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Discrete Mathematics
MTAT.05.008
Autumn 2012

Lectures Thu 14:15–15:45 L2-405 Peeter Laud
Practice sessions Mon 14:15–15:45 L2-207 Margus Niitsoo

or Thu 16:15–17:45 L2-202
Behind the scenes Reimo Palm

http://research.cyber.ee/˜peeter/teaching/diskmat12s

peeter.laud@cyber.ee

To pass: three tests during lectures or in January 15+30+30pt
Homework in practice sessions 30pt
Checking others’ homework

This is not MTAT.05.109 “Elements of Discrete Mathematics”
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Contents of the course

1 Recap: sets, relations, functions
2 Elements of graph theory

1 Eulerian and Hamiltonian graphs
2 Flows, covers, matchings
3 Edge and vertex coloring

3 Basics of counting
1 Combinations, permutations, etc.

Identities between them

2 Principle of inclusion and exclusion
3 Generating functions
4 Ramsey theory (ordered substructures of random structures)
5 (if time: Polya theory of counting)
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Actual contents

Proving mathematical statements
Appreciating proofs

Because you’ll need to evaluate arguments in your professional career

Proving theorems is. . .
similar to putting together puzzles

quite similar to programming, really. . .

definitely non-magical

Verifying a proof — like checking if a puzzle has been correctly assembled
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What is a proof?

A proof of a statement S is an inference in an axiomatic system that ends
with S

Axiomatic system
. . . consists of

A language for statements

A set of statements — axioms

A set of inference rules
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An example system
Basic 1st order propositional calculus

Language
F ,G ::= A | ¬F | F ⇒ G | ∀x.F
A ::= P(t1, . . . , tk ), etc.
P — predicate symbols
t1, . . . , tk — terms (incl. variables)

Inference rules
F ⇒ G F

G
(MP) F

∀x.F
(G)

Axioms (actually, axiom schemata)

(A1) F ⇒ F
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A4) ¬F ⇒ (F ⇒ G)
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀y.∀x.P(x, y)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
2 (A5) ∀y.P(z, y)⇒ P(z,w)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
2 (A5) ∀y.P(z, y)⇒ P(z,w)
3 (A2) (∀y.P(z, y)⇒ P(z,w))⇒ (∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w)))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
2 (A5) ∀y.P(z, y)⇒ P(z,w)
3 (A2) (∀y.P(z, y)⇒ P(z,w))⇒ (∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w)))
4 (MP3,2) ∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
4 (MP3,2) ∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w))
5 (A3) (∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w)))⇒ ((∀x.∀y.P(x, y)⇒ ∀y.P(z, y))⇒

(∀x.∀y.P(x, y)⇒ P(z,w)))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
4 (MP3,2) ∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w))
5 (A3) (∀x.∀y.P(x, y)⇒ (∀y.P(z, y)⇒ P(z,w)))⇒ ((∀x.∀y.P(x, y)⇒ ∀y.P(z, y))⇒

(∀x.∀y.P(x, y)⇒ P(z,w)))

6 (MP5,4) (∀x.∀y.P(x, y)⇒ ∀y.P(z, y))⇒ (∀x.∀y.P(x, y)⇒ P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

1 (A5) ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
6 (MP5,4) (∀x.∀y.P(x, y)⇒ ∀y.P(z, y))⇒ (∀x.∀y.P(x, y)⇒ P(z,w))
7 (MP6,1) ∀x.∀y.P(x, y)⇒ P(z,w)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

7 (MP6,1) ∀x.∀y.P(x, y)⇒ P(z,w)
8 (G7) ∀z.(∀x.∀y.P(x, y)⇒ P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

8 (G7) ∀z.(∀x.∀y.P(x, y)⇒ P(z,w))
9 (A6) ∀z.(∀x.∀y.P(x, y)⇒ P(z,w))⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

8 (G7) ∀z.(∀x.∀y.P(x, y)⇒ P(z,w))
9 (A6) ∀z.(∀x.∀y.P(x, y)⇒ P(z,w))⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))

