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Recap: graphs

[Undirected] graph — triple (V ,E,E), where V — set of vertices, E —
set of edges, E — the incidence function.

Walk in the graph is a sequence

v0
e1— v1

e2— v2
e3— v3

e4— . . . vk−1
ek— vk

where v0, . . . , vk ∈ V , e1, . . . , ek ∈ E and E(ei) = {vi−1, vi}.

A walk is closed if its first and last vertex coincide.

A path is a walk where the vertices do not repeat.

A cycle is a closed path.
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Eulerian walks

Definition
An Eulerian walk in a graph G is a closed walk that contains each
edge exactly once.

An Eulerian graph is a connected graph that contains an Eulerian
walk.

Demanding connectedness removes some cases that do not add anything
interesting, but just get in the way.

Definition
A semi-Eulerian graph is a graph that has an open walk that contains each
edge exactly once.

A well-known class of puzzles
Draw the given figure without raising the pen from the paper and without
repeating a line.
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The “original task”
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The necessary and sufficient condition

Theorem
Let G = (V ,E,E) be a connected graph. The following are equivalent

1 G is Eulerian;
2 All vertices of G have even degree;

3 E can be partitioned into cycles.

“Partitioned into cycles”
There are E1, . . . ,Ek ⊆ E, such that

Ei ∩ Ej = ∅, if i , j;

E1 ∪ · · · ∪ Ek = E;

For each i, there is a cycle Ci in G, such that the edges of Ci are
precisely the elements of Ei .
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Proof (1)⇒ (2)

Let P be an Eulerian walk in graph G.

Let v ∈ V .
The walk P enters v a number of times.

Denote by
−−−→
degP(v).

The walk P exits v a number of times.

Denote by
←−−−
degP(v).

How are deg(v),
−−−→
degP(v) and

←−−−
degP(v) related?

deg(v) =
−−−→
degP(v) +

←−−−
degP(v) and

−−−→
degP(v) =

←−−−
degP(v).

Hence deg(v) = 2
−−−→
degP(v) is an even number.
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Proof (2)⇒ (3)
Ideas?

Given: degrees of all vertices are even.
Also given: the graph is connected.

We need to partition E into cycles.

Try to find one cycle C and then partition E\C into cycles.

Looks like induction. Over what?

Over the size of E.

How about the assumption (2)? Will it still hold if we remove C?

How do the degrees of of vertices change if we remove a cycle?
And where do we actually get that cycle from?

Remember something from the last lecture?
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Proof (2)⇒ (3)

Induction basis
If E = ∅ then E can be partitioned to zero parts, each of which. . .

Induction step
|E | > 0.

Let H be a connected component of G that has edges.

All vertices of H have degree > 1

/ 2

Given: all vertices have even degree.

Theorem. If all vertices have degree > 2, then there is a cycle C.

Remove [edges of] C from G. All vertices still have even degree.
Let C1 ∪̇ · · · ∪̇ Ck be a partition of E\C into cycles.

Exists by the induction hypothesis.

Then E = C1 ∪̇ · · · ∪̇ Ck ∪̇ C

Exercise. Where did we use the connectedness of G?
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Proof (3)⇒ (1)
Ideas?

Given: the edges of a connected graph G = (V ,E,E) are partitioned to
cycles.

We have cycles C1, . . . ,Ck without common edges. We have to pass
through all of them.

Looks like induction again.

Where is connectedness important?
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Proof (3)⇒ (1)

Using connectedness

E = C1 ∪̇ · · · ∪̇ Ck . We may assume w.l.o.g. that
∀i ∈ {2, . . . , k }.∃j ∈ {1, . . . , i − 1}, such that Ci and Cj have a common
vertex.

Induction basis
E is a single cycle. Eulerian walk goes through it.

Induction step
Let P be a closed walk passing through edges in C1 ∪ · · · ∪ Ck−1.

Exists because of the induction hypothesis.

P passes through some vertex on Ck .

At this vertex, interrupt P, pass around Ck , continue with P.

