
Specifying Sharemind’s Arithmetic Black Box

Peeter Laud
Cybernetica AS

peeter.laud@cyber.ee

Alisa Pankova
Cybernetica AS

Software Technologies and Applications
Competence Centre

University of Tartu, Institute of Computer Science
alisa.pankova@cyber.ee

Martin Pettai
Cybernetica AS

Software Technologies and Applications
Competence Centre

University of Tartu, Institute of Computer Science
martin.pettai@cyber.ee

Jaak Randmets
Cybernetica AS

University of Tartu, Institute of Computer Science
jaak.randmets@cyber.ee

ABSTRACT
In this paper, we discuss the design choices and initial experiences
with a domain-specific language and its optimizing compiler for
specifying protocols for secure computation. We give the ratio-
nale of the design, describe the translation steps, the location of the
compiler in the whole Sharemind protocol stack, and the results we
have obtained with the system.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Cryptographic
controls; D.3.4 [Programming Languages]: Processors—Code
generation

Keywords
Secure Multiparty Computation; Protocol optimization

1. THE PROTOCOLS OF SHAREMIND
Existing secure multiparty computation (SMC) frameworks use

different protocol sets for achieving privacy. Several frameworks
implement the arithmetic black box (ABB) [4], the methods of
which are called during the runtime of a privacy-preserving compu-
tation by the SMC engine in the order determined by the specifica-
tion of the computation. An ABB must at least contain the methods
for linear combination and multiplication of private integers, but it
contains more in typical implementations.

Sharemind SMC framework [2] features an exceptionally large
ABB. Besides the operations listed above, it also contains com-
parison, bit extraction, widening, division of arbitrary-width inte-
gers [3], as well as a full set of floating-point [5] and fixed-point
operations, including the implementations of elementary functions.
More protocol sets on top of different SMC methods are planned.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PETShop’13, November 4, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2489-2/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517872.2517874.

Different protocols of the ABB form a hierarchy, with more com-
plex protocols invoking simpler ones (multiplication, widening, cer-
tain bit-level operations) for certain tasks [3].

The implementation of protocols for ABB operations is an error-
prone and repetitive task. Repetition is caused by implementing
the protocols to work with values of different bit-length. Attempts
to optimize complex protocols over the composition boundaries in-
troduce errors and make the library of protocols unmaintainable.
The task of building and maintaining implementations of protocols
is naturally answered by introducing a domain-specific language
(DSL) for specifying them.

The DSL allows us to specify the protocols in a manner similar
to their write-up in papers on SMC protocols. This specification is
compiled and linked with the Sharemind platform. There is a differ-
ent language [1] for specifying the privacy-preserving applications
as a composition of these protocols. Having different languages for
implementing different levels of the privacy-preserving computa-
tion allows us to apply optimizations most suitable for each level,
and improves the user experience by allowing us to tailor the lan-
guages for the specific domain. Protocols are specified and imple-
mented in a declarative style, but applications are implemented in
imperative style as a sequence of protocol invocations.

2. THE LANGUAGE FOR PROTOCOLS
Our protocol DSL is a functional language, mimicking the style

of the pseudocode used to present protocols. A program in this
language states, which party computes which values from which
previously available values. Computations used several times can
be abstracted as functions.

The language allows to state only once similar computations per-
formed by different parties. Actually, this is the default mode and
each variable x in the program denotes a separate value at each
party. Defining x=f(y1,...,yn) causes each party to apply f to
its own values of y1,. . . ,yn and denote the result as x. To access
the value of x at a particular party no. i, one may write x from i.
In party i’s code, the pseudo-numbers Prev and Next denote the
parties no. (i− 1) and (i + 1) (modulo the number of parties). There
are specific syntactic constructs to state that certain computations
have to be made only by a subset of parties.

Fig. 1 gives the specification for multiplying numbers u, v ∈ Z2n ,
additively shared between three parties [2] (i.e. a private value x ∈

1

parties 3

def reshare (u : uint[n]) : uint[n] = {
let r = rnd (),

w = u - r + (r from Prev);
return w;

}

def mult (u : uint[n], v : uint[n]) : uint[n] = {
let u’ = reshare (u),

v’ = reshare (v),
w = u’ * v’ + u’ * (v’ from Prev) + (u’ from Prev) * v’;

return reshare (w);
}

u

-

u

-

u

-

v

-

v

-

v

-

$

+

$

+

$

+

** * **** **

$

+

$

+

$

+

+ ++

- --

$

+

$

+

$

+

w w w

-

Figure 1: Multiplication protocol and its DAG

Z2n is represented as each party i holding xi ∈ Z2n , satisfying x1 +

x2 + x3 ≡ x (mod 2n)). We see the similarity with Alg.s 1&2 in [3].
The type system of our DSL is inspired by Cryptol [7], and at its

core the type system is Hindley-Milner extended with constraints.
There is one basic type — bit — and one data type constructor
for arrays. uint[n] is a synonym for an array of n bits where n is
a type-level size variable. Size polymorphism allows the protocols
to be specified once for any input length. Similarly to Cryptol, our
types can be refined with linear constraints over type variables.

Integration with Sharemind.
The specified protocols are used to generate protocol implemen-

tations for the Sharemind platform. While the specifications have
been polymorphic in the bit-width of the arguments and the re-
sult, the Sharemind protocols work with bit-strings of fixed length.
Hence, together with our protocols we also specify, for which pro-
tocols we want the implementations to be generated, and what should
be the values of the type variables in the implementations. E.g.,
Sharemind currently has protocols for multiplying 8-, 16-, 32-, and
64-bit integers.