10 (MP9,8) ∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

10 (MP9,8) ∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)
11 (A7) ∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

10 (MP9,8) ∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)
11 (A7) ∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y)
12 (A2) (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))⇒ (∀x.∀y.P(x, y)⇒

(∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

10 (MP9,8) ∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)
11 (A7) ∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y)
12 (A2) (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))⇒ (∀x.∀y.P(x, y)⇒

(∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)))
13 (MP12,10) ∀x.∀y.P(x, y)⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

11 (A7) ∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y)
13 (MP12,10) ∀x.∀y.P(x, y)⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
14 (A3) (∀x.∀y.P(x, y)⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)))⇒ ((∀x.∀y.P(x, y)⇒

∀z.∀x.∀y.P(x, y))⇒ (∀x.∀y.P(x, y)⇒ ∀z.P(z,w)))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

11 (A7) ∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y)
13 (MP12,10) ∀x.∀y.P(x, y)⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
14 (A3) (∀x.∀y.P(x, y)⇒ (∀z.∀x.∀y.P(x, y)⇒ ∀z.P(z,w)))⇒ ((∀x.∀y.P(x, y)⇒

∀z.∀x.∀y.P(x, y))⇒ (∀x.∀y.P(x, y)⇒ ∀z.P(z,w)))

15 (MP14,13)
(∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y))⇒ (∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

11 (A7) ∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y)
15 (MP14,13)

(∀x.∀y.P(x, y)⇒ ∀z.∀x.∀y.P(x, y))⇒ (∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
16 (MP15,11) ∀x.∀y.P(x, y)⇒ ∀z.P(z,w)
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

16 (MP15,11) ∀x.∀y.P(x, y)⇒ ∀z.P(z,w)
17 (G16) ∀w.(∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
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Example proof

Let us prove ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Axioms
(A2) F ⇒ (G ⇒ F)
(A3) (F ⇒ (G ⇒ H))⇒ ((F ⇒ G)⇒ (F ⇒ H))
(A5) ∀x.F ⇒ F [x := t]
(A6) ∀x.(F ⇒ G)⇒ (∀x.F ⇒ ∀x.G)
(A7) F ⇒ ∀x.F if x does not occur freely in F

Inference rules
F ⇒ G F

G
(MP)

F
∀x.F

(G)

17 (G16) ∀w.(∀x.∀y.P(x, y)⇒ ∀z.P(z,w))
18 (A6)
∀w.(∀x.∀y.P(x, y)⇒ ∀z.P(z,w))⇒ (∀w.∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w))
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Comments on that proof

Some intermediate statements made sense
1 ∀x.∀y.P(x, y)⇒ ∀y.P(z, y)
7 ∀x.∀y.P(x, y)⇒ P(z,w)

16 ∀x.∀y.P(x, y)⇒ ∀z.P(z,w)

25 ∀x.∀y.P(x, y)⇒ ∀w.∀z.P(z,w)

Some others. . .
. . . were rather less intuitive

Especially the instances of (A3)

. . . were necessary for the pieces to fit

Some common patterns emerged

E.g. the derivation
F ⇒ G G ⇒ H

F ⇒ H took 5 steps and was used thrice
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Assemblying a zig-zag puzzle
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Verifying a proof

Formally, this is purely syntactic

Each line has to follow from the previous ones

It is not necessary to understand the subject matter to do the
verification
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Verifying the assembly of a zig-zag puzzle

Do the pieces fit
together?
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Details omitted. . .

The “proofs” you’ve seen in previous lectures and textbooks look
rather different

Such list of formulas was not given

There was much more “semantic” reasoning
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Chess etudes

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0ApZBZ
5Z0Z0Z0Z0
40Mpj0Z0Z
3Z0Z0S0Z0
20Z0Z0ZNZ
1Z0Z0J0Z0

a b c d e f g h

White to start and checkmate
in two moves.

