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Two general rules on counting

|X1 × X2 × · · · × Xk | = |X1| · |X2| · · · |Xk |

|X1 ∪̇ X2 ∪̇ · · · ∪̇ Xk | = |X1|+ |X2|+ · · ·+ |Xk |
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Permutations

Definition
Let X be a set, |X | = n. A sequence (x1, . . . , xk ) is a permutation of X , if

x1, . . . , xk ∈ X ;

if i , j then xi , xj .

Definition
Let r ∈ C, k ∈ N. The k -th falling factorial power of r (Arvu r kahanev
k-faktoriaal) is rk = r · (r − 1) · · · (r − k + 1).

I’d rather avoid the notation (r)k to reduce overloading.

Theorem
Let P(n,m) be the number of permutations of size m of a set of cardinality
n. Then P(n,m) = nm.
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Combinations

Definition (
n
m

)
= |{Y ⊆ {1, . . . , n} | |Y | = m}|

Here m, n ∈ N = {0, 1, 2, . . .}, m 6 n.

Theorem (
n
m

)
=

nm

m!
=

n!
m!(n −m)!

Also, if r , k ∈ N then rk = r!/(r − k)!.
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Pascal’s triangle: values of
(

n
m

)
Theorem (

n
m

)
=

(
n − 1

m

)
+

(
n − 1
m − 1

)
if n,m ∈ N\{0}, n > m

n\m 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

Exercise: extend Pascal’s triangle to arbitrary n ∈ N,m ∈ Z.
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Generalizing
(

n
m

)

(
n
m

)
=

nm

m! , if n ∈ N,m ∈ N

0, if n ∈ N,m ∈ Z\N

rm is defined for any r ∈ C.

So we could define(
r
m

)
=

 rm

m! , if n ∈ C,m ∈ N

0, if n ∈ C,m ∈ Z\N

Does the Pascal’s triangle identity still hold? It does if m 6 0. Otherwise. . .
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Polynomial interpolation

Theorem
For any (a0, b0), . . . , (an, bn) ∈ C

2 with ai mutually different, there is a
unique polynomial f of degree at most n, such that
∀i ∈ {0, . . . , n} : f(ai) = bi .

Proof.
Existence.

Pi(x) =
n∏

j=0
j,i

x − aj

ai − aj

is a polynomial of degree n, such that Pi(ai) = 1 and Pi(aj) = 0, if j , i.
Take f =

∑n
i=0 biPi .

Uniqueness. If f and f ′ are both such polynomials, then (f − f ′) is a
polynomial of degree 6 n, but with > (n + 1) roots. Hence it is constantly
0. �
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Equality of polynomials

Corollary
If two polynomials of degree at most m agree on at least m + 1 different
points, then they agree on the whole C.

(
x
m

)
is a polynomial of degree at most m.(

x−1
m

)
+

(
x−1
m−1

)
is a polynomial of degree at most m.

They agree whenever x ∈ N\{0}.

Hence (
r
m

)
=

(
r − 1

m

)
+

(
r − 1
m − 1

)
for any r ∈ C,m ∈ Z
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Extended Pascal’s triangle

n\m −2 −1 0 1 2 3 4 5 6 7 8
−4 0 0 1 −4 10 −20 35 −56 84 −120 165
−3 0 0 1 −3 6 −10 15 −21 28 −36 45
−2 0 0 1 −2 3 −4 5 −6 7 −8 9
−1 0 0 1 −1 1 −1 1 −1 1 −1 1

0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
2 0 0 1 2 1 0 0 0 0 0 0
3 0 0 1 3 3 1 0 0 0 0 0
4 0 0 1 4 6 4 1 0 0 0 0
5 0 0 1 5 10 10 5 1 0 0 0
6 0 0 1 6 15 20 15 6 1 0 0
7 0 0 1 7 21 35 35 21 7 1 0
8 0 0 1 8 28 56 70 56 28 8 1
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Extended Pascal’s triangle

Theorem (
r
k

)
= (−1)k

(
k − r − 1

k

)
r ∈ C, k ∈ Z

Lemma

rk = (−1)k (k − r − 1)k .

The theorem holds if k < 0. If k > 0, then use
(

r
k

)
= rk/k ! and the lemma.
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Newton’s binomial formula

Theorem

(x + y)n =
n∑

m=0

(
n
m

)
xmyn−m x, y ∈ C, n ∈ N

Proof.

(x + y)n = (x + y) · (x + y) · · · (x + y)︸                               ︷︷                               ︸
n

When opening the parentheses, there are
(

n
m

)
ways to pick m times x and

(n −m) times y. �

Corollary(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= 2n(

n
0

)
−

(
n
1

)
± · · ·+ (−1)n

(
n
n

)
= 0, if n , 0
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Generalization of Newton’s binomial formula

Theorem

(x + y)r =
∞∑

m=0

(
r
m

)
xmy r−m x, y, r ∈ C, |x/y | < 1

|x/y | < 1 is necessary for the absolute convergence of the sum.
Cannot use polynomial argument to go from n to r because the sum
is not a polynomial.

Theorem is equivalent to

(1 + z)r =
∞∑

m=0

(
r
m

)
zm |z| < 1 .

Absolute convergence of the sum is not too hard to show.

If m is large then
∣∣∣∣( r

m+1

)
zm+1

∣∣∣∣ ≈ |z| · ∣∣∣∣( r
m

)
zm

∣∣∣∣.
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Generalization of Newton’s binomial formula

Theorem

(x + y)r =
∞∑

m=−∞

(
r
m

)
xmy r−m x, y, r ∈ C, |x/y | < 1

|x/y | < 1 is necessary for the absolute convergence of the sum.
Cannot use polynomial argument to go from n to r because the sum
is not a polynomial.

Theorem is equivalent to

(1 + z)r =
∞∑

m=0

(
r
m

)
zm |z| < 1 .

Absolute convergence of the sum is not too hard to show.

If m is large then
∣∣∣∣( r

m+1

)
zm+1

∣∣∣∣ ≈ |z| · ∣∣∣∣( r
m

)
zm

∣∣∣∣.
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Proof of the generalized Newton’s binomial formula

Let f(z) = (1 + z)r .
Note that f ′(z) = r(1 + z)r−1, f ′′(z) = r(r − 1)(1 + z)r−2

In general, f (m)(z) = rm(1 − z)r−m.

