Discrete Mathematics, 3rd lecture Eulerian and Hamiltonian graphs

Peeter Laud

Cybernetica AS

September 20th, 2012

Peeter Laud (Cybernetica)

Discrete Mathematics, 3rd lecture

- [Undirected] graph triple (V, E, E), where V set of vertices, E set of edges, E the incidence function.
- Walk in the graph is a sequence

$$V_0 \frac{e_1}{2} V_1 \frac{e_2}{2} V_2 \frac{e_3}{2} V_3 \frac{e_4}{2} \dots V_{k-1} \frac{e_k}{2} V_k$$

where $v_0, ..., v_k \in V$, $e_1, ..., e_k \in E$ and $\mathcal{E}(e_i) = \{v_{i-1}, v_i\}$.

- A walk is closed if its first and last vertex coincide.
- A path is a walk where the vertices do not repeat.
- A cycle is a closed path.

Eulerian walks

Definition

- An Eulerian walk in a graph *G* is a closed walk that contains each edge exactly once.
- An Eulerian graph is a connected graph that contains an Eulerian walk.

Demanding connectedness removes some cases that do not add anything interesting, but just get in the way.

Definition

A semi-Eulerian graph is a graph that has an open walk that contains each edge exactly once.

A well-known class of puzzles

Draw the given figure without raising the pen from the paper and without repeating a line.

Peeter Laud (Cybernetica)

Example

æ

▲御▶ ▲ 臣▶ ▲ 臣▶

Example

æ

▲御▶ ▲ 臣▶ ▲ 臣▶

Example

æ

▲御▶ ▲ 臣▶ ▲ 臣▶

The "original task"

Peeter Laud (Cybernetica)

Theorem

Let $G = (V, E, \mathcal{E})$ be a connected graph. The following are equivalent

- G is Eulerian;
- All vertices of G have even degree;

Theorem

Let $G = (V, E, \mathcal{E})$ be a connected graph. The following are equivalent

- G is Eulerian;
- All vertices of G have even degree;
- E can be partitioned into cycles.

"Partitioned into cycles"

There are $E_1, \ldots, E_k \subseteq E$, such that

- $E_i \cap E_j = \emptyset$, if $i \neq j$;
- $E_1 \cup \cdots \cup E_k = E;$
- For each *i*, there is a cycle *C_i* in *G*, such that the edges of *C_i* are precisely the elements of *E_i*.

글 🖌 🔺 글 🕨

Peeter	aud	Cvł	pernetic	a)
1 00101		0 .		u /

æ

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト …

• Let *P* be an Eulerian walk in graph *G*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let *P* be an Eulerian walk in graph *G*.
- Let $v \in V$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let *P* be an Eulerian walk in graph *G*.
- Let $v \in V$.
- The walk *P* enters *v* a number of times.
 - Denote by $\overrightarrow{\deg_P}(v)$.

3

A⊒ ► < ∃ ►

- Let *P* be an Eulerian walk in graph *G*.
- Let $v \in V$.
- The walk *P* enters *v* a number of times.
 - Denote by $\overrightarrow{\deg_P}(v)$.
- The walk P exits v a number of times.
 - Denote by $\overline{\deg_P}(v)$.

- Let P be an Eulerian walk in graph G.
- Let $v \in V$.
- The walk P enters v a number of times.
 - Denote by $\overrightarrow{\deg_P}(v)$.
- The walk *P* exits *v* a number of times.
 - Denote by $\overline{\deg_P}(v)$.
- How are $\deg(v)$, $\overrightarrow{\deg_P}(v)$ and $\overleftarrow{\deg_P}(v)$ related?

- Let P be an Eulerian walk in graph G.
- Let $v \in V$.
- The walk P enters v a number of times.
 - Denote by $\overrightarrow{\deg_P}(v)$.
- The walk *P* exits *v* a number of times.
 - Denote by $\overline{\deg_P}(v)$.
- How are $\deg(v)$, $\overrightarrow{\deg_P}(v)$ and $\overleftarrow{\deg_P}(v)$ related?
- $\deg(v) = \overrightarrow{\deg_P}(v) + \overleftarrow{\deg_P}(v)$ and $\overrightarrow{\deg_P}(v) = \overleftarrow{\deg_P}(v)$.

