `∼] a =⇒ TP ∪ TE `∼ DF (a, g+, ġ) .

Proof: The lemma is proved by induction over the deriva-
tion length. We need to show how to obtain the derivation
modulo ∼ for each DF (a, g+, ġ).

First of all, note that according to the definition of DF a
term that contains neither + nor · will not be modified by DF .

Let π = b1, . . . , bl, be a derivation for TP ∪ TE] `∼] a
where a ∼] bl. The proof is based on induction over the length
of π.
• Base: If l = 0, there is no derivation. Since TP does not

contain operations + and · and the rules of TE] have not
been used yet, it means that a contains neither + nor ·.
By definition of DF , we have DF (a, g+, ġ) = a.

• Step: Let π<l = b1, . . . , bl−1. By the assumption of the
lemma, we know that a ∼] bl can be derived from π<l

by applying a clause from TP ∪ TE] . We need to show
that for any (g+, ġ) ∈ Sel+·, the term DF (a, g+, ġ) can
be derived from π<l modulo ∼ using TP ∪ TE .

1) If the rule used to obtain a is in TE] , but not in TE , then
it is one of the following cases:
a) Suppose that a is obtained using the rule

I(x), I(y)→ I(x+ y) .

In this case, a = I(t) is equivalent to I(r+s) for some
terms I(r) and I(s) that have been derived from π<l.
It is possible that the head operation of r or s is +. Let

r = r1+. . .+rkr
and s = s1+. . .+sks

, where kr, ks ≥
1 and the head operations of r1, . . . , rkr

, s1, . . . , sks

are not +.
By the definition of DF , the term DF (t, g+, ġ) is equal
to some DF (ri, g

+, ġ) or DF (sj , g
+, ġ), depending

on the value of g+({r1, . . . , rkr
, s1, . . . , sks

}). Without
lessening the generality, assume that for some i, the
function g+ selects ri from that set. Define the pair
(g̃+, ˜̇g) by initially making them equal to (g+, ġ) and
then defining g̃+({r1, . . . , rkr

}) = ri. Also change
other points of g̃+ and ˜̇g, such that the conditions put
on the pairs of functions in Sel+· continue to hold. It
is obvious that (g̃+, ˜̇g) can be defined in this manner.
It is also obvious that DF (r1 + · · ·+ rkr + s1 + · · ·+
sks

, g+, ġ) = DF (r1 + · · ·+ rkr
, g̃+, ˜̇g) because at all

other points where they are going to be applied, (g+, ġ)

and (g̃+, ˜̇g) are equal.
By induction hypothesis, the atom I(DF (r, g̃+, ˜̇g)) can
be derived from TP ∪ TE modulo ∼, concluding the
induction step.

b) Suppose that a is obtained using the rule

I(x), I(y)→ I(x · y) .

The proof is analogous, only instead of the function
g+ we use the function ġ.

2) Now suppose a is obtained using a rule R ≡
r1, . . . , rk → r from TP ∪ TE . In the derivation of
a, we use the instance of this rule a1, . . . , ak → a,
where ai are atoms derived from π<l. Let A :=
{a1, . . . , ak}. By induction hypothesis, DF (ai, g

+, ġ) for
any ai ∈ A can be derived from TP ∪TE . By Lemma 12
we can infer DF (a, g+, ġ) from DF (A, g+, ġ) :=
{DF (ai, g

+, ġ)|ai ∈ A}.
Additionally, we need to note that for any atom a that does

not contain the operations + and · we have DF (a, g+, ġ) = a.
In this way we achieve the promised result.

It is quite obvious that the converse of this lemma does not
hold. If the theory TP contains the atoms I(h(a)) and I(h(b))
for some operation h, and no means to construct other terms of
the form h(. . .), then the atom I(h(a+ b)) cannot be derived
from TP ∪ TE] .

XI. CONCLUSIONS

We have presented an equational theory for bilinear pairings
in the symbolic model of cryptography and shown how to re-
duce Horn theory derivations modulo that equational theory to
almost syntactic derivations. We have tested our reduction as a
preprocessor for the cryptographic protocol analyzer ProVerif
on several pairing-based protocols, affirmed the security of
some of them and discovered known attacks for others.

A notable omission in our signature and equational theory
is the absence of the treatment of addition (in G1) or multi-
plication (in GT ). While the same omission is also present in
existing treatments Diffie-Hellman exponentiation, it is more
pronounced in our case, because a sizable number of protocols



(e.g. [26]) make use of it. While the full treatment of addition
is most likely intractable, we may try to adapt some ideas of
Kremer and Mazaré [7] who allow multiplication in GT , but no
addition in G1. A different possible line of future work would
be the extension of Mödersheim’s results [14] to pairings in
order to make verification more efficient.

Our results hold in the symbolic model of cryptography.
If one considers a computational semantics of the processes,
interpreting ? as the group operation in G1, ↑ as the group
operation in GT and e as an actual pairing operation from G1

to GT , then one may naturally ask to which extent the secrecy
and authenticity properties of the protocol in the symbolic
model imply the corresponding properties in the computational
model. In the presence of equational theories, it is tricky to
relate the properties of symbolic and computational models,
even if one considers only passive adversaries [27], [28]. The
results of Kremer and Mazaré [7] sidestep these issues, but put
many restrictions on the use of the results of pairings (and also
consider only the passive adversary). Still, one would expect
that at least for authenticity properties, a result mimicking [29]
should be possible.
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