Expand f as Maclaurin series:

f(z) =
∞∑

m=0

f (m)(0)
m!

zm =
∞∑

m=0

rm(1 − 0)r−m

m!
zm =

∞∑
m=0

(
r
m

)
zm
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Many more simple identities

Identities can be proved using combinatorial or algebraic arguments.(
r
m

)
=

(
r

r−m

)
∑n

m=0 (
r+m

m ) = (r+n+1
n )∑n

k=0 (
k
m) = (n+1

m+1)(
r
k

)
= r

k

(
r−1
k−1

)(
r+s
m

)
=

∑m
k=0

(
r
k

)(
s

m−k

)
(Vandermonde identity)(

r
m

)(
m
k

)
=

(
r
k

)(
r−k
m−k

)
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Important special case of Newton’s binomial formula

1
(1 − z)n+1 =

∞∑
m=0

(
−n − 1

m

)
(−z)m

=
∞∑

m=0

(−1)m
(
m + n + 1 − 1

m

)
(−1)mzm

=
∞∑

m=0

(
m + n

m

)
zm

Multiplying both sides by zn gives

zn

(1 − z)n+1 =
∞∑

m=−n

(
m + n

m

)
zm+n

=
∞∑

k=0

(
k

k − n

)
zk =

∞∑
k=0

(
k
n

)
zk

Peeter Laud (Cybernetica) Discrete Mathematics, 9th lecture November 8th, 2012 15 / 82



Permutations with repetitions

Definition
A multiset (or bag) is a pair (X , µ), where X is a set and µ : X → N\{0}.

Think of µ(x) as the number of times x appears in X .
The cardinality of (X , µ) is

∑
x∈X µ(x).

Definition
A permutation of a multiset (X , µ) is a sequence (x1, . . . , xm), where

∀i : xi ∈ X ;

∀x ∈ X : the number of occurrences of x in (x1, . . . , xm) is at most
µ(x).

Theorem
Let X = {x1, . . . , xk }, µ(xi) = mi , n = m1 + . . .+ mk . The number of
permutations of multiset (X , µ) of length n is

(
n

m1,m2,...,mk

)
= n!

m1!·m2!···mk !
.

Peeter Laud (Cybernetica) Discrete Mathematics, 9th lecture November 8th, 2012 16 / 82



Properties of multinomial coefficients

Theorem (Newton’s multinomial formula)

(x1 + · · ·+ xk )
n =

∑
m1,...,mk∈{0,...,n}
m1+···+mk=n

(
n

m1, . . . ,mk

)
xm1

1 · · · x
mk
k

Theorem
Let n = m1 + · · ·+ mk(

n
m1, . . . ,mk

)
=

(
n

m1

)
·

(
n −m1

m2

)
· · ·

(
n −m1 − · · · −mk−2

mk−1

)
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Combinations with repetitions

Let |X | = n. How many multisets (X ′, µ) of cardinality m exist, if X ′ ⊆ X?
Denote by F(n,m).

Theorem

F(n,m) =

(
n + m − 1

m

)

Theorem

F(n,m) = F(n − 1,m) + F(n,m − 1)
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Inversion

Theorem
Let f , g : N→ C.

g(n) =
n∑

k=0

(
n
k

)
(−1)k f(k)⇔ f(n) =

n∑
k=0

(
n
k

)
(−1)k g(k)
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Permutations fixing a number of points

How many permutations π of n elements are there, such that π(x) = x for
exactly k different x ∈ {1, . . . , n}?

Let h(n, k) be that number. We have
n! =

∑n
k=0 h(n, k)

h(n, k) = (n
k)h(n − k , 0).

Denote Di = h(i, 0)

n! =
n∑

k=0

(
n
k

)
Dn−k =

n∑
k=0

(
n

n − k

)
Dn−k =

n∑
k=0

(
n
k

)
Dk

Dn = (−1)n
n∑

k=0

(
n
k

)
(−1)k k ! =

n∑
k=0

(−1)n+k n!
(n − k)!

= n!
n∑

k=0

(−1)k

k !
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Generating functions

Definition
Let (an)n∈N be a sequence (with entries in C). The (ordinary) generating
function for (an)n∈N is A(z) =

∑∞
n=0 anzn.

The function (sum) A may be viewed in two ways
As an analytic function (converging if |z| is sufficiently small)
as a formal sum, i.e. the sequence a0, a1, a2, . . .

The first view introduces a lot of operations, simplifications, etc. on
generating functions.

Addition, multiplication, composition, differentiation, integration, . . .
Relations between them.

They remain valid also for the second view.
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Example 1

Evaluate S =
∑k

i=0(−1)i
(

i
n

)(
m

k−i

)
.

Let G(z) =
∑∞

i=0

(
i
n

)
z i = zn

(1−z)n+1 .

Let H(z) =
∑∞

i=0

(
m
i

)
(−1)k+iz i = (−1)k (1 − z)m.

The product of two sums is ∞∑
i=0

(
i
n

)
z i

 ·
 ∞∑

i=0

(
m
i

)
(−1)m+iz i

 = ∞∑
k=0

 k∑
i=0

(
i
n

)(
m

k − i

)
(−1)i

 zk

when grouped by powers of z.

G(z) · H(z) = zn(−1)k · (1 − z)m−n−1 = zn ∑∞
i=0

(
m−n−1

i

)
(−1)i+k z i

Equating coefficients, we get S = (−1)n
(
m−n−1

k−n

)
.
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Example 2

Solve the recurrence an = 2an−1 − an−2 +
(
m+n

m

)
with a0 = 1, a1 = m.

The conditions as a single equation valid for all n ∈ N:

an = 2an−1 − an−2 +

(
m + n

m

)
− 3 · [n = 1]

here a−1 = a−2 = 0, [true] = 1 and [false] = 0.
Let A(z) =

∑∞
n=0 anzn.

Multiply both sides of recurrence with zn. Add over all n.