Solution
1 Nh4 KXe3
2 Nc2#

What if black moves
1...c3 or 1...e5 instead?
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Bridge exercises

♠ 8 7 5 4 3
r —
q Q 9 8 7 6 4 3
♣ 2

N
W E

S

♠ A K Q J 10 9 6
r —
q 2
♣ Q 9 8 7 5

West leads rK.
South to make 6♠.

Solution
Although this one is not difficult, it is easy to go
wrong at trick one. The winning play is to
discard dummy’s club, ruff high, then lead the
q2. On a trump return, dummy’s eight-spot
provides an entry necessary to set up and enjoy
a diamond trick, in case that suit should split
5-0; any other return permits a high crossruff.

This looks very different from a game tree. . .
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Recap

A proof of S is a sequence (ending with S) of statements, that
are axioms, or
are derivable from previous statements using the inference rules.

Verification means performing certain syntactic checks for each
statement in the sequence.

Any semantic knowledge we have only helps in assemblying the proof.

In actual presentations, most details of the sequence of statements
are omitted.

But anyone sufficiently skilled in the art should be able to fill them in.
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Other axiomatic systems

Obtained by adding to the 1st order logic

specific constants, function and predicate symbols in the language;

specific axioms and inference rules.

Peano’s axioms for arithmetic
Constant “0”, unary function “s”, binary predicate “=”.
Axioms and axiom schemata:

∀x.(x = x)
∀x, y.

(
(x = y)⇒ (F(x)⇒ F(y))

)
∀x.¬(s(x) = 0)
∀x.∀y.

(
(s(x) = s(y))⇒ (x = y)

)
F(0) ∧ ∀x.(F(x)⇒ F(s(x)))⇒ ∀x.F(x)

No new inference rules

Exercise. Show that “=” is symmetric.
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Sets

Non-definition
A set is an unordered collection of elements (without counts)
“Object x is an element of set X” is denoted by x ∈ X
Two sets are equal if the have the same elements

X = Y :⇔ ∀z.(z ∈ X ⇔ z ∈ Y)

Definition
A set X is a subset of a set Y if all elements of X are also elements of Y .
Denoted X ⊆ Y .

X ⊆ Y :⇔ ∀z.(z ∈ X ⇒ z ∈ Y)

Theorem
Two sets are equal iff both are subsets of each other.

X = Y ⇔ (X ⊆ Y ∧ Y ⊆ X)
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Operations with sets

The union X ∪ Y of two sets X and Y contains exactly those elements
that belong to X or Y (or both).

∀z.(z ∈ X ∪ Y ⇔ (z ∈ X ∨ z ∈ Y))

The intersection: ∀z.(z ∈ X ∩ Y ⇔ (z ∈ X ∧ z ∈ Y))

The difference: ∀z.(z ∈ X\Y ⇔ (z ∈ X ∧ z < Y))

The complement: Let U be some universal set.
All sets in our current application will be subsets of U.

The complement of the set X ⊆ U is X = U\X .
Also denoted X ′
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Properties of these operations
A large number of theorems

X ⊆ X ∪ Y

X ∩ Y ⊆ X

X ∪ Y = Y ∪ X

X ∩ Y = Y ∩ X

X ∩ Y = X ∪ Y

X ∪ Y = X ∩ Y

X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z

X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z

X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z)

X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z)

X ⊆ Y ⇔ X ∪ Y = Y

X ⊆ Y ⇔ X ∩ Y = X

Let us prove some (on blackboard)
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Omitting some proofs

Why aren’t we doing some proofs here?
Because the lecture time is limited.
Not because some proofs are less important than the others.

How will you learn those proofs?
Some may be done in the practice session.
The rest, you should attempt at home.

And eventually succeed with all of them.

Doing proofs yourself (or in small groups) is an excellent way to study.
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Cartesian products. Relations

Non-definition
One can form the ordered pair (x, y) of any two objects x and y.
(x, y) = (z,w) :⇔ (x = z ∧ y = w)

Kuratowski’s definition: (x, y) = {{x}, {x, y}}. Exercise. what is (x, x)?

