Võrgud ja vood Ford-Fulkersoni algoritm

Olgu G = (V, E) suunatud graaf.

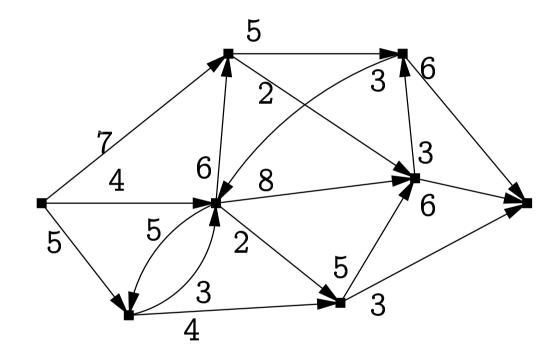
Suunatud graafi tipu $v \in V$ jaoks on defineeritud tema $\overrightarrow{sisendaste} \ \overrightarrow{\deg}(v)$ ja $\overrightarrow{valjundaste} \ \overrightarrow{\deg}(v)$.

Kui $\overrightarrow{\deg}(v) = 0$, siis on v graafi G *lähe*. Kui $\overleftarrow{\deg}(v) = 0$, siis on v graafi G *suue*.

 $egin{aligned} L\ddot{a}bilaskev \widetilde{o}ime \ G ext{-l} ext{ on mingi funktsioon } \psi: E \longrightarrow \mathbb{R}_+. \ Tipu \ v \in V \ \psi ext{-sisendaste on } \overrightarrow{\deg_\psi}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \psi(e). \end{aligned}$

$$\psi$$
-väljundaste on $\overleftarrow{\deg_\psi}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,u)}} \psi(e).$

 $V \tilde{o} r k$ on paar (G, ψ) , kus G on mingi suunatud graaf ja ψ mingi läbilaskevõime sellel.



Lause. Graafi G = (V, E) kõigi tippude ψ -sisendastmete summa on võrdne G kõigi tippude ψ -väljundastmete summaga.

Tõestus.

$$\sum_{v \in V} \overrightarrow{\deg_{\psi}}(v) = \sum_{v \in V} \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \psi(e) = \sum_{e \in E} \psi(e) = \sum_{v \in V} \psi(e) = \sum_{v \in V} \overleftarrow{\deg_{\psi}}(v) \; .$$

Olgu (G, ψ) võrk. Loeme, et G-l on täpselt üks lähe s ja täpselt üks suue t.

Voog võrgul (G,ψ) on mingi funktsioon $arphi:E\longrightarrow \mathbb{R}_+$, nii et

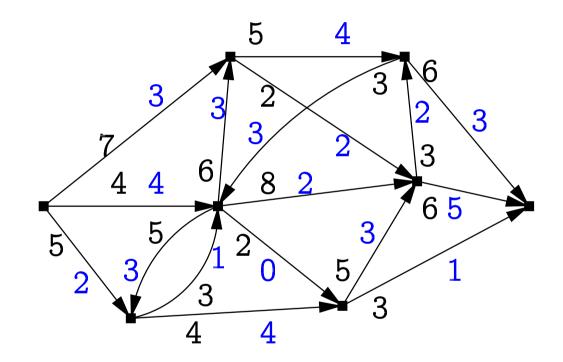
•
$$arphi(e) \leq \psi(e)$$
 iga $e \in E$ jaoks.

$$\bullet \ \overrightarrow{\deg_{\varphi}}(v) = \overleftarrow{\deg_{\varphi}}(v) \ \text{iga} \ v \in V \backslash \{s,t\} \ \text{jaoks}.$$

Eelmisest lausest järeldub $\overleftarrow{\deg_{\varphi}}(s) = \overrightarrow{\deg_{\varphi}}(t)$. Seda suurust nimetame voo φ väärtuseks ja tähistame $|\varphi|$.

Voog on *maksimaalne*, kui tema väärtus on maksimaalne võimalik.

Tänases loengus loeme, et graafis G = (V, E) pole silmuseid ja kordseid suunatud servi. Siis võime lugeda $E \subseteq V \times V$.



Lemma. Olgu (G,ψ) võrk, kus G=(V,E). Olgu $V=V_s \,\dot\cup\, V_t$, nii et $s\in V_s$ ja $t\in V_t$. Olgu

$$\Phi(V_s,V_t) = \sum_{e \in E \cap (V_s imes V_t)} arphi(e) - \sum_{e \in E \cap (V_t imes V_s)} arphi(e) \;\;.$$

Siis on $\Phi(V_s, V_t)$ võrdne φ väärtusega.

Tõestus. Induktsioon üle $|V_s|$.

Baas. $|V_s| = 1$. Siis $V_s = \{s\}$. Hulk $V_s \times V_t$ sisaldab parasjagu kõik s-st väljuvad servad ja hulk $V_t \times V_s$ on tühi.