A(z) =
∞∑

n=0

anzn = 2
∞∑

n=0

an−1zn −

∞∑
n=0

an−2zn +
∞∑

n=0

(
m + n

m

)
zn − 3z

= 2z
∞∑

n=0

anzn − z2
∞∑

n=0

anzn +
1

(1 − z)m+1 − 3z

= (2z − z2)A(z) +
1

(1 − z)m+1 − 3z
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Example 2 - cont.

Solve for A(z)

A(z) =
1

(1 − z)m+3 −
3z

(1 − z)2 =
∞∑

n=0

(
n + m + 2

m + 2

)
zn −

∞∑
n=0

3(n + 1)zn+1

Hence an =
(
n+m+2

m+2

)
− 3n =

(
n+m+2

n

)
− 3n.
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Example 3

Solve the recurrence an = 1 +
∑n−1

i=0 ai , where a0 = 1.

The recurrence actually also determines a0 (empty sum ≡ 0).

Let A(z) =
∑∞

n=0 anzn.

Multiply both sides of recurrence with zn. Add over all n.

A(z) =
∞∑

n=0

anzn =
∞∑

n=0

(
1 +

n−1∑
i=0

ai

)
zn =

( ∞∑
n=0

zn
)
+

( ∞∑
i=0

ai

∞∑
n=i+1

zn
)

=
1

1 − z
+

( ∞∑
i=0

aiz i
)
·
( ∞∑
n=1

zn
)

=
1

1 − z
+ A(z)

z
1 − z

Hence A(z) = 1
1−2z =

∑∞
n=0 2nzn.

an = 2n
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Example 4

How many ways are there to tile a 2 × n rectangle with 2 × 1 dominoes,
such that there are m “horizontal” dominoes?

Let hn,m be the correct number.
hn,0 = 1. h0,m = 0 if m > 0.
h2n,2n = 1. h2n+1,2n = n + 1.
hn,2m+1 = 0. hn,m = 0 if m > n.

hn,m = hn−1,m + hn−2,m−2 if n > 2, m > 2.

Try to write equation for hn,m that combines those and is valid for all
m, n ∈ N, assuming hn,m = 0 if n < 0 or m < 0.

hn,m = hn−1,m + hn−2,m−2 + [n = 0 ∧m = 0]

multiply both sides with znwm and sum over all n and m.
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Example 4 (cont.)

H(z,w) =
∞∑

m,n=0

hn,mznwm =
∞∑

m,n=0

hn−1,mznwm +
∞∑

m,n=0

hn−2,m−2znwm + 1

= zH(z,w) + z2w2H(z,w) + 1

H(z,w) =
1

1 − z − z2w2 =
∞∑

k=0

(z + z2w2)k =
∞∑

k=0

k∑
i=0

(
k
i

)
z2k−iw2(k−i)

=
∞∑

n=0

∞∑
m=0

[m is even]
(
n −m/2
n −m

)
znwm

Hence the number of tilings is
(
n−m/2
n−m

)
=

(
n−m/2

m/2

)
(only if m is even).
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Example 5

How many ways are there to tile a 3 × n rectangle with 2 × 1 dominoes,
such that there are m “horizontal” dominoes?

Let un,m be the correct number.

In general: un,m = un−2,m−3 + 2vn,m.

vn,m — number of ways to tile a 3 × (n − 1) rectangle plus an extra
corner with dominoes, including m horizontal.

vn,m = un−2,m−1 + vn−2,m−3.
Corner cases:

u2n+1,m = v2n+1,m = 0
u0,0 = 1. u0,m = 0 if m > 0. v0,m = 0.

un,m = un−2,m−3 + 2vn,m + [n = 0 ∧m = 0]

vn,m = un−2,m−1 + vn−2,m−3

Let U(z,w) =
∑∞

m,n=0 un,mznwm and V(z,w) =
∑∞

m,n=0 vn,mznwm.
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Example 5 (cont.)

U(z,w) =
∞∑

m,n=0

un−2,m−3znwm + 2
∞∑

m,n=0

vn,mznwm + 1

= z2w3U(z,w) + 2V(z,w) + 1

V(z,w) =
∞∑

m,n=0

un−2,m−1znwm +
∞∑

m,n=0

vn−2,m−3znwm

= z2wU(z,w) + z2w3V(z,w)

Solving for U gives

U(z,w) =
1 − z2w3

(1 − z2w3)2 − 2z2w

this can be manipulated as. . .
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Example 5 (cont.)

U(z,w) =
1 − z2w3

(1 − z2w3)2 − 2z2w
=

(1 − z2w3)−1

1 − 2z2w(1 − z2w3)−2

=
1

1 − z2w3

∞∑
k=0

(
2z2w

(1 − z2w3)2

)k

=
∞∑

k=0

2k z2k wk

(1 − z2w3)2k+1

=
∞∑

k=0

∞∑
i=0

(
2k + i

2k

)
2k z2k+2iwk+3i

=
∞∑

n,m=0

[n and m − n/2 are even]
(
(5n − 2m)/4
(3n − 2m)/2

)
2(3n−2m)/4znwm
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Example 6

A permutation π is an involution if π = π−1. How many involutions of n
elements are there?

Let an be the correct number. Then an = an−1 +(n − 1)an−2 + [n = 0].

Multiply both sides with zn, sum over n.

A(z) =
∞∑

n=0

anzn =
∞∑

n=0

an−1zn +
∞∑

n=0

(n − 1)an−2zn + 1

= zA(z) + z2 + z3
∞∑

n=1

(n + 1)anzn−1 + 1

= zA(z) = z2 + z3A ′(z) + z2(A(z) − 1) + 1

= (z + z2)A(z) + z3A ′(z) + 1

−
1
z3 = A ′(z) +

z2 + z − 1
z3 A(z)
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Linear 1st order inhomogeneous diff. eq.-s
http://en.wikipedia.org/wiki/Linear differential equation

General form:
y′ + f(x)y = g(x)

General solution:

y = e−a(x)
(∫

g(x)ea(x) dx + C
)

where a(x) =
∫

f(x) dx

It’s probably hard to read out the coefficients of zn from this expression
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Example 6’

Let bn = an/n!. Then bn = (bn−1 + bn−2)/n if n > 0.

