
Assortment of combinatorial theorems
Discrete Mathematics, 5th lecture

Peeter Laud

Cybernetica AS

October 11th, 2012

Peeter Laud (Cybernetica) Assortment of combinatorial theorems October 11th, 2012 1 / 24



A number of slightly similar theorems

Given a structure (graph, matrix, p.o. set), we define two kinds of
objects on it:

1st kind — they connect something.

2nd kind — they separate something, or cover something.

Theorems state that the size of the smallest objects of the second
kind is equal to the number of “mutually independent” objects of the
first kind.
The proofs consist of two parts, “6” and “>”.

One part is usually much easier than the other one.
The following lecture slides contain only proofs (sketches) for the hard
directions.
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Recall: Flows and cuts

Network — directed graph G = (V ,E) with a source s ∈ V and a sink
t ∈ V , and a mapping ψ : E → R+.
Flow on (G, ψ) — mapping ϕ : E → R+, such that

∀e ∈ E : ϕ(e) 6 ψ(e);

∀v ∈ V\{s, t}:
−−−→
degϕ(v) =

←−−−
degϕ(v).

Value of flow ϕ is equal to
←−−−
degϕ(s) or

−−−→
degϕ(t).

Cut in (G, ψ) — a set of edges E′ ⊆ E, such that all paths from s to t
use some edge in E′.

Value of cut E′ is
∑

e∈E′ ψ(e).

Theorem (Ford and Fulkerson, 1962)
In a network, maximum value of flows and minimum value of cuts are
equal.
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Term ranks and covers of matrices

Let M be a m × n matrix with 0/1 entries.

A line of a matrix is its row or column.

A partial transversal is a selection of entries “1” in M, such that no two
of them lie on the same line.

The term rank of M is the maximum size of its partial transversals.

A cover of M is a set of its lines that contain all 1-s in M.

Theorem (König-Egerváry, 1931)
The term rank of a 0/1-matrix M is equal to the size of its minimum covers.
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Proof of König-Egerváry’s theorem

Easy direction: minimum cover must be at least the term rank. In the
other direction. . .

Let c be the term rank of M.
Define a network as follows:

Vertices: x1, . . . , xm, y1, . . . , yn,s,t .

Edges: s
1
−→ xi ; yj

1
−→ t ; xi

c+1
−−−→ yj (if Mij = 1)

In a maximal flow ϕ we have ∀e : ϕ(e) ∈ {0, 1}.

The value of ϕ is c.

In a corresponding minimum cut, there are edges

s
1
−→ xi1 , . . . , s

1
−→ xik , yj1

1
−→ t , . . . , yjl

1
−→ t , where k + l = c.

These select k rows and l columns that cover M.
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Matchings and coverings

Let G = (V ,E) be a simple graph.

Definition
A matching (kooskõla) is a set M ⊆ E, such that ∀v ∈ V : degM(v) 6 1.

Definition
A covering (kate) is a set V ⊆ V , such that each edge in E has at least one
end-point in C.
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Theorems of Hall and König

For S ⊆ V , let N(S) ⊆ V denote the neighbourhood of S — the set of
vertices that neighbour at least one vertex in S.
Let maximum matching / minimum cover denote the matching(s) / cover(s)
with maximum/minimum cardinality.

Theorem (Hall’s Marriage theorem, 1935)
Let G = (X ∪ Y ,E) be a bipartite graph with parts X and Y. G has a
matching M with ∀x ∈ X : degM(x) = 1 iff ∀S ⊆ X : |N(S)| > |S |.

Theorem (König’s theorem for matrices, 1931)
Let G = (X ∪ Y ,E) be a bipartite graph. Maximum matchings and
minimum covers in G have the same cardinality.
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Proof of König’s theorem

Given bipartite graph G = (X ∪ Y ,E), consider the adjacency matrix
of G.

Size: |X | × |Y |, rows indexed by X , columns indexed by Y .
Entry in position (u, v) equals 1 iff (u, v) ∈ E, otherwise it equals 0.

In this matrix
Partial transversals correspond to matchings in G;
Covers correspond to coverings in G.
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Proof of Hall’s theorem

Let G = (X ∪ Y ,E) be a bipartite graph satisfying Hall’s criterion.

Let C be a minimal covering for G.

If C is a cover then N(X\C) ⊆ Y ∩ C.

Thus |Y ∩ C | > |N(X\C)| > |X\C |.

Thus |C | = |X ∩ C |+ |Y ∩ C | > |X ∩ C |+ |X\C | = |X |.