�
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Algorithm for finding an Eulerian walk

Implicit in the proof of the previous theorem.

1 Partition the edges of the graph into cycles.
2 Pass through all of them.
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Semi-Eulerian graphs

Theorem
A connected graph is semi-Eulerian iff it has exactly two vertices with odd
degree.

Exercise. Prove it, by using the previous theorem in a material way.
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Hamiltonian graphs

Definition
Hamiltonian cycle in graph G is a cycle that passes through each
vertex exactly once.

Hamiltonian path in graph G is an open path that passes through
each vertex exactly once.

If a graph has a Hamiltonian cycle, it is called a Hamiltonian graph.

If a graph has a Hamiltonian path (but no cycle), it is called a
semi-Hamiltonian graph.

In Hamiltonicity considerations, double edges and loops are irrelevant.

Hence we only consider simple graphs G = (V ,E).
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Sir William Rowan Hamilton’s Icosian game
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Necessary and sufficient conditions for Hamiltonicity

For Eulericity, there was a nice, locally checkable necessary and
sufficient condition.

No such condition is known for Hamiltonicity.
The question, whether a given graph G is Hamiltonian or not, is
NP-complete.

Hence the existence of a simple algorithm for checking it is unlikely.

There exist easily checkable, sufficient, but not necessary conditions
for Hamiltonicity.

Many of them are are variations of “if a graph has many edges then it is
Hamiltonian”.
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If a graph has many edges. . .

Theorem (Dirac, 1952)
If a simple graph G = (V ,E) with |V | = n > 3 satisfies

∀v ∈ V : deg(v) > n/2

then G is Hamiltonian.

Follows trivially from

Theorem (Ore, 1960)
If a simple graph G = (V ,E) with |V | = n > 3 satisfies

∀u,w ∈ V :
(
if (u,w) < E then deg(u) + deg(w) > n

)
(O)

then G is Hamiltonian.
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Proof of Ore theorem
n = 3

If n = 3 then the only graph satisfying (O) is K3. It is Hamiltonian.

Exercise. Verify that only K3 satisfies (O).
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Proof of Ore theorem
Going to the limit

Let n > 4.

Do proof by contradiction
Assume there exists a non-Hamiltonian graph G satisfying (O).

Lemma
If G = (V ,E) satisfies (O) and (u, v) < E, then G′ = (V ,E ∪ {(u, v)}) also
satisfies (O).

Exercise. Prove it.

Lemma (The limit graph G∗)
There exists a graph G∗ = (V ,E∗) satisfying (O) and E ⊆ E∗, such that

G∗ is not Hamiltonian.

The addition of any one edge would make G∗ Hamiltonian.

Peeter Laud (Cybernetica) Discrete Mathematics, 3rd lecture September 20th, 2012 19 / 22



Why can and should we go to the limit?

Proof of the lemma
Add arbitrary edges to G until you reach that G∗.

By adding edges to G, we will eventually obtain a Hamiltonian graph.
Because Kn is Hamiltonian.
And we can only add a finite number of edges.

We stop one step before obtaining a Hamiltonian graph
. . . when there is no way to add one more edge.

We know more about G∗ than we know about G.

So we can argue more about it.

Note that G∗ , Kn.
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Proof of Ore theorem
G∗ is semi-Hamiltonian

Let e = (u,w) be an edge not present in G∗.

G∗ ∪ {e} is Hamiltonian. Let C be a Hamiltonian cycle in G∗ ∪ {e}.

C uses the edge e.
C\{e} is a path starting in u and ending in w and going through all
vertices in V .

It uses only edges in E∗.
Its length is n − 1.
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Proof of Ore theorem
G∗ is actually Hamiltonian

The Hamiltonian path.

How many edges have their right end-point connected to u?

deg(u).

How many edges have their left end-point connected to w?

deg(w).

There are n − 1 edges on the path. deg(u) + deg(w) > n.

Some edge has both end-points connected.

These edges give us a Hamiltonian cycle. �

u w
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