∞∑
n=1

nbnzn =
∞∑

n=1

bn−1zn +
∞∑

n=1

bn−2zn

zB′(z) = zB(z) + z2B(z)

dB
dz

= (1 + z)B

∫

dB
B

=

∫

(1 + z) dz

ln B = z + z2/2 + C

B(z) = ez+z2/2

Here C = 0 because ln B(0) = ln b0 = ln 1 = 0.

Peeter Laud (Cybernetica) Discrete Mathematics, 10th–11th lecture November 22nd–29th, 2012 34 / 82



Example 6’

Let bn = an/n!. Then bn = (bn−1 + bn−2)/n if n > 0.

∞∑
n=1

nbnzn =
∞∑

n=1

bn−1zn +
∞∑

n=1

bn−2zn

z

B′(z) =

z

B(z) + z

2

B(z)

dB
dz

= (1 + z)B

∫

dB
B

=

∫

(1 + z) dz

ln B = z + z2/2 + C

B(z) = ez+z2/2

Here C = 0 because ln B(0) = ln b0 = ln 1 = 0.
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Example 6’ (cont.)

ez =
∑∞

i=0 z i/i!.

ez+z2/2 =
∞∑

n=0

1
n!
(z + z/2)n =

∞∑
n=0

∞∑
k=n

1
2k n!

(
n
k

)
zn+k

=
∞∑

m=0

∞∑
n=dm/2e

1
2m−nn!

(
n

m − n

)
zm

[zn]B(z) =
n∑

i=dn/2e

1
2n−i i!

(
i

n − i

)

an = n![zn]B(z) =
n∑

i=dn/2e

ni

2n−i(2i − n)!
=

n∑
i=dn/2e

(
n
i

)
in−i

2n−i

The last sum could be summed from −∞ to ∞.
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Example 7

How many legal strings of n pairs of parentheses are there?

Let cn be the number. c0 = 1.

By considering the shortest non-empty prefixes of legal strings that
are themselves legal, we get cn =

∑n
k=1 ck−1cn−k + [n = 0].

C(z) =
∞∑

n=0

cnzn =
∞∑

n=0

( n∑
k=1

ck−1cn−k

)
zn + 1 = z(C(z))2 + 1

C(z) =
1 ±
√

1 − 4z
2z

At the point z = 0, the numerator should be 0, because C(0) = c0 is finite.
Hence C(z) = (1 −

√
1 − 4z)/2z.
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Example 7 (cont.)

√
1 − 4z =

∞∑
n=0

(
1/2
n

)
(−4)nzn = 1 − 4z

∞∑
n=1

1
2n

(
−1/2
n − 1

)
(−4)n−1zn−1

C(z) =
∞∑

n=0

1
n + 1

(
−1/2

n

)
(−4)nzn =

∞∑
n=0

(
2n
n

)
zn

n + 1

because(
−1/2

n

)
=

(−1/2) · (−3/2) · · · (−(2n − 1)/2)
n!

=

(
−

1
2

)n 1 · 3 · · · (2n − 1)
n!

=

(
−

1
4

)n 1 · 3 · · · (2n − 1)
n!

·
2 · 4 · · · (2n)

n!
=

(
−

1
4

)n (2n)!
n! · n!

=

(
−

1
4

)n (
2n
n

)
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Example 8

Fibonacci numbers: f0 = 0, f1 = 1, fn = fn−1 + fn−2.

Generating function: F(z) = z/(1 − z − z2).

Show that f0 + f1 + · · ·+ fn = fn+2 − 1.

GF of the LHS: F(z)/(1 − z).

GF of the RHS: (F(z) − z)/z2 − 1/(1 − z).

These GFs are equal.

Peeter Laud (Cybernetica) Discrete Mathematics, 10th–11th lecture November 22nd–29th, 2012 38 / 82



Formal power series

Definition
A formal power series is a sequence A = (an)n∈N, of complex numbers.
A is polynomial if it has finite number of non-zero entries.

Think of A as a sum A(z) =
∑∞

n=0 anzn.
Denote an also by [zn]A(z).

Definition
Operations with formal power series:

[zn](A + B)(z) = [zn]A(z) + [zn]B(z)

[zn](kA)(z) = k · [zn]A(z)

[zn](A · B)(z) =
n∑

i=0

[z i]A(z) · [zn−i]B(z)

Ak = A · A · · ·A︸       ︷︷       ︸
k
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More operations

Reciprocal

A−1 is a FPS, such that A · A−1 = A−1 · A = 1. It exists iff [z0]A(z) , 0.

Composition

A ◦ B =
∞∑

n=0

[zn]A(z) · Bn

It is well-defined if A is polynomial, or [z0]B(z) = 0.
Exercise. Define A r , where r ∈ C.

Differentiation and integration

[zn]A ′(z) = (n + 1) · [zn+1]A(z)

[zn]

∫
A(z) =

1
n
[zn−1]A(z)
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Sum of a subseries

Find
∑∞

n=0 rn
(
m
n

)
.

Answer: (1 + r)m.

Find
∑∞

n=0 r2n
(

m
2n

)
.

I.e. we want to take every second component of the previous sum.

If A(z) =
∞∑

n=0

anzn, then A(z) + A(−z) = 2
∞∑

n=0

a2nz2n .

Answer:
(
(1 + r)m + (1 − r)m

)
/2.

Find
∑∞

n=0 r3n
(

m
3n

)
.
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Taking every third element

1n + (−1)n

2
=

1, if n is even

0, if n is odd

1n + ωn + ω2n

3
=

1, if n is divisible by 3

0, if n is not divisible by 3

where ω = (−1 +
√

3i)/2. Then ω2 = (−1 −
√

3i)/2.
Hence

3
∞∑

n=0

a3nz3n = A(z) + A(ωz) + A(ω2z)

∞∑
n=0

r3n
(
m
3n

)
=

(1 + r)m + (1 + ωr)m + (1 + ω2r)m

3
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An interesting identity

Taking r = −1 in the previous identity gives us

∞∑
n=0

(−1)n
(
m
3n

)
=

∞∑
n=0

(−1)3n
(
m
3n

)
=

(
(1 − ω)m + (1 − ω2)m

)
/3

=
1
3

3 −
√

3i
2

m

+

3 +
√

3i
2

m
=

(
√

3)m

3

(
(cos 30◦ − i sin 30◦)m + (cos 30◦ + i sin 30◦)m

)
= 2 · 3m/2−1 cos(m · 30◦)
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Inversion again