Thus there is a matching of size at least |X |.
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Separating sets and disjoint paths

Definition
Let G = (V ,E) be a connected simple graph, u, v ∈ V , S ⊆ V\{u, v} and
F ⊆ E.

S is a (u, v)-separating (vertex) set if G\S has no paths from u to v.

F is a (u, v)-separating edge set if G − F has no paths from u to v.

Two paths from u to v are

vertex-disjoint if their only common vertices are u and v.

edge-disjoint if they have no common edges.

Theorem (Menger, 1929)
Maximum number of pairwise edge-/vertex-disjoint paths from u to v is
equal to the cardinality of minimum (u, v)-separating edge/vertex sets.

The graph can be directed or undirected, thus we have 4 theorems here.
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Proof of Menger’s theorem (edges, directed)

Turn G into network with source u and sink v.
Delete edges going into u or going out of v.
Give the capacity 1 to each edge.

(u, v)-separating edge set of size c ≡ cut of value c.

Integral flow of value c ≡ c edge-disjoint paths from u to v.
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Proof of Menger’s theorem (edge, undirected)

Turn G into network with source u and sink v.
Edges incident to u will be directed away from u.
Edges incident to v will be directed towards v.
Other edges are replaced with directed edges in both directions.
The capacity of each edge is 1.

(u, v)-separating edge set of size c ≡ cut of value c.

Integral flow of value c ≡ c edge-disjoint paths from u to v.
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Proof of Menger’s theorems (vertices)

Do the same as for edges, but also

Split each vertex w (except u and v) into two: win and wout, connected
by an edge.

Give capacity 1 to these edges. Give large capacities to all original
edges of G.
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Chains and antichains in partially ordered sets

Let (P,6) be a partially ordered set.

Definition
Q ⊆ P is a chain if ∀x, y ∈ Q : (x 6 y ∨ y 6 x).

Q ⊆ P is an antichain if ∀x, y ∈ Q : x , y ⇒ (x � y ∧ y � x).

Theorem (Dilworth, 1947)
If m is the maximum cardinality of antichains in P, then P can be
partitioned into m chains.
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Proof of Dilworth’s theorem

Consider |P | × |P | matrix M, rows and columns indexed by P
The entry (a, b) of M equals 1 iff a < b

A chain a1 < a2 < · · · < an gives us a partial transversal
{(aj , aj+1) |j ∈ {1, . . . , n − 1}} of size n − 1.
A partition of P to k chains gives us a partial transversal of size
|P | − k .
Conversely, take the partition of P to |P | 1-element chains. Also take
a partial transversal of size |P | − k .

Each “1” in it corresponds to a relation a < b that can be used to join
two chains.
Thus we get a partition of P into k chains.

Let m be minimal, such that P can be partitioned into m chains.
|P | −m is the term rank of M

There is a cover of M by |P | −m lines.
There are m elements with corresponding row and column not in that
cover.
These form an antichain in P.
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Doubly stochastic matrices

Definition
A square matrix with entries from R+ is doubly stochastic if each row and
each column of it sums up to 1.

Definition
A square matrix with entries from {0, 1} is a permutation matrix if each row
and each column of it contains exactly one 1.

Definition
A convex combination of objects x1, . . . , xk (supporting addition and
multiplication with reals) is any object of the form λ1x1 + · · ·+ λk xk , where
λi > 0 and λ1 + · · ·+ λk = 1.

Theorem (Birkhoff and von Neumann, 1946)
Any doubly stochastic matrix can be expressed as a convex combination
of permutation matrices.
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Proof of Birkhoff’s and von Neumann’s theorem

Let M be a doubly stochastic matrix of size n × n.
Consider a bipartite graph G = (X ∪̇ Y ,E), where

X = Y = {1, . . . , n}
There is an edge from i ∈ X to j ∈ Y iff Mij , 0.

G satisfies Hall’s criterion.
The entries in rows from any subset S ⊆ X sum up to |S |. It takes at
least |S | columns to contain these entries.

A matching covering all of X gives us a permutation σ, such that
(i, σ(i)) is a non-zero entry of M for all i.

Let Σ be the permutation matrix corresponding to σ.

Let ε be the minimum of these entries.

M = ε ·Σ + (1− ε) ·M′, where M′ is a doubly stochastic matrix with at
least one more zero entry.