- Let P be an Eulerian walk in graph G.
- Let $v \in V$.
- The walk P enters v a number of times.
 - Denote by $\overrightarrow{\deg_P}(v)$.
- The walk P exits v a number of times.
 - Denote by $\overline{\deg_P}(v)$.
- How are $\deg(v)$, $\overrightarrow{\deg_P}(v)$ and $\overleftarrow{\deg_P}(v)$ related?
- $\deg(v) = \overrightarrow{\deg_P}(v) + \overleftarrow{\deg_P}(v)$ and $\overrightarrow{\deg_P}(v) = \overleftarrow{\deg_P}(v)$.
- Hence $\deg(v) = 2\overrightarrow{\deg_P}(v)$ is an even number.

• We need to partition *E* into cycles.

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.
- Looks like induction. Over what?

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.
- Looks like induction. Over what?
- Over the size of *E*.

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.
- Looks like induction. Over what?
- Over the size of *E*.
- How about the assumption (2)? Will it still hold if we remove C?

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.
- Looks like induction. Over what?
- Over the size of *E*.
- How about the assumption (2)? Will it still hold if we remove C?
- How do the degrees of of vertices change if we remove a cycle?

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.
- Looks like induction. Over what?
- Over the size of *E*.
- How about the assumption (2)? Will it still hold if we remove C?
- How do the degrees of of vertices change if we remove a cycle?
- And where do we actually get that cycle from?

- We need to partition E into cycles.
- Try to find one cycle *C* and then partition $E \setminus C$ into cycles.
- Looks like induction. Over what?
- Over the size of *E*.
- How about the assumption (2)? Will it still hold if we remove C?
- How do the degrees of of vertices change if we remove a cycle?
- And where do we actually get that cycle from?
 - Remember something from the last lecture?

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

글 🕨 🖌 글 🕨

< 口 > < 同 >

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

Induction step

• |E| > 0.

・ロト ・同ト ・ヨト ・ヨト

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

Induction step

• |E| > 0. Let *H* be a connected component of *G* that has edges.

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of *H* have degree ≥ 1

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of *H* have degree ≥ 1
- Given: all vertices have even degree.

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of H have degree ≥ 12
- Given: all vertices have even degree.

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of H have degree ≥ 12
- Given: all vertices have even degree.
- **Theorem.** If all vertices have degree ≥ 2 , then there is a cycle *C*.

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of H have degree ≥ 12
- Given: all vertices have even degree.
- **Theorem.** If all vertices have degree ≥ 2 , then there is a cycle *C*.
- Remove [edges of] C from G. All vertices still have even degree.

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of H have degree ≥ 12
- Given: all vertices have even degree.
- **Theorem.** If all vertices have degree ≥ 2 , then there is a cycle *C*.
- Remove [edges of] C from G. All vertices still have even degree.
- Let $C_1 \cup \cdots \cup C_k$ be a partition of $E \setminus C$ into cycles.
 - Exists by the induction hypothesis.

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

Induction step

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of H have degree ≥ 12
- Given: all vertices have even degree.
- **Theorem.** If all vertices have degree ≥ 2 , then there is a cycle *C*.
- Remove [edges of] C from G. All vertices still have even degree.
- Let $C_1 \cup \cdots \cup C_k$ be a partition of $E \setminus C$ into cycles.
 - Exists by the induction hypothesis.
- Then $E = C_1 \cup \cdots \cup C_k \cup C$

イロト (得) (ヨ) (ヨ) - ヨ

Induction basis

If $E = \emptyset$ then E can be partitioned to zero parts, each of which...

Induction step

- |E| > 0. Let *H* be a connected component of *G* that has edges.
- All vertices of H have degree ≥ 12
- Given: all vertices have even degree.
- **Theorem.** If all vertices have degree ≥ 2 , then there is a cycle *C*.
- Remove [edges of] C from G. All vertices still have even degree.
- Let $C_1 \cup \cdots \cup C_k$ be a partition of $E \setminus C$ into cycles.
 - Exists by the induction hypothesis.
- Then $E = C_1 \cup \cdots \cup C_k \cup C$

Exercise. Where did we use the connectedness of G?