Definition
The Cartesian product X × Y of sets X and Y is the set of all ordered pairs
with first component in X and second component in Y .

X × Y = {(x, y) | x ∈ X , y ∈ Y }

Definition
A relation between the sets X and Y (or: “from X to Y ”) is any subset
ρ ⊆ X × Y . We denote (x, y) ∈ ρ also with x ρ y.
A relation on the set X is a relation from X to X .
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Partial and total functions (a.k.a. mappings)

Definition
A relation ρ ⊆ X × Y is a partial function from X to Y if for all x ∈ X there
exists at most one y ∈ Y , such that (x, y) ∈ ρ.

This y, if it exists, is usually denoted as ρ(x).

Definition
A partial function ρ ⊆ X × Y is a (total) function, if ρ(x) exists for all x ∈ X .
Denote ρ : X → Y .

Definition
A function f : X → Y is

injective if ∀x, x′ ∈ X : (f(x) = f(x′)⇒ x = x′);

surjective if ∀y ∈ Y∃x ∈ X : f(x) = y;

bijective if it is both injective and surjective.
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Directed graphs

Definition
A directed graph is a triple G = (V ,E,E), where

V is the set of vertices;

E is the set of edges;

E : E → V × V is the incidence mapping.

Example

V = {v1, v2, v3, v4}

E = {e1, e2, e3, e4, e5, e6, e7}

E = {(e1, (v1, v2)), (e2, (v2, v3)),
(e3, (v3, v4)), (e4, (v2, v4)),
(e5, v4, v3)), (e6, (v1, v1)),
(e7, (v2, v3))}

v4

v1 v2

v3

e1

e2

e3

e4

e5

e6

e7
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Relations and graphs

Let G = (V ,E,E).

If E is injective then E can be seen as a subset of V × V .

Then we denote the graph as G = (V ,E), where E ⊆ V × V .

Definition
The graph of a relation ρ on the set X is the directed graph (X , ρ).

Definition
Let ρ ⊆ X × Y and X ∩ Y = ∅. The graph of the relation ρ is the directed
graph (X ∪ Y , ρ).
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Operations with relations

Relations are sets. Set operations can be applied to them.
If ρ, σ ⊆ X × Y then ρ ∪ σ, ρ ∩ σ, ρ\σ and ρ = (X × Y)\ρ are again
relations between X and Y .

The inverse of ρ ⊆ X × Y is ρ−1 := {(y, x) | (x, y) ∈ ρ} ∈ Y × X .

The composition of ρ ⊆ X × Y and σ ⊆ Y × Z is

σ ◦ ρ = {(x, z) | ∃y ∈ Y :
(
(x, y) ∈ ρ ∧ (y, z) ∈ σ

)
} .

Interpret the operations in terms of graphs.
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Properties of operations

(σ ∪ τ) ◦ ρ = (σ ◦ ρ) ∪ (τ ◦ ρ)

(σ ∩ τ) ◦ ρ ⊆ (σ ◦ ρ) ∩ (τ ◦ ρ)

ρ ◦ (σ ◦ τ) = (ρ ◦ σ) ◦ τ

(ρ ◦ σ)−1 = σ−1 ◦ ρ−1

Let ρ a relation from X to Y and let =X , =Y be the equality relations
on X and Y . Then (ρ ◦=X) = ρ = (=Y ◦ ρ).

Exercise
Prove these properties. Use the graphs of the relations for hints.
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Equivalence relations

Definition
Let ρ be a relation on X . It is

reflexive, if ∀x ∈ X : (x, x) ∈ ρ;

symmetric, if ∀x, y ∈ X :
(
(x, y) ∈ ρ⇒ (y, x) ∈ ρ

)
;

transitive, if ∀x, y, z ∈ X :
(
(x, y) ∈ ρ ∧ (y, z) ∈ ρ⇒ (x, z) ∈ ρ

)
;

an equivalence relation, if it is reflexive, symmetric and transitive.
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Equivalence classes

Definition
Let ρ be an equivalence relation on X . Let x ∈ X . The equivalence class of
x (modulo ρ) is the set x/ρ := {y ∈ X | x ρ y}.