We can do induction over the number of non-zero entries in M.
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The proofs we’ve done so far

True Ford-Fulkerson

König-Egerváry

KönigHall

Menger

DilworthBirkhoff - v.Neumann

Berge
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The proofs we’ll still do

True Ford-Fulkerson

König-Egerváry

KönigHall

Menger

DilworthBirkhoff - v.Neumann

Berge
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A direct proof for Hall’s theorem

Let G = (X ∪ Y ,E) be a bipartite graph satisfying Hall’s criterion.

If ∀x ∈ X : deg(x) = 1, then the matching is obvious.

Let x ∈ X be such that deg(x) > 2. Let (x, y1), (x, y2) ∈ E.

Assume that we can remove neither (x, y1) nor (x, y2) without
violating Hall’s criterion.

There are S1,S2 ⊆ X\{x}, such that

|N(Si) ∪ (N(x)\{yi})| < |Si |+ 1 .

Hence we get a contradiction:

|S1|+ |S2| > |N(S1) ∪ (N(x)\{y1})|+ |N(S2) ∪ (N(x)\{y2})| >∣∣∣N(S1) ∪ (N(x)\{y1}) ∪ N(S2) ∪ (N(x)\{y2})
∣∣∣ +

∣∣∣N(S1) ∩ N(S2)
∣∣∣ >

|N(S1∪S2∪{x})|+ |N(S1∩S2)| > |S1∪S2|+1+ |S1∩S2| = |S1|+ |S2|+1
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Dilworth⇒ Hall

Let G = (X ∪ Y ,E) be a bipartite graph satisfying Hall’s criterion.
Let P = (X , cupY ,6) be a partially ordered set:

x < y iff x ∈ X , y ∈ Y and (x, y) ∈ E

Y is an antichain in P.

If Z is any antichain in P, then N(Z ∩ X) ∩ (Z ∩ Y) = ∅. Hence

|Z | = |Z ∩ X |+ |Z ∩ Y | 6 |N(Z ∩ X)|+ |Z ∩ Y | 6 |Y | .

P can be partitioned to |Y | chains.

Each element of X will be in a chain together with an element of Y .
These give us the matching.
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Alternating paths

Let G = (V ,E) be a graph and M ⊆ E a matching in it.

Definition
An open path P in G is M-alternating (M-vahelduv) if the edges of P
alternatingly belong to M and E\M.

An alternating path P with endpoints x and y is M-augmenting
(M-laienev) if degM(x) = degM(y) = 0.

Theorem (Berge)
A matching M in graph G is maximal iff there are no M-augmenting paths
in G.
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Proof of Berge’s theorem

(⇒): If P is an M-augmenting path then M′ = (M\P) ∪ (P\M) is a
matching and |M′| = |M|+ 1.
(⇐): Let M be a non-maximal matching in G. Let M∗ be a matching
with |M∗| > |M|.
Consider the graph H = (V ,M ∪M∗).

∀v ∈ V : degH(v) > 2.
There are following kinds of connected components in H:

Isolated vertices.
Cycles (of even length).
Two vertices connected by an edge from M ∩M∗.
Paths, where edges from M and M∗ alternate.

There must be a connected component having more edges from M∗

than from M.
Only possibility: path of odd length, starting and ending with an edge
from M∗.
This is an M-augmenting path.
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Berge⇒ Hall

Let G = (X ∪ Y ,E) be a bipartite graph. Let M be a maximum
matching in it. Let x ∈ X be uncovered by M.

Construct all possible M-alterating paths starting from x.

Let S ⊂ X be the set of vertices in X on these paths (incl. x).

Let T ⊂ Y be the set of vertices in Y on these paths.
We have

N(S) = T , because any edge from some u ∈ S can continue an
M-alternating path.
|S\{x}| = |T |. The edges in M give a bijection between S\{x} and T .

The non-existence of M-augmenting paths implies that any M-alternating
path ending in Y can be continued.

Hence G does not satisfy Hall’s criterion.
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Hall⇒ König-Egerváry

Let M be a m × n 0/1-matrix. Let its minimal cover consist of rows with
indices in R and columns with indices in C.

Let GR = (R ∪ C ,ER), where ER = {(r , c) |Mrc = 1}.

Let S ⊆ R. Then |N(S)| > S, as otherwise the rows in S could be
replaced with the smaller number of columns in N(S), still covering all
1-s in M.

Thus M has a partial transversal in rows R and columns outside of C,
such that its size is |R |.

Similarly, let GC = (C ∪ R ,EC), where EC = {(c, r) |Mrc = 1}.

There’s a partial transversal in columns C and rows outside of R,
such that its size is |C |.

Joining these partial transversals, we get a partial transversal of size
|R |+ |C |.
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