Let (fn)n∈N and (gn)n∈N be sequences. Then

gn =
n∑

k=0

(
n
k

)
(−1)k fk ⇔ fn =

n∑
k=0

(
n
k

)
(−1)k gk

Let F ,G be corresponding generating functions. Then

G(z) =
∞∑

n=0

gnzn =
∞∑

n=0

n∑
k=0

(
n
k

)
(−1)k fk zn

=
∞∑

k=0

(−1)k fk
∞∑

n=k

(
n
k

)
zn =

∞∑
k=0

(−1)k fk zk 1
(1 − z)k+1

=
1

1 − z
F

(
−z

1 − z

)
Inversion states: G(z) = F(−z/(1 − z))/(1 − z) iff
F(z) = G(−z/(1 − z))/(1 − z).
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Inversion with exponential generating functions

Let F(z) =
∑∞

n=0 fn zn

n! and G(z) =
∑∞

n=0 gn
zn

n! be exponential generating
functions of (fn)n∈N and (gn)n∈N. Then

G(z) =
∞∑

n=0

gnzn

n!
=

∞∑
n=0

n∑
k=0

(
n
k

)
(−1)k fk zn

n!

=
∞∑

k=0

∞∑
n=k

(−1)k fk zn

k !(n − k)!
=

∞∑
k=0

∞∑
n=0

(−1)k fk zn+k

k !n!

=

 ∞∑
k=0

fk
(−z)k

k !


 ∞∑

n=0

zn

n!

 = ezF(−z)

Inversion states: G(z) = ezF(−z) iff F(z) = ezG(−z).
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Exponential generating functions

Formally: sequences of integers (an)n∈N.

Interpreted as formal sums A(z) =
∑∞

n=0 anzn/n!.

Denote [zn/n!]A(z) = an.

Exercise. What are

[zn/n!](A + B)(z),

[zn/n!](A · B)(z),

[zn/n!]A ′(z)?
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Answers to the exercise

[
zn

n!

]
(A + B)(z) =

[
zn

n!

]
A(z) +

[
zn

n!

]
B(z)[

zn

n!

]
(A · B)(z) =

n∑
k=0

(
n
k

) [
zk

k !

]
A(z) ·

[
zn−k

(n − k)!

]
B(z)[

zn

n!

]
A ′(z) =

[
zn+1

(n + 1)!

]
A(z)
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Example: Exponential generating function for Fibonacci
numbers

fn = fn−1 + fn−2 + [n = 1]. Let F(z) =
∑∞

n=0 fnzn/n!.

F(z) =
∞∑

n=0

fn
zn

n!
=

∞∑
n=0

fn−1
zn

n!
+
∞∑

n=0

fn−2
zn

n!
+ x

F ′′(z) =
∞∑

n=0

fn+1
zn

n!
+
∞∑

n=0

fn
zn

n!
= F ′(z) + F(z)

or F ′′ − F ′ − F = 0.
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Linear homogeneous diff. eq.s with constant coeff.s
http://en.wikipedia.org/wiki/Linear differential equation

Let the solutions of

xn + a1xn−1 + · · ·+ an−1x + an = 0

be c1, . . . ck with multiplicities r1, . . . , rk (then r1 + · · ·+ rk = n).

Then the solutions of

y(n) + a1y(n−1) + · · ·+ an−1y′ + any = 0

are linear combinations of functions of the form

x tecjx (j ∈ {1, . . . , k }, t ∈ {0, . . . , rj − 1}) .
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EGF for Fibonacci numbers (cont.)

x2 − x − 1 = (x − φ)(x − φ), φ, φ =
1 ±
√

5
2

F(z) = C1eφz + C2eφz

Initial conditions 0 = f0 = F(0) and 1 = f1 = F ′(0) give us C1 = 1/
√

5 and
C2 = −1/

√
5.

F(z) =
eφz − eφz

√
5[

zn

n!

]
F(z) =

1
√

5
(φn − φn)
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Proving an identity of Fibonacci numbers

n∑
i=0

fi

(
n
i

)
= f2n

(Reimo Palm, Diskreetse Matemaatika Elemendid, Ex. IV-10)
LHS equals [zn/n!]F(z) · ez .

ez is the EGF of (1, 1, 1, . . .)

F(z)ez =
e(φ+1)z − e(φ+1)z

√
5

=
eφ

2z − eφ
2z

√
5[

zn

n!

]
F(z)ez =

1
√

5
(φ2n − φ2n) = f2n

Peeter Laud (Cybernetica) Discrete Mathematics, 10th–11th lecture November 22nd–29th, 2012 51 / 82



Objects with a number of properties

Let X be a set. Let there be r predicates P1, . . . ,Pr given on X . Let

pC , where C ⊆ {1, . . . , r} be the number of elements satisfying all Pi

for i ∈ C;

pn =
∑
|C |=n pC ;

qC , where C ⊆ {1, . . . , r} be the number of elements satisfying all Pi

for i ∈ C and none of Pj for j < C;

qn =
∑
|C |=n qC be the number of elements satisfying exactly n

predicates.

pC =
∑

C′⊇C

qC′

pn =
∑
|C |=n

∑
C′⊇C

qC′ =
r∑

k=n

(
k
n

) ∑
|C′ |=k

qC′ =
r∑

k=n

(
k
n

)
qk

Let P,Q be ordinary GF-s of (pn)n∈N and (qn)n∈N.
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Principle of inclusion-exclusion (p.i.e)
elimineerimismeetod

P(z) =
r∑

n=0

pnzn =
r∑

n=0

r∑
k=n

(
k
n

)
qk zn =

r∑
k=0

qk

k∑
n=0

(
k
n

)
zn =

k∑
n=0

qk (1 + z)k

= Q(z + 1)

The number of objects with no properties is

q0 = Q(0) = P(−1) =
r∑

n=0

(−1)npn

The number of objects with exactly m properties is

qm =
Q(m)(0)

m!
=

P(m)(−1)
m!