Samm. Kehtigu lause väide mingite hulkade V_s ja V_t jaoks. Olgu $x \in V_t \setminus \{t\}, V'_s = V_s \cup \{x\}$ ja $V'_t = V_t \setminus \{x\}$. Piisab, kui näitame, et $\Phi(V_s, V_t) = \Phi(V'_s, V'_t)$.

$\Phi(V_s,V_t)$:				$\Phi(V_s',V_t')$:				
V imes V	V_s	x	V_t'		V imes V	V_s	x	V_t'
V_s		$+ \varphi$	$+ \varphi$		V_s			+ arphi
x	-arphi				x			+ arphi
V_t'	-arphi				V_t'	-arphi	-arphi	

$\Phi(V_s,V_t)-\Phi(V_s',V_t')=$								
V imes V	V_s	x	V_t'					
V_s		$+ \varphi$						
x	-arphi		-arphi					
V_t'		+ arphi						
$=\overrightarrow{\deg_{arphi}(x)}-\overleftarrow{\deg_{arphi}(x)}=0$								

Võrgu (G, ψ) , kus G = (V, E), *lõige* on mingi servade hulk $L \subseteq E$, nii et iga suunatud tee G lähtest suudmesse kasutab mõnda serva hulgast L.

Alternatiivselt: $L \subseteq E$ on lõige, kui graafis $(V, E \setminus L)$ ei leidu ühtki suunatud teed tipust *s* tippu *t*.

Lõike *L läbilaskevõime* on summa $\sum_{e \in L} \psi(e)$. Tähistame $\psi(L)$.

Lõige on *minimaalne*, kui tema läbilaskevõime on minimaalne võimalik. Teoreem (Ford ja Fulkerson). Võrgu maksimaalsete voogude väärtus on võrdne selle võrgu minimaalsete lõigete läbilaskevõimega.

Tõestus. Olgu (G, ψ) võrk, olgu G = (V, E). Olgu s tema lähe ja t tema suue. Näitame, et

- I. Ühegi voo väärtus pole suurem kui ühegi lõike läbilaskevõime.
- II. Maksimaalse voo jaoks leidub lõige, mille läbilaskevõime on võrdne selle voo väärtusega.

Iosa. Olgu φ mingi voog ja Lmingi lõige.

Olgu $V_s \subseteq V$ kõigi selliste tippude hulk, kuhu leidub tipust s suunatud tee, kasutamata servi hulgast L. Olgu $V_t = V \setminus V_s$. Kuna $E \cap (V_s \times V_t) \subseteq L$, siis

 $\psi(L) \geq \sum_{e \in E \cap (V_s imes V_t)} \psi(e) \geq \sum_{e \in E \cap (V_s imes V_t)} arphi(e) \geq \Phi(V_s,V_t) = |arphi| \;\;.$

II osa. Olgu φ mingi maksimaalne voog.

Olgu $V_s \subseteq V$ kõigi selliste tippude v hulk, et: Leidub suunamata tee $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = v$, nii et

• Kui $e_i = (v_{i-1}, v_i)$, siis $\varphi(e_i) < \psi(e_i)$.

• Kui
$$e_i = (v_i, v_{i-1})$$
, siis $\varphi(e_i) > 0$.

Ütleme, et tippude v_{i-1} ja v_i vahel on voog küllastamata.

Sellist teed nimetame *suurendavaks*.

Olgu $V_t = V \setminus V_s$. Näitame, et $t \in V_t$. Tõepoolest, kui $t \in V_s$, siis pole φ maksimaalne:

Olgu $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ mingi suurendav tee. Defineerime positiivsed reaalarvud δ_i järgmiselt:

$$\delta_i = egin{cases} \psi(e_i) - arphi(e_i), & ext{kui} \; e_i = (v_{i-1}, v_i) \ arphi(e_i), & ext{kui} \; e_i = (v_i, v_{i-1}) \ . \end{cases}$$

Olgu $\varepsilon = \min_i \delta_i$. Olgu φ' järgmine voog:

$$arphi'(e) = egin{cases} arphi(e), & ext{kui} \ e
ot\in \{e_1,\dots,e_m\} \ arphi(e) + arepsilon, & ext{kui} \ e = e_i = (v_{i-1},v_i) \ arphi(e) - arepsilon, & ext{kui} \ e = e_i = (v_i,v_{i-1}) \end{array}$$

Siis φ' on voog ja $|\varphi'| = |\varphi| + \varepsilon$.

Hulkade V_s ja V_t konstruktsioon annab:

- Kui $e \in E \cap (V_s \times V_t)$, siis $\varphi(e) = \psi(e)$.
- Kui $e \in E \cap (V_t \times V_s)$, siis $\varphi(e) = 0$.