- ₹ 🖬 🕨

Given: the edges of a connected graph $G = (V, E, \mathcal{E})$ are partitioned to cycles.

• We have cycles C_1, \ldots, C_k without common edges. We have to pass through all of them.

Given: the edges of a connected graph $G = (V, E, \mathcal{E})$ are partitioned to cycles.

- We have cycles C_1, \ldots, C_k without common edges. We have to pass through all of them.
- Looks like induction again.

Given: the edges of a connected graph $G = (V, E, \mathcal{E})$ are partitioned to cycles.

- We have cycles C_1, \ldots, C_k without common edges. We have to pass through all of them.
- Looks like induction again.
- Where is connectedness important?

Using connectedness

 $E = C_1 \cup \cdots \cup C_k$. We may assume w.l.o.g. that $\forall i \in \{2, \dots, k\}$. $\exists j \in \{1, \dots, i-1\}$, such that C_i and C_j have a common vertex.

(人間) トイヨト (ヨト) ヨ

Using connectedness

 $E = C_1 \cup \cdots \cup C_k$. We may assume w.l.o.g. that $\forall i \in \{2, \dots, k\}$. $\exists j \in \{1, \dots, i-1\}$, such that C_i and C_j have a common vertex.

Induction basis

E is a single cycle. Eulerian walk goes through it.

(4月) (4日) (4日) 日

Using connectedness

 $E = C_1 \cup \cdots \cup C_k$. We may assume w.l.o.g. that $\forall i \in \{2, \dots, k\}$. $\exists j \in \{1, \dots, i-1\}$, such that C_i and C_j have a common vertex.

Induction basis

E is a single cycle. Eulerian walk goes through it.

Induction step

- Let *P* be a closed walk passing through edges in $C_1 \cup \cdots \cup C_{k-1}$.
 - Exists because of the induction hypothesis.
- *P* passes through some vertex on *C_k*.
- At this vertex, interrupt *P*, pass around *C_k*, continue with *P*.

・ コ ト ・ 西 ト ・ 田 ト ・ 日 ト ・ 日

Implicit in the proof of the previous theorem.

- Partition the edges of the graph into cycles.
- Pass through all of them.

Theorem

A connected graph is semi-Eulerian iff it has exactly two vertices with odd degree.

Exercise. Prove it, by using the previous theorem in a material way.

Definition

- Hamiltonian cycle in graph *G* is a cycle that passes through each vertex exactly once.
- Hamiltonian path in graph *G* is an open path that passes through each vertex exactly once.
- If a graph has a Hamiltonian cycle, it is called a Hamiltonian graph.
- If a graph has a Hamiltonian path (but no cycle), it is called a semi-Hamiltonian graph.

Definition

- Hamiltonian cycle in graph *G* is a cycle that passes through each vertex exactly once.
- Hamiltonian path in graph *G* is an open path that passes through each vertex exactly once.
- If a graph has a Hamiltonian cycle, it is called a Hamiltonian graph.
- If a graph has a Hamiltonian path (but no cycle), it is called a semi-Hamiltonian graph.
- In Hamiltonicity considerations, double edges and loops are irrelevant.
- Hence we only consider simple graphs G = (V, E).

・ロト ・同ト ・ヨト ・ヨト

Sir William Rowan Hamilton's Icosian game

→ Ξ → < Ξ</p>

- For Eulericity, there was a nice, locally checkable necessary and sufficient condition.
- No such condition is known for Hamiltonicity.
- The question, whether a given graph *G* is Hamiltonian or not, is NP-complete.
 - Hence the existence of a simple algorithm for checking it is unlikely.
- There exist easily checkable, sufficient, but not necessary conditions for Hamiltonicity.
 - Many of them are are variations of "if a graph has many edges then it is Hamiltonian".

Theorem (Dirac, 1952)

If a simple graph G = (V, E) with $|V| = n \ge 3$ satisfies

 $\forall v \in V : \deg(v) \ge n/2$

then G is Hamiltonian.

・ 同 ト ・ ヨ ト ・ ヨ

Theorem (Dirac, 1952)

If a simple graph G = (V, E) with $|V| = n \ge 3$ satisfies

 $\forall v \in V : \deg(v) \ge n/2$

then G is Hamiltonian.