Theorem
Let ρ be an equivalence relation on X. Let x, y ∈ X. Then either x/ρ = y/ρ
or x/ρ ∩ y/ρ = ∅.

Hence an equivalence relation may be interpreted as some “fuzzy
equality”.

Exercise
How does the graph (X , ρ) of an equivalence relation ρ on X look like?

Definition
The factor set of X (by ρ) is the set X/ρ := {x/ρ | x ∈ X}.
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Kernels of mappings

Definition
Let f : X → Y be a (total) mapping. The kernel of f is the following relation
on X :

Ker f := {(x, x′) | x, x′ ∈ X , f(x) = f(x′)}

Show that Ker f is an equivalence relation.

Theorem
Let f : X → Y. There exists a set Z and a surjective function g : X → Z
and an injective function h : Z → Y, such that f = h ◦ g.

Hint: the set Z is X/(Ker f).

Peeter Laud (Cybernetica) Discrete Mathematics, 1st lecture September 6th, 2012 29 / 52



Discrete Mathematics, 2nd lecture

Peeter Laud

Cybernetica AS

September 13th, 2012

Peeter Laud (Cybernetica) Discrete Mathematics, 2nd lecture September 13th, 2012 30 / 52



Partial orders

Definition
Let ρ be a relation on the set X . It is

reflexive, if ∀x ∈ X : x ρ x;

antisymmetric, if ∀x, y ∈ X :
(
(x ρ y ∧ y ρ x)⇔ x = y

)
;

transitive, if ∀x, y, z ∈ X :
(
x ρ y ∧ y ρ z ⇒ x ρ z

)
;

a partial order on X , if it is reflexive, antisymmetric and transitive.

Example
“6” on numbers

subset inclusion

divisibility (on N)
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Closure operations

Definition
Let ρ be a relation on X . A P-closure of ρ is a relation σ, such that

1 σ has the property P;
2 ρ ⊆ σ;
3 σ is the smallest relation (wrt. subset inclusion) satisfying 1 and 2.

P might be “transitive”, “reflexive [and] transitive”, . . .
If ρ has the property P, then what is the P-closure of ρ?

Notation
Let ρ0 = (=X) and ρi = ρi−1 ◦ ρ for i ∈ N.

Theorem
Let ρ be a relation on X. The transitive closure of ρ equals ρ+ =

⋃∞
i=1 ρ

i .
The reflexive transitive closure of ρ equals ρ∗ =

⋃∞
i=0 ρ

i .
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Existence of closures

Theorem
Let P be a property of relations (on the set X). P-closures exist iff

the full relation X × X has the property P;

if ρ1, ρ2, . . . have the property P, then ρ1 ∩ ρ2 ∩ · · · also has the
property P.

Actually, closures are a more general notation. Let us have

a set Y ;

a partial order v over Y ;

a a subset P ⊆ Y of elements y ∈ Y with property P.

Then we can define the P-closure of y ∈ Y as the smallest y′ ∈ P larger
than y.
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Undirected graphs

Definition
(Undirected) graph is a triple G = (V ,E,E), where

V is the set of vertices (also denote V(G));

E is the set of edges (also denote E(G)).

E : E −→ P(V) is the incidency mapping. For all e ∈ E, E(e) must
have 1 or 2 elements.
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Example

Let V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5, e6} and

e E(e)
e1 {v1, v2}

e2 {v2, v3}

e3 {v2, v4}

e4 {v3, v4}

e5 {v3, v4}

e6 {v2}

e1

e2e3

e4

v1

v3

v2

v4

e5

e6

A drawing may illustrate a graph.
But a graph itself is still the triple (V ,E,E).