Olgu $L = E \cap (V_s \times V_t)$. Siis L on lõige ja $\psi(L) = |\varphi|$. \Box

Algoritm max. voo leidmiseks (Ford-Fulkerson). Olgu (G, ψ) võrk, kus G = (V, E).

Olgu φ mingi voog võrgul (G, ψ) , näiteks $\forall e : \varphi(e) = 0$. Korda:

- 1. Leia mingi suurendav tee $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$. Kui sellist teed ei leidu, siis lõpeta ja väljasta φ .
- 2. Konstrueeri φ' nagu kujutatud 2 slaidi tagasi.
- 3. Omista $\varphi := \varphi'$.

Mingi suurendav tee leitakse graafi mingil viisil läbides.

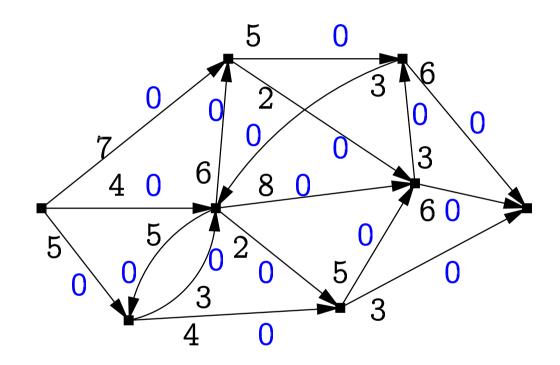
Teoreem. Ford-Fulkersoni algoritm leiab maksimaalse voo.

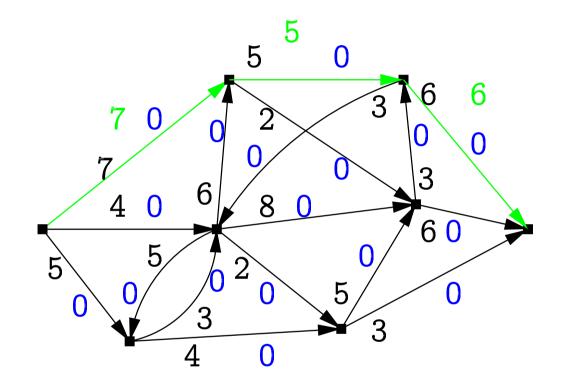
Tõestus. Ilmne on, et see algoritm leiab mingi voo. Meil tuleb ainult näidata, et ta ei lõpeta oma tööd enne maksimaalse vooni jõudmist.

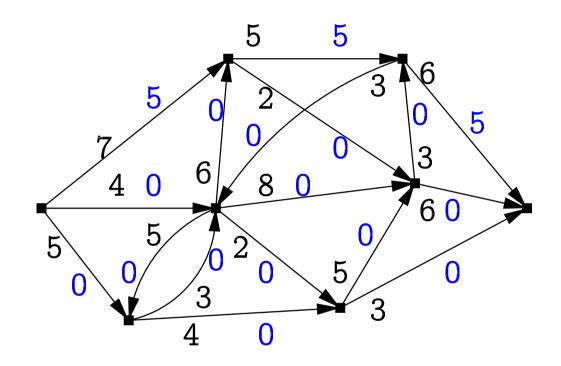
Näitame, et kui φ pole maksimaalne voog, siis leidub tema suhtes suurendav tee $s \rightsquigarrow t$.

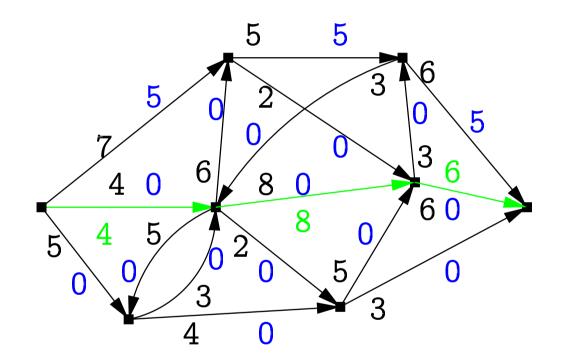
Olgu V_s kõigi tippude hulk, kuhu leidub *s*-st suurendav tee ja olgu $V_t = V \setminus V_s$. Oletame vastuväiteliselt, et $t \in V_t$.

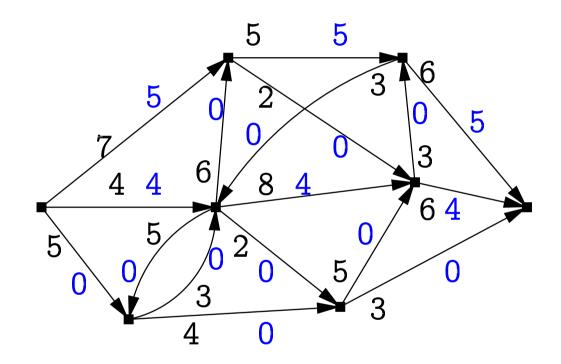
Sarnaselt eelmise teoreemi tõestusega on $L = E \cap (V_s \times V_t)$ lõige ja $\psi(L) = |\varphi|$. Seega on φ maksimaalne.