=
r∑

n=m

(−1)n−m nm

m!
pn =

r∑
n=m

(−1)n−m
(
n
m

)
pn
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Number of surjective functions

How many surjective functions are there from {1, . . . , s} to {1, . . . , t}?

X — all functions from {1, . . . , s} to {1, . . . , t}?

Define Pi by Pi(f)⇔ @j : f(j) = i. (i ∈ {1, . . . , t})

pC = (t − |C |)s .

pn =
(

t
n

)
(t − n)s .

The number of surjective functions is

q0 =
t∑

n=0

(−1)n
(
t
n

)
(t − n)s

The number of partitions of s-element set into t parts is{
s
t

}
=

q0

t!
=

t∑
n=0

(−1)n(t − n)s

n!(t − n)!
=

t∑
n=0

(−1)t−nns

n!(t − n)!

(Stirling numbers of second kind)
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Stirling numbers of second kind

“Mixed” generating function:

S(z,w) =
∞∑

s,t=0

{
s
t

}
zs

s!
w t =

∑
s,t=0

t∑
n=0

(−1)t−nns

n!(t − n)!
t!
t!

zs

s!
w t

=
∞∑

t=0

(−w)t

t!

t∑
n=0

(−1)n
(
t
n

) ∞∑
s=0

(nz)s

s!

=
∞∑

t=0

(−w)t

t!

t∑
n=0

(−1)n
(
t
n

)
enz =

∞∑
t=0

(−w)t

t!
(1 − ez)t

= ew(ez−1)

We can find a recurrent relation from it:
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Stirling numbers of second kind

ew(ez−1) =
∞∑

s,t=0

{
s
t

}
zs

s!
w t

Take logarithm of both sides

w(ez − 1) = ln

 ∞∑
s,t=0

{
s
t

}
zs

s!
w t


Differentiate with respect to z

wez =

∑∞
s=1

∑∞
t=0

{
s
t

}
zs−1

(s−1)!w
t∑∞

s,t=0

{
s
t

}
zs

s!w
t

=

∑∞
s,t=0

{
s+1

t

}
zs

s!w
t∑∞

s,t=0

{
s
t

}
zs

s!w
t

Clear the fractions
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Stirling numbers of second kind

∞∑
s,t=0

{
s
t

}
zs

s!
w t+1ez =

∞∑
s,t=0

{
s + 1

t

}
zs

s!
w t

[
zs

s!
w t+1

]
LHS =

s∑
n=0

(
s
n

){
n
t

}
[
zs

s!
w t+1

]
RHS =

{
s + 1
t + 1

}

We have found
{
s+1
t+1

}
=

∑s
n=0

(
s
n

){
n
t

}
.

. . . which has a nice combinatorial interpretation.

Exercise. Show that
{
s
t

}
= t

{
s−1

t

}
+

{
s−1
t−1

}
.
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Connected labeled graphs

How many connected labeled graphs with n vertices are there?
Let dn be the answer. Let hn be the number of labeled graphs with n
vertices.

hn = 2(n
2).

Let D(z) and H(z) be the respective EGF-s.

By considering the connected component of the vertex labeled n, we
get

hn =
n∑

k=0

(
n − 1
k − 1

)
dk hn−k

nhn =
n∑

k=0

(
n
k

)
kdk hn−k (because

(
n
k

)
=

n
k

(
n − 1
k − 1

)
)

This gives us recursive formula for dn. Let us also find the generating
function.
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EGFs of nhn and dn
http://en.wikipedia.org/wiki/Exponential formula

∞∑
n=0

hn
zn

n!
= H(z)

∞∑
n=0

nhn
zn

n!
= z

∞∑
n=1

nhn
zn−1

n!
= z

 ∞∑
n=1

hn
zn

n!

′ = zH′(z)

zH′(z) = zD′(z)H(z)

D′(z) =
H′(z)
H(z)

D(z) = ln H(z) + C

and C = 1 because d0 = D(0) = 1 and h0 = H(0) = 1.
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Making change

There are coins of size c1, . . . , ck cents. How many ways are there to pay
n cents?

Let Ci(zi) = 1 + zci
i + z2ci

i + · · · = 1/(1 − zci
i ).

[zm]Ci(z) is the number of ways m cents can be payed with ci-cent
coins only.

[zm1c1
1 · · · zmk ck

k ]C1(z1) · · ·Ck (zk ) is the number of ways
m1c1 + · · ·+ mk ck cents can be payed using m1 c1-cent coins, m2

c2-cent coins, etc.

If we set z1 = · · · = zm = z, then [zn]C1(z) · · ·Ck (z) counts the
number of ways n cents can be payed in any manner with coins of
worth c1, . . . , ck cents.

The ordinary generating function is

C(z) =
1

(1 − zc1)(1 − zc2) · · · (1 − zck )
=

∞∑
n=0

dnzn
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A recurrent formula

Let us differentiate. . .
(1/(1 − zc))′ = [−1/(1 − zc)2] · [−czc−1] = czc−1

1−zc ·
1

1−zc

C ′(z) =
(∑k

i=1
cizci−1

1−zci

)
C(z)

∞∑
n=0

(n + 1)dn+1zn =

 k∑
i=1

∞∑
n=0

ci[n mod ci = −1]zn


 ∞∑

n=0

dnzn


Let an = |{(i, j) | i ∈ {1, . . . , k }, j ∈ {1, . . . , ci}, n mod ci = −1}|.
Note that an = an−u, where u = lcm(c1, . . . , ck ).

∞∑
n=0

(n + 1)dn+1zn =

 ∞∑
n=0

anzn

  ∞∑
n=0

dnzn


dn =

1
n

n−1∑
l=0

aldn−l−1 =
1
n

u−1∑
l=0

aldn−l−1 + (n − u)dn−u
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OGFs of certain sequences

a0, a1, a2, a3, . . . an
∑∞

n=0 anzn

1, 0, 0, 0, . . . [n = 0] 1

0, . . . , 0︸   ︷︷   ︸
m

, 1, 0, 0, . . . [n = m] zm

1, 1, 1, 1, . . . 1 1/(1 − z)

1, c, c2, c3, . . . cn 1/(1 − cz)

1, 0, . . . , 0︸   ︷︷   ︸
m−1

, 1, 0, . . . , 0︸   ︷︷   ︸
m−1

, 1, . . . [m | n] 1/(1 − zm)

1, 2, 3, 4, . . . n 1/(1 − z)2(
r
0

)
,
(

r
1

)
,
(

r
2

)
,
(

r
3

)
, . . .