Peeter Laud (Cybernetica) Discrete Mathematics, 2nd lecture September 13th, 2012 35 / 52



Notations, definitions. . .

Let G = (V ,E,E) be a graph.

If v ∈ E(e), then v and e are incident.

If there exists e, such that E(e) = {v1, v2}, then v1 and v2 are adjacent
(naabertipud).

If E(e) = {v1, v2}, then v1 and v2 are the endpoints of e. Denote also
v1

e— v2.

Let G = (V ,E,E) be a directed graph. Notations:

If E(e) = (v1, v2), then v1 is the start vertex and v2 the end vertex of
e.
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Notations, definitions. . . (cont.)

e ∈ E is a multiple edge, if there exists e′ ∈ E\{e}, such that E(e) = E(e′).
e ∈ E is a loop, if |E(e)| = 1.

Example

e1

e2e3

e4

v1

v3

v2

v4

e5

e6

A simple graph is a graph
without loops and multiple
edges.
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Notations, definitions. . . (cont.)

The degree of a vertex v in the graph (V ,E,E) is the number of edges
incident to it (the loops count twice). Denote deg(v).

deg(v) = |
{
e ∈ E | v ∈ E(e)

}
|+ |

{
e ∈ E |E(e) = {v}

}
|

Example

e1

e2e3

e4

v1

v3

v2

v4

e5

e6

1 5

3 3
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Adjacency matrix

Definition
Let G = (V ,E) be undirected simple graph. Let V = {v1, . . . , vn}. The
adjacency matrix (naabrusmaatriks) of G is a n × n matrix A = [aij], where

If (vi , vj) ∈ E, then aij = 1.
If (vi , vj) < E, then aij = 0.

The adjacency matrix is symmetric and its main diagonal contains zeroes.

Example

e1

e2e3

e4

v1

v3

v2

v4

1 2 3 4
1 0 1 0 0
2 1 0 1 1
3 0 1 0 1
4 0 1 1 0
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Number of vertices with odd degree

Theorem
An undirected simple graph contains an even number of vertices of odd
degree.

Proof.
Count the ones in the adjacency matrix of G = (V ,E).

Their number is 2 · |E |.

Their number is
∑

v∈V deg(v).

These two quantities are equal.

⇒ The sum of degrees of all vertices is even.

⇒ An even number of summands are odd.

�

Similarly, any undirected graph contains an even number of vertices of odd
degree.

Peeter Laud (Cybernetica) Discrete Mathematics, 2nd lecture September 13th, 2012 40 / 52



In- and outdegrees in directed graphs

In a directed graph (V ,E,E) we define for a vertex v

its indegree
−−→
deg(v) — the number of edges ending in v;

outdegree
←−−
deg(v) — the number of edges starting in v.

Theorem∑
v∈V

−−→
deg(v) =

∑
v∈V

←−−
deg(v).

(Similar to previous one)
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Notations, definitions. . .

A walk in the graph G = (V ,E) (from vertex x to vertex y) is a
sequence

P : x = v0
e1— v1

e2— v2
e3— v3

e4— . . . vk−1
ek— vk = y .

The number k is the length of the walk P. Denote |P |.

Let x
P
{ y denote that P is a walk from x to y.

A path is a walk where all vertices are distinct (only v0 and vk may
coincide).

A walk is closed if v0 = vk .

A closed path is a cycle.

A graph is connected if there is a walk between each two of its
vertices.

The distance d(u, v) between vertices u, v ∈ V is the length of the
shortest walk connecting them.
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Examples

v5 v6

v3 v4

v1 v2

Walk: v1 — v2 — v4 — v6 — v2 — v3

Path: v1 — v2 — v3 — v4

Closed walk: v1 — v2 — v3 — v1 — v5 — v6 — v1

Cycle: v1 — v2 — v6 — v5 — v1

d(v1, v4) = 2, d(v1, v2) = 1, d(v1, v1) = 0.
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Existence of cycles

Theorem
A simple graph, where the degree of each vertex is at least k > 2, has a
cycle of length at least k + 1.