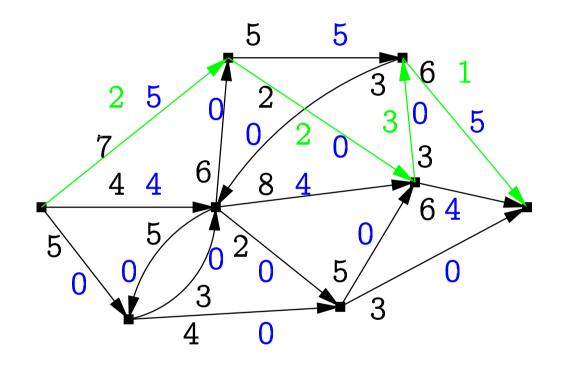


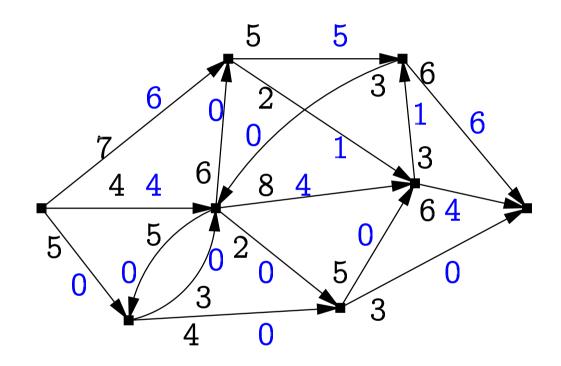


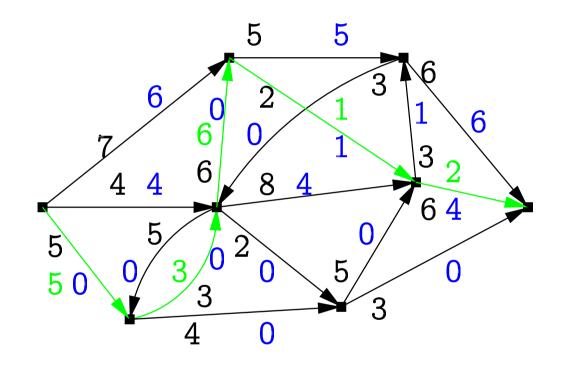


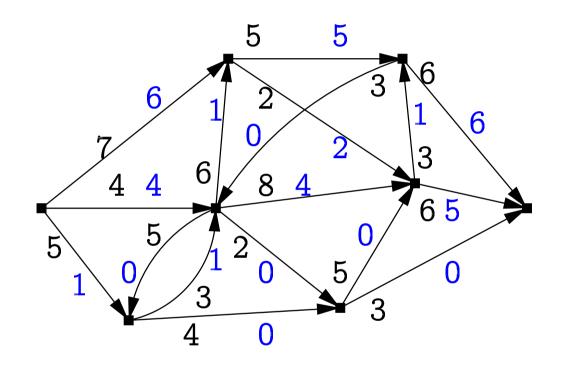


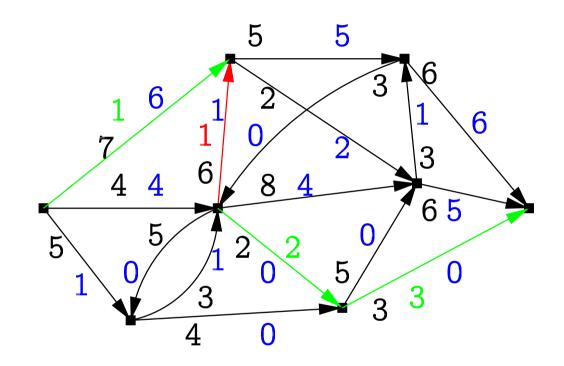


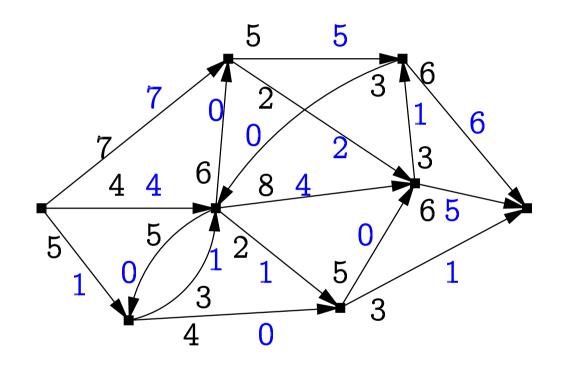


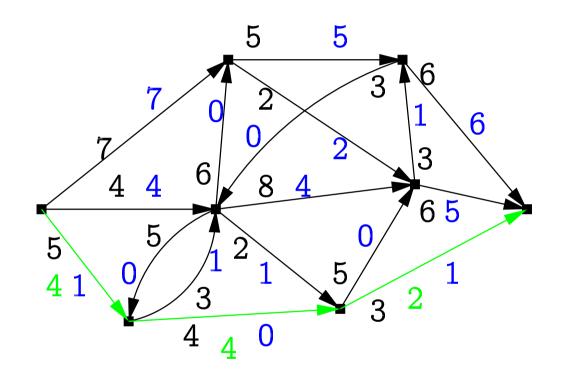


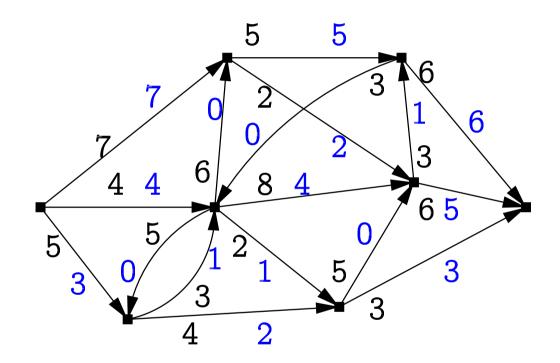


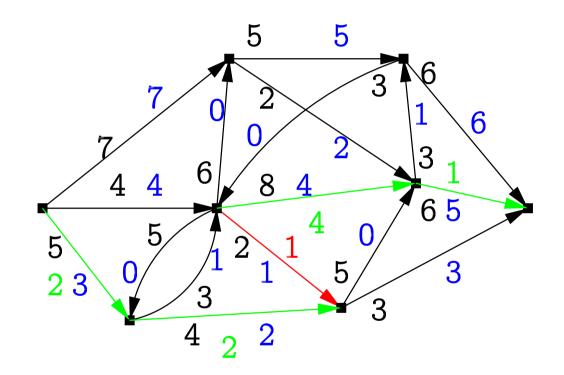


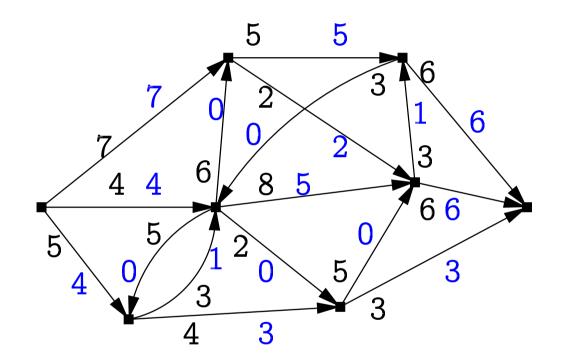




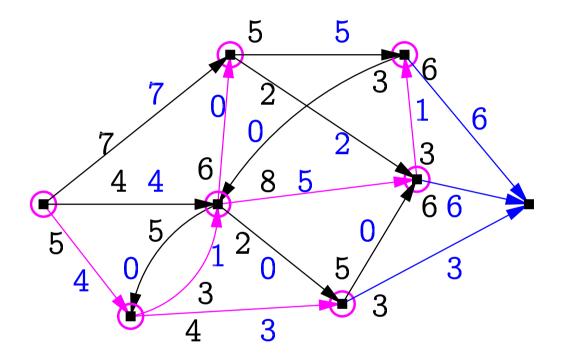








neisse tippudesse leidub suurendav tee



minimaalne lõige: ringiga \rightarrow ringita

Suurendava tee leidmine:

Olgu $V_s = \{s\}, W = \{s\}.$

Korda, seni kuni $W \neq \emptyset$ ja $t \notin V_s$.

- 1. Vali mingil viisil $v \in W$. Eemalda ta hulgast W.
- 2. Iga $e \in E$ jaoks, mille üks otspunkt on v: kui v ja serva e teise otspunkti w vahel on voog küllastamata ning kui $w \notin V_s$, siis
 - (a) lisa w hulkadesse V_s ja W.
 - (b) Jäta meelde, et w-le "eelnev tipp" on v.

Kui $t \notin V_s$, siis ei leidu suurendavat teed. Kui $t \in V_s$, siis konstrueeri suurendav tee, liikudes *t*-st mööda "eelnevaid tippe" tippu *s*.

Lause. Kui võrgu kõigi servade läbilaskevõimed on täisarvulised, siis täidetakse max. voo leidmise algoritmis tsüklit ülimalt $|\varphi|$ korda, kus φ on mingi maksimaalne voog.