(
r
n

)
(1 + z)r(

r
r

)
,
(
r+1

r

)
,
(
r+2

r

)
,
(
r+3

r

)
, . . .

(
r+n

r

)
=

(
r+n

n

)
1/(1 − z)r+1

0, 1, 1
2 ,

1
3 ,

1
4 , . . . [n , 0]/n ln 1

1−z

0, 1,−1
2 ,

1
3 ,−

1
4 , . . . (−1)n+1[n , 0]/n ln(1 + z)

1, 1, 1
2 ,

1
6 ,

1
24 , . . .

1
n! ez
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OGFs of certain sequences

a0, a1, a2, a3, . . . an
∑∞

n=0 anzn

0, 1, 3
2 ,

11
6 ,

25
12 , . . . Hn

1
1−z ln 1

1−z

F0,Fm,F2m,F3m, . . . Fnm
Fmz

1−(Fm−1+Fm+1)z+(−1)mz2{
0
m

}
,
{

1
m

}
,
{

2
m

}
,
{

3
m

}
, . . .

{
n
m

}
zm

(1−z)(1−2z)···(1−mz)

0, 1, 0,− 1
3! , 0,

1
5! , . . . [n odd](−1)

n−1
2 /n! sin z

1, 0,− 1
2! , 0,

1
4! , 0, . . . [n even](−1)

n
2 /n! cos z

Hn =
∑n

i=1
1
i (harmonic numbers)

Fn — Fibonacci numbers
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EGFs of certain sequences

an = 1
∑∞

n=0 an
zn

n! = ez

am,n =
{

n
m

} ∑∞
m,n=0 am,n

zn

n!w
m = ew(ez−1)

am,n =
(

n
m

) ∑∞
m,n=0 am,n

zn

n!w
m = ez+wz

am,n =
[

n
m

] ∑∞
m,n=0 am,n

zn

n!w
m = 1

(1−z)w[
n
m

]
— number of permutations of n elements with m permutation

cycles (see next lecture)
Stirling numbers of first kind
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Counting exercises

In how many ways can a stripe of cloth with n stripes be colored with
k different colors?

Turning around the cloth will not change the pattern.

In how many ways can a n-bead necklace be made from beads of k
different colors?

In how many ways can the corners of a cube be colored so, that 3
corners are red, 3 are green, 2 are blue?
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General task

There are sets X and C. We are counting functions f : X → C in a
certain manner.

Let m = |X |, n = |C |.
Let F be the set of functions from X to C.

We have a set of permutations G = {π1, π2, . . . , πk } ⊆ SX .
f , g : X → C are equivalent if ∃i : f ◦ πi = g.
We count equivalence classes of functions, not functions themselves.

Let us call the functions f : X → C the colorings of X .
Their number depends on the structure of G and on the number of
colors.

G determines the size of X .

Let tn,G denote the number of colorings.

Later we also handle the case where the number of uses of each
color has been given.
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Groups and subgroups of permutations

The set SX of all permutations of X is a group wrt. the composition
operation ◦:

SX is closed wrt. ◦: if π1, π2 ∈ SX , then π2 ◦ π1 ∈ SX ;
◦ is associative, there is unit element, each element has an inverse.

A subset H ⊆ SX is a subgroup of SX if
H is closed wrt. ◦;
the identity permutation belongs to H;
H is closed wrt. taking inverses.

Denote H 6 SX . The set H is then also a group wrt. ◦

The set of permutations G in our task must be a subgroup of SX .
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Equivalences generated by permutation groups

Let X be a set and G 6 SX .

Define an equivalence ∼G on X as follows:

x1 ∼G x2 ⇔ ∃π ∈ G : π(x1) = x2 .

Lemma. ∼G is an equivalence relation.
The equivalence classes of ∼G are called orbits.

Let 〈x〉 denote the orbit of x — the equivalence class x/ ∼G.

The set of all equivalence classes of ∼G is denoted X/G.
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Size of orbits

Definition
fix(π) = {x ∈ X | π(x) = x} (fixed points of π ∈ G)

Gx = {π ∈ G | π(x) = x} (stabilizers of x ∈ X )

Lemma

|〈x〉| =
|G|

|Gx |

Proof.
Let y ∈ 〈x〉.

Let Gx→y = {π ∈ G | π(x) = y}. Let ξ be a fixed element of Gx→y .

π 7→ ξ ◦ π is a bijection from Gx to Gx→y .

Hence for each y ∈ 〈x〉, there are |Gx | elements of G mapping x to y. �
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Number of orbits

Lemma (Burnside)

|X/G| =
1
|G|

∑
π∈G

|fix(π)|

Proof.

∑
π∈G

|fix(π)| =
∑
x∈X

|Gx | = |G|
∑
x∈X

1
|〈x〉|

= |G|
∑
〈y〉∈X/G

∑
x∈〈y〉

1
|〈x〉|

=

|G|
∑
〈y〉∈X/G

∑
x∈〈y〉

1
|〈y〉|

= |G|
∑
〈y〉∈X/G

1 = |G| · |X/G|

�
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Permutations acting on colorings

Let π ∈ G 6 SX . Let f : X → C.
Define the action (toime) of π on f : πf = f ◦ π−1.

Let π̃(f) = πf . Let G̃ = {̃π | π ∈ G}.
Lemma. π̃ ∈ SF.

Lemma.
(π′ ◦ π)f = π′ (πf) and
πf = f ′ ⇔ (π−1)f ′ = f

for any f , f ′, π, π′.

Corollary. G̃ 6 SF.

Each orbit of G̃ is a coloring that is distinguishable from other
colorings.

tn,G is equal to the number of orbits of G̃.
We could compute it using Burnside’s lemma
What are the fixed points of π̃? How many are there?
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Permutation cycles

Sequence (x1, x2, . . . , xr) ∈ X r is a permutation cycle of π ∈ SX if
π(x1) = x2, π(x2) = x3, . . . , π(xr−1) = xr , π(xr) = x1.