Proof.
Let x0 — x1 — · · ·— xl be an open path of maximal length in this graph.

x0 x1 x2 x3 xi xl

All neighbours of x0 are located in this path.
Let xi be the neighbour of x0 with maximal index. Then i > k .
x0 — x1 — · · ·— xi — x0 is a cycle of length i + 1 > k + 1. �
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Subgraphs

A subgraph of a graph G = (V ,E) is a graph G′ = (V ′,E′), where V ′ ⊆ V ,
E′ ⊆ E and for all e ∈ E′ holds E(e) ⊆ V ′. Denote G′ 6 G.

A subgraph (V ′,E′) is induced (by the set V ′), if the set E′ is as large as
possible, i.e. E(e) ⊆ V ′ ⇒ e ∈ E′ holds for all e ∈ E.

v4

v1

v3

v2 v1 v2

v3

v1 v2

v3

The connected components of a graph G are its maximal connected
subgraphs.
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Bridges and cut-vertices

Definition
An edge of a graph is bridge if its
removal increases the number of
connected components.

Definition
A vertex of a graph is cut vertex if
its removal (together with its
incident edges) increases the
number of connected
components.
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Graph isomorphisms

Definition
An isomorphism from G1 = (V1,E1) to G2 = (V2,E2) is a bijective
mapping f : V1 −→ V2, such that x, y ∈ V1 are adjacent iff f(x), f(y) ∈ V2

are adjacent.

Example

Definition
Graphs G1 and G2 are isomorphic (denote G1 � G2), if there exists an
isomorphism between them.
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Names for certain graphs

A null graph is a graph without edges. A null graph of n vertices is
denoted by On.

A complete graph is a simple graph with an edge between each pair
of vertices. A complete graph of n vertices is denoted by Kn.

Proposition

Graph Kn has n(n−1)
2 edges.
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Bipartite graphs

Graph G = (V ,E) is bipartite, if V can be partitioned to two sets V1 and
V2 (i.e. V1 ∪ V2 = V and V1 ∩ V2 = ∅), such that the endpoints of any
edge belong in different parts.

(More generally: a graph is k -partite if its vertices can be partitioned into k
parts such that all edges are between different parts.)

A bipartite simple graph with parts of vertices V1 and V2 is complete
bipartite if there is an edge between each v1 ∈ V1 and v2 ∈ V2. Let Km,n

denote the complete bipartite graph with |V1| = m and |V2| = n.

Proposition
Km,n has mn edges.

Peeter Laud (Cybernetica) Discrete Mathematics, 2nd lecture September 13th, 2012 49 / 52



Necessary and sufficient condition for bipartiteness

Theorem
A graph is bipartite⇔ all its cycles are of even length.

Proof⇒.
A cycle goes a number of times from the first part to the second and the
same number of times from the second part to the first.

Proof⇐.
Assume G = (V ,E) is connected. Otherwise consider each connected
component separately.
. . .
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Fixing these two parts

Start coloring vertices black and white.
Pick a vertex v0 ∈ V and colour it white.

Repeat. . .
Let u be a coloured vertex that has uncoloured neighbours. Let v be one
of such neighbours. Colour it with the opposite colour to u. Remember
that the colour of u was used to choose the colour of v. Denote it v

c
→ u.

Stop when
there appear adjacent vertices x and y of the same colour;

we run out of vertices to colour.
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After stopping. . .

If problems occur
If such vertices x and y appear then
x

y

v0

c c

c c

c

c

c

c

c
c

c

cv ′

we have a cycle of odd length x — · · ·— v′ — · · ·— y — x.

If we can color everything
If we run out of vertices, then the black vertices form one part and white
vertices the other part of vertices of the bipartite graph. �
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