Follows trivially from

Theorem (Ore, 1960)

If a simple graph G = (V, E) with $|V| = n \ge 3$ satisfies

$$\forall u, w \in V : (if(u, w) \notin E \text{ then } \deg(u) + \deg(w) \ge n)$$
(O)

then G is Hamiltonian.

If n = 3 then the only graph satisfying (O) is K_3 . It is Hamiltonian.

Exercise. Verify that only K_3 satisfies (O).

Going to the limit

Let $n \ge 4$.

Do proof by contradiction

Assume there exists a non-Hamiltonian graph G satisfying (O).

Lemma

If G = (V, E) satisfies (O) and $(u, v) \notin E$, then $G' = (V, E \cup \{(u, v)\})$ also satisfies (O).

Exercise. Prove it.

Lemma (The limit graph G^*)

There exists a graph $G^* = (V, E^*)$ satisfying (O) and $E \subseteq E^*$, such that

- G* is not Hamiltonian.
- The addition of any one edge would make G* Hamiltonian.

Proof of the lemma

Add arbitrary edges to G until you reach that G^* .

- By adding edges to G, we will eventually obtain a Hamiltonian graph.
 - Because *K_n* is Hamiltonian.
 - And we can only add a finite number of edges.
- We stop one step before obtaining a Hamiltonian graph
 - ... when there is no way to add one more edge.

Proof of the lemma

Add arbitrary edges to G until you reach that G^* .

- By adding edges to *G*, we will eventually obtain a Hamiltonian graph.
 - Because *K_n* is Hamiltonian.
 - And we can only add a finite number of edges.
- We stop one step before obtaining a Hamiltonian graph
 - ... when there is no way to add one more edge.
- We know more about G* than we know about G.
- So we can argue more about it.
- Note that $G^* \neq K_n$.

G* is semi-Hamiltonian

・ 同 ト ・ ヨ ト ・ ヨ

э

G* is semi-Hamiltonian

• Let e = (u, w) be an edge not present in G^* .

 G^* is semi-Hamiltonian

- Let e = (u, w) be an edge not present in G^* .
- $G^* \cup \{e\}$ is Hamiltonian. Let *C* be a Hamiltonian cycle in $G^* \cup \{e\}$.

 G^* is semi-Hamiltonian

- Let e = (u, w) be an edge not present in G^* .
- $G^* \cup \{e\}$ is Hamiltonian. Let C be a Hamiltonian cycle in $G^* \cup \{e\}$.
- C uses the edge e.

G* is semi-Hamiltonian

- Let e = (u, w) be an edge not present in G^* .
- $G^* \cup \{e\}$ is Hamiltonian. Let *C* be a Hamiltonian cycle in $G^* \cup \{e\}$.
- C uses the edge e.
- C\{e} is a path starting in u and ending in w and going through all vertices in V.
 - It uses only edges in E*.
 - Its length is n 1.

G* is actually Hamiltonian

• The Hamiltonian path.

- The Hamiltonian path.
- How many edges have their right end-point connected to u?

- The Hamiltonian path.
- How many edges have their right end-point connected to u? deg(u).

- The Hamiltonian path.
- How many edges have their right end-point connected to u? deg(u).
- How many edges have their left end-point connected to w?

- The Hamiltonian path.
- How many edges have their right end-point connected to u? deg(u).
- How many edges have their left end-point connected to w? deg(w).

- The Hamiltonian path.
- How many edges have their right end-point connected to u? deg(u).
- How many edges have their left end-point connected to w? deg(w).
- There are n 1 edges on the path. $deg(u) + deg(w) \ge n$.

- The Hamiltonian path.
- How many edges have their right end-point connected to u? deg(u).
- How many edges have their left end-point connected to w? deg(w).
- There are n 1 edges on the path. $deg(u) + deg(w) \ge n$.
- Some edge has both end-points connected.

- The Hamiltonian path.
- How many edges have their right end-point connected to u? deg(u).
- How many edges have their left end-point connected to w? deg(w).
- There are n 1 edges on the path. $deg(u) + deg(w) \ge n$.
- Some edge has both end-points connected.
- These edges give us a Hamiltonian cycle.