Each permutation can be expressed as a “product” of its permutation
cycles. E.g. π:

x 1 2 3 4 5 6 7 8 9 10 11 12
π(x) 4 6 3 7 10 2 1 9 5 12 11 8

can be written (1 4 7)(2 6)(3)(5 10 12 8 9)(11)
Cycles of length 1 are often omitted in the write-up

This write-up is unique up to cyclic shifts of each cycle and
permutation of cycles.

Let c(π) be the number of cycles of π.

Let ci(π) be the number of cycles of π of length i.

The number of permutations of n elements with m cycles is
[

n
m

]
.
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Permutation cycles of our example groups
Stripe of cloth with n stripes

Two elements:
The identity permutation.

(1)(2) · · · (n)
n cycles of length 1.

Turing the stripe over.
(1 n)(2 n − 1)(3 n − 2) · · ·
If n even: n/2 cycles of length 2.
If n odd: one cycle of length 1 and (n − 1)/2 cycles of length 2.
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Permutation cycles of our example groups
Automorphisms of the graph Cn

2n elements.
Rotation by k positions (0 6 k 6 n − 1)

Let d = gcd(n, k).
d cycles of length n/d.

Change of direction followed by rotation by k positions.
n odd: 1 cycle of length 1 and (n − 1)/2 cycles of length 2.
k and n even: 2 cycles of length 1 and (n − 2)/2 cycles of length 2.
k odd, n even: n/2 cycles of length 2.
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Permutation cycles of our example groups
Automorphisms of the graph Q3

id

(2 3 5)(4 7 6)

(1 4 7)(2 8 5)

(1 6 4)(3 5 8)

(1 6 7)(2 8 3)

(2 5 3)(4 6 7)

(1 7 4)(2 5 8)

(1 4 6)(3 8 5)

(1 7 6)(2 3 8)

(1 2 4 3)(5 6 8 7)

(1 5 7 3)(2 6 8 4)

(1 5 6 2)(3 7 8 4)

(1 4)(2 3)(5 8)(6 7)

(1 7)(2 8)(3 5)(4 6)

(1 6)(2 5)(3 8)(4 7)

(1 8)(2 6)(3 7)(4 5)

(1 8)(2 7)(3 4)(5 6)

(1 8)(2 4)(3 6)(5 7)

(1 5)(2 7)(3 6)(4 8)

(1 2)(3 6)(4 5)(7 8)

(1 3)(2 7)(4 5)(6 8)

(1 3 4 2)(5 7 8 6)

(1 3 7 5)(2 4 8 6)

(1 2 6 5)(3 4 8 7)

6 5

78

2 1

34
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Fixed points of permutations on colorings

Lemma
f ∈ fix(̃π) iff f is constant on each cycle of π.

Hence |fix(̃π)| = nc(π).

Theorem
The number of colorings of X is

tn,G =
1
|G|

∑
π∈G

nc(π) .
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Weighed colorings

Let the weight of the color i ∈ C be w(i) = zi .

Let the weight of the coloring f : X → C be w(f) =
∏

x∈X w(f(x)).

Lemma. If f ◦ π = g, then w(f) = w(g). Thus we can write w(〈f〉).

The pattern inventory is the polynomial

WG(z1, . . . , zn) =
∑

〈f〉∈F/∼G

w(〈f〉) .

WG(1, . . . , 1) = tn,G.
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Coefficient of a monomial in pattern inventory

Let k = (k1, . . . , kn), where k1 + · · ·+ kn = m.
Let zk denote zk1

1 · · · z
kn
n .

Let Fk = {f ∈ F |w(f) = zk}.

Any π̃ ∈ G̃ is a permutation on Fk.
Let fixk(̃π) = fix(̃π) ∩ Fk.

From the Burnside lemma:

WG(z1, . . . , zn) =
∑

∑
k=m

1
|G|

∑
π∈G

|fixk(̃π)|zk

=
1
|G|

∑
π∈G

∑
∑

k=m

|fixk(̃π)|zk
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Coefficient of a monomial in pattern inventory

Let k = (k1, . . . , kn), where k1 + · · ·+ kn = m.
Let zk denote zk1

1 · · · z
kn
n .

Let Fk = {f ∈ F |w(f) = zk}.

Any π̃ ∈ G̃ is a permutation on Fk.
Let fixk(̃π) = fix(̃π) ∩ Fk.

From the Burnside lemma:

WG(z1, . . . , zn) =
∑

∑
k=m

1
|G|

∑
π∈G

|fixk(̃π)|zk

=
1
|G|

∑
π∈G

∑
∑

k=m

|fixk(̃π)|zk
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Coefficients of monomials for a single permutation

What is Sπ =
∑∑

k=m |fixk(̃π)|zk?

Let f ∈ Fk. Then f ∈ fixk(̃π), iff f is a constant on each cycle of π.
Let us sum over each cycle of π, assigning one of the colors 1, . . . , n
to each of them.

ir ,s will be the variable storing the color of the r-th cycle of length s.

Sπ =
n∑

i1,1=1

· · ·

n∑
i1,c1(π)=1

n∑
i2,1=1

· · ·

n∑
i2,c2(π)=1

· · ·

n∑
im,1=1

· · ·

n∑
im,cm(π)=1

zi1,1 · · · zi1,c1(π)
z2

i2,1 · · · z
2
i2,c2(π)

· · · zm
im,1 · · · z

m
im,cm(π)

Let Mn,s = zs
1 + zs

2 + · · ·+ zs
n .

Sπ = Mc1(π)
n,1 ·Mc2(π)

n,2 · · ·Mcm(π)
n,m
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The pattern inventory

We’ve just proved

Theorem (Polya)

WG(z1, . . . , zn) =
1
|G|

∑
π∈G

Mc1(π)
n,1 · · ·Mcm(π)

n,m
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The cycle index polynomial

Definition
The cycle index polynomial (tsüklilisuse indikaator) of G 6 SX is

ZG(w1, . . . ,wm) =
1
|G|

∑
π∈G

wc1(π)
1 · · ·wcm(π)

m

Corollary

WG(z1, . . . , zn) = ZG(Mn,1, . . . ,Mn,m)
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