Tõestus. Igal iteratsioonil suureneb juba leitud voo väärtus. Kuna murdarvud ei saa mitte kuskilt sisse tulla, siis suureneb ta iga kord vähemalt 1 võrra. \Box

Loeme nüüd, et suurendav tee lähtest suudmesse leitakse graafi laiuti läbides (Edmonds-Karpi täiendus).

Siis on leitud suurendaval teel $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ järgmine omadus:

Iga *i* jaoks on $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_i}{\longrightarrow} v_i$ lühima pikkusega suurendav tee lähtest tippu v_i .

Kui (G, ψ) , kus G = (V, E) on mingi võrk ja φ mingi voog sellel, siis tähistagu $\delta_{\varphi}(v)$, kus $v \in V$, lühima suurendava tee pikkust lähtest tippu v. Lemma. Olgu $\varphi_0, \varphi_1, \varphi_2, \ldots$ voogude jada, mis tekivad max. voo leidmise algoritmi järjestikustel iteratsioonidel. Siis on suvalise $v \in V$ jaoks jada $\delta_{\varphi_i}(v)$ mittekahanev.

Tõestus. Vaatame mingeid vooge φ_n ja φ_{n+1} selles voogude jadas, olgu $B = \{v \mid \delta_{\varphi_{n+1}}(v) < \delta_{\varphi_n}(v)\}$. Oletame vastuväiteliselt, et B pole tühi. Olgu $v \in B$ selline, mille jaoks $\delta_{\varphi_{n+1}}(v)$ on minimaalne.

Olgu P' lühim suurendav tee lähtest tippu v voo φ_{n+1} järgi. Olgu u selle tee eelviimane tipp. Kuna $\delta_{\varphi_{n+1}}(u) < \delta_{\varphi_{n+1}}(v)$, siis $u \notin B$.

Vaatame voogu φ_n tippude u ja v vahel.

Kui φ_n on tippude u ja v vahel küllastamata, siis

$$\delta_{arphi_n}(v) \leq \delta_{arphi_n}(u) + 1 \leq \delta_{arphi_{n+1}}(u) + 1 = \delta_{arphi_{n+1}}(v)$$

ja seega $v \notin B$, vastuolu.

Kui φ_n on tippude u ja v vahel küllastatud, siis olgu P_n suurendav tee lähtest suudmesse, nii et φ_{n+1} on konstrueeritud φ_n -st, lisades talle täiendava voo läbi tee P_n .

Kuna lisamisel muutub voog u ja v vahel küllastamatuks, siis leidub tees P_n serv $\cdots = v = u = \cdots$. Vastavalt P_n omadustele $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) - 1$. Saame

$$\delta_{arphi_n}(v)=\delta_{arphi_n}(u){-}1\leq \delta_{arphi_{n+1}}(u){-}1=\delta_{arphi_{n+1}}(v){-}2<\delta_{arphi_{n+1}}(v)$$

ja seega $v \notin B$, vastuolu.

Teoreem. Max. voo leidmise algoritm teeb ülimalt $(|V|-2) \cdot |E|$ iteratsiooni.

Tõestus. Vaatame algoritmi mingit iteratsiooni (olgu ta järjekorranumber n). Sel iteratsioonil konstrueeritakse suurendav tee $P_n : s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$. Ütleme, et tipupaar (v_{i-1}, v_i) on kriitiline, kui talle vastav suurus δ_i (mis näitab, kui palju tuleb voogu tippude v_{i-1} ja v_i vahel suurendada, et ta küllastuks) on minimaalne (s.t. $\delta_i = \varepsilon$). Igal iteratsioonil on vähemalt üks kriitiline tipupaar. Järg-

misel iteratsioonil on see tipupaar küllastatud.

Loeme, mitmel iteratsioonil korda saab mingi tipupaar (u, v)kriitiline olla. Kui ta on kriitiline *n*-ndal iteratsioonil, siis $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) + 1.$ Et (u, v) saaks kunagi hiljem jälle kriitiline olla, peab millalgi olema iteratsioon nr. n' > n, millel leitav suurendav tee $P_{n'}$ sisaldab serva $\cdots - v - u - \cdots$. Siis

$$\delta_{arphi_{n'}}(u) = \delta_{arphi_{n'}}(v) + 1 \geq \delta_{arphi_n}(v) + 1 = \delta_{arphi_n}(u) + 2$$

seega iga kord, kui (u, v) saab kriitiliseks, on $\delta_{\varphi}(u)$ eelmise korraga võrreldes vähemalt kahe võrra suurem.

Suurus $\delta_{\varphi}(u)$ ei saa olla suurem kui |V| - 2 (kui (u, v) on kriitiline). Seega on (u, v) kriitiline ülimalt $\frac{|V|-2}{2}$ korral. Meid huvitavaid paare (u, v) on ülimalt $2 \cdot |E|$ tükki. \Box

Olgu (G, ψ) mingi võrk. Peale selle olgu G igal serval e antud veel *hind* $c(e) \in \mathbb{R}$. Hind võib olla ka negatiivne.