The protocols are first translated to an intermediate representa-
tion, described below, and then to implementations in C++. The
implementations make use of the features offered by the platform,
in particular the primitives for communicating between different
parties. The necessary communication between parties is derived
from the accesses of a party’s values from the code executed by
a different party; the communication is realized with the help of
Sharemind’s networking API, packing all values communicated at
the same round into a single, or a few messages of suitable length.
During the translation to the intermediate representation, all poly-
morphism is resolved, hence each compiled protocol is used with
values of a particular length and lengths of all exchanged messages
are known at compile-time.

3. ARITHMETIC CIRCUITS
Arithmetic circuits are the intermediate representation in our pro-

tocol compiler; this representation is used for optimizations. An
arithmetic circuit is a directed acyclic graph (DAG), where the ver-
tices are labeled with operations and the incoming edges of each
vertex are ordered. The input nodes of the circuit correspond to
the representation of the inputs to the ABB operation that this pro-
tocol implements; in case of protocol sets based on secret sharing,

each input is represented by a number of nodes equal to the number
of the protocol parties. Similarly, the output nodes correspond to
shares of the protocol output.

Communication between parties is expressed implicitly: each
node of the circuit is annotated with the executing party, and an
edge between nodes belonging to different parties denotes commu-
nication. Such representation makes both the aspects of computa-
tion (relationships between values) and communication (how many
bits are sent in how many rounds?) in the protocol easily accessible
for analyses and optimizations.

To compile the protocols specified in our protocol DSL to cir-
cuits, the loops have to be unrolled, function calls inlined, etc. The
type system and the compiler of the DSL ensure that loop counts
and function call depths (even for recursive functions) are known
during the compile time. If the control flow of a protocol requires
the knowledge of (public) data known only at runtime (e.g. the
length of an array), then this protocol cannot be fully specified in
the protocol DSL and the language of [1] has to be at least partially
used. The circuit corresponding to the multiplication protocol is
shown in the right of Fig. 1. Different parties are identified by dif-
ferent node shapes. A solid edge denotes communication. We see
that this protocol requires two rounds, because there are paths in
this graph that contain two solid edges.

The intermediate representation is used to optimize the proto-
cols. Due to the compositional nature of specification, the protocols
typically contain constants that can be folded, duplicate computa-
tions, etc. So far, we have implemented all optimizations analogous
to the ones reported in [6] for Boolean circuits (constant propaga-
tion, merging of identical nodes, dead code removal). But as our
circuits are much smaller (the biggest ones corresponding to pro-
tocols in [3] have tens of thousands of nodes), and the arithmetic
operations allow much more information about the computation to
be easily gleaned, we have also successfully run more complex op-
timizations. We can simplify certain arithmetic expressions (e.g.
linear combinations), also if communication is involved inbetween.
Interestingly, we can move certain computations from one party to
another, or even duplicate computations, if it results in the decrease
of communication (which is the bottleneck for current protocols
of Sharemind). In the multiplication protocol in Fig. 1, we can
reduce the number of rounds to 1 by duplicating the six addition
nodes and assigning them to different parties (duplicated “circles”
become “diamonds”, “diamonds” become “boxes” and “boxes” be-

2

come “circles”). This does not make a secure protocol insecure be-
cause it does not make the view of any party richer than it was. We
are currently developing a comprehensive library of optimizations
for such distributed arithmetic circuits.

We have tried out the optimizations on certain protocols described
in [3]. We have managed to reduce the amount of communica-
tion of the largest protocols by around 4% (7% when not consider-
ing randomness that could be predistributed). Also, the number of
rounds the protocols need is reduced by 1–2, compared to [3]. The
composition of protocols also creates many places where constant
propagation and merging are useful.

4. ACKNOWLEDGEMENTS
This work was supported by the European Social Fund through

the ICT Doctoral School programme, and by the European Re-
gional Development Fund through the Estonian Center of Excel-
lence in Computer Science, EXCS, and through the Software Tech-
nologies and Applications Competence Centre, STACC. It has also
received support from Estonian Research Council through project
PUT2.

5. REFERENCES
[1] D. Bogdanov, P. Laud, and J. Randmets. Domain-polymorphic

programming of privacy-preserving applications. Cryptology
ePrint Archive, Report 2013/371, 2013.
http://eprint.iacr.org/.

[2] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
S. Jajodia and J. López, editors, ESORICS, volume 5283 of
Lecture Notes in Computer Science, pages 192–206. Springer,
2008.

[3] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson.
High-performance secure multi-party computation for data
mining applications. Int. J. Inf. Sec., 11(6):403–418, 2012.

[4] I. Damgård and J. B. Nielsen. Universally composable
efficient multiparty computation from threshold homomorphic
encryption. In D. Boneh, editor, CRYPTO, volume 2729 of
Lecture Notes in Computer Science, pages 247–264. Springer,
2003.

[5] L. Kamm and J. Willemson. Secure Floating-Point Arithmetic
and Private Satellite Collision Analysis. 2013. Submitted.

[6] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure
computation with malicious adversaries. In Proceedings of the
21st USENIX conference on Security symposium, pages
285–300. USENIX Association, 2012.

[7] J. Lewis. Cryptol: specification, implementation and
verification of high-grade cryptographic applications. In
P. Ning, V. Atluri, V. D. Gligor, and H. Mantel, editors, FMSE,
page 41. ACM, 2007.

3

http://eprint.iacr.org/

	The Protocols of SHAREMIND
	The Language for Protocols
	Arithmetic Circuits
	Acknowledgements
	References