Olgu φ mingi voog võrgul (G, ψ) . Voo φ hind on

$$c(arphi):=\sum_{e\in E(G)}c(e)arphi(e)$$
 .

Otsime minimaalse hinnaga maksimaalset voogu.

Olgu (G, ψ) mingi võrk (suvalise arvu lähete ja suuetega), kus G = (V, E). $f : E \longrightarrow \mathbb{R}^+$ on võrgu (G, ψ) ringlus (ingl. k. circulation), kui

• $f(e) \leq \psi(e)$ iga $e \in E$ jaoks.

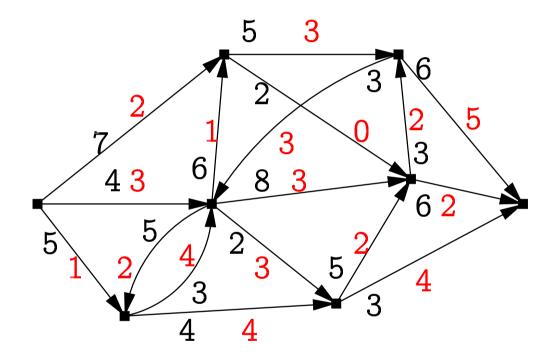
•
$$\overrightarrow{\deg_f}(v) = \overleftarrow{\deg_f}(v)$$
 iga $v \in V$ jaoks.

Andku $c: E \longrightarrow \mathbb{R}^+$ servade hinnad. Me otsime minimaalse hinnaga ringlust võrgus (G, ψ) .

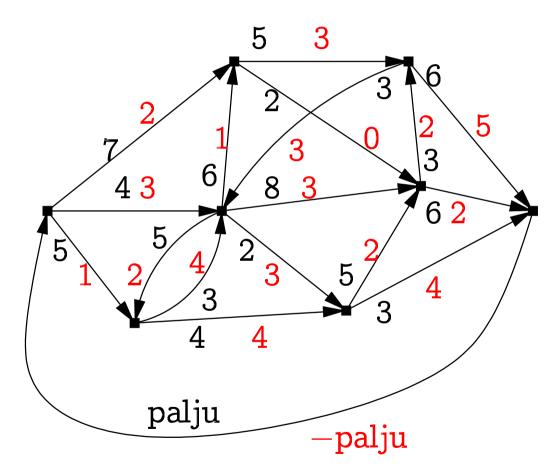
Minimaalse hinnaga maksimaalse voo leidmine on taandatav minimaalse hinnaga ringluse leidmisele.

läbilaskevõime

hind



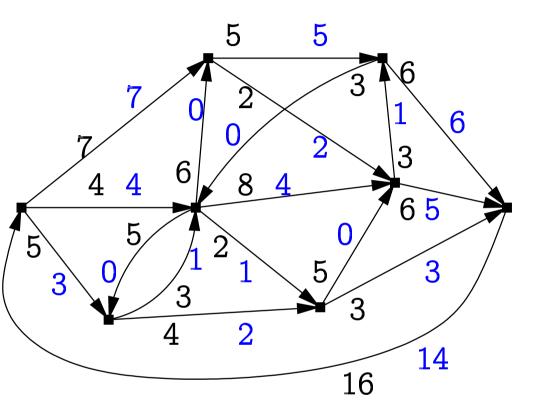
läbilaskevõime

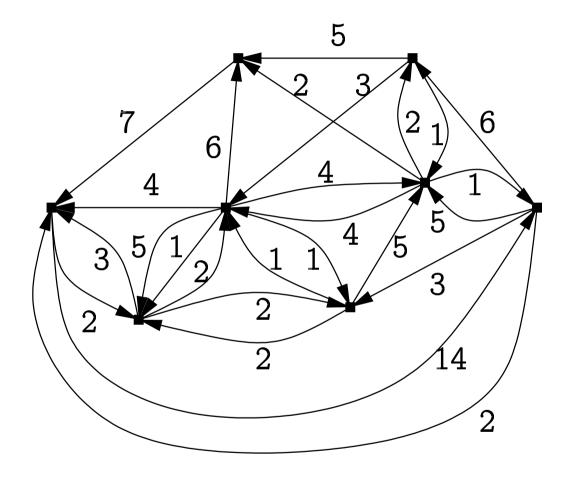


Olgu (G, ψ) mingi võrk ja f mingi ringlus sellel. Olgu G = (V, E). Ringluse f jääkvõrk (mis koosneb jääkgraafist $G_f = (V, E_f)$ ja jääkläbilaskevõimest ψ_f) (ingl. k. residual ...) on siis defineeritud järgmiselt:

• Iga
$$e = (u, v) \in E$$
 jaoks:
- Kui $f(e) < \psi(e)$, siis $e^+ \in E_f$. Seejuures $\mathcal{E}(e^+) = (u, v)$ ja $\psi_f(e^+) = \psi(e) - f(e)$.

 $- ext{ Kui }f(e)>0 ext{, siis }e^-\in E_f ext{. Seejuures }\mathcal{E}(e^-)=(v,u)$ ja $\psi_f(e^-)=f(e) ext{.}$





Olgu f ringlus võrgul $(G, \psi), G = (V, E)$ ja f' ringlus jääkvõrgul (G_f, ψ_f) . Olgu $(f + f') : E \longrightarrow \mathbb{R}$ defineeritud järgmiselt:

$$orall e \in E: \; (f+f')(e) = f(e) + f'(e^+) - f'(e^-)$$

kus loeme, et kui mõnda serva e^+ või e^- pole olemas, siis f'-i rakendamine talle annab tulemuseks 0-i.

Teoreem. f + f', nagu defineeritud ülalpool, on ringlus võrgul (G, ψ) (suvaliste f ja f' jaoks).

Tõestus. Näitame kõigepealt, et $0 \le (f+f')(e) \le \psi(e)$ iga $e \in E$ jaoks.

$$egin{aligned} 0 &= f(e) - \psi_f(e^-) \leq f(e) - f'(e^-) \leq \ & f(e) + f'(e^+) - f'(e^-) \leq \ & f(e) + f'(e^+) \leq f(e) + \psi_f(e^+) = \psi(e), \end{aligned}$$

siin puuduvad suurused loeme jällegi võrdseks nulliga.

Näitame, et iga $v \in V$ jaoks $\overrightarrow{\deg_{f+f'}}(v) = \overleftarrow{\deg_{f+f'}}(v).$

$$\overrightarrow{\deg_{f+f'}}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} (f+f')(e) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} (f(e) + f'(e^+) - f'(e^-)) = \overline{\operatorname{deg}_f}(v) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} (f'(e^+) - f'(e^-))$$

Meil on

$$\sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} f(e^+) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} f(e^-) = \overrightarrow{\deg_{f'}}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} f(e^+) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} f(e^-) .$$

Seega

$$\sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} ig(f'(e^+) - f'(e^-)ig) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} ig(f'(e^+) - f'(e^-)ig) \;\;.$$

$$egin{aligned} \overrightarrow{\deg}_{f+f'}(v) &= \overrightarrow{\deg}_{f}(v) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} ig(f'(e^+) - f'(e^-)ig) = \ & \overleftarrow{\deg}_{f}(v) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} ig(f'(e^+) - f'(e^-)ig) = \ & \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} ig(f(e) + f'(e^+) - f'(e^-)ig) = \ & \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} ig(f(e) + f'(e^+) - f'(e^-)ig) = \ & \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} (f + f')(e) = \overleftarrow{\deg}_{f+f'}(v) \end{aligned}$$

Olgu f ja g ringlused võrgul (G, ψ) , G = (V, E). Olgu $(g - f) : E_f \longrightarrow \mathbb{R}$ defineeritud järgmiselt: Iga $e \in E$ jaoks:

- kui $g(e) \ge f(e)$, siis $(g f)(e^+) = g(e) f(e)$ ja $(g f)(e^-) = 0;$
- kui g(e) < f(e), siis $(g f)(e^+) = 0$ ja $(g f)(e^-) = f(e) g(e)$.

Teoreem. g - f, nagu defineeritud ülalpool, on ringlus võrgul (G_f, ψ_f) .

Teoreem. f + (g - f) = g.

Tõestused sarnased eelmise teoreemi tõestusega.

Olgu (G, ψ) , kus G = (V, E), võrk, f ringlus sellel ja $c : E \longrightarrow \mathbb{R}$ servade hinnad. Defineerime (G_f, ψ_f) servade hinnad c_f järgmiselt:

$$egin{aligned} c_f(e^+) &= c(e) \ c_f(e^-) &= -c(e) \end{aligned}$$

iga $e \in E$ jaoks.

Teoreem. Olgu f ringlus võrgul $(G, \psi), G = (V, E)$, ja f'ringlus jääkvõrgul (G_f, ψ_f) . Andku $c : E \longrightarrow \mathbb{R}$ graafi Gservade hinnad. Siis $c(f + f') = c(f) + c_f(f')$.

Tõestus: f + f' definitsioonist.

Lemma. Kui võrgus (G, ψ) , G = (V, E), kus c annab servade hinnad, pole negatiivse hinnaga tsükleid, siis minimaalse hinnaga ringluseks sellel võrgul on nullringlus.

Tõestus. Näitame induktsiooniga üle hulga

$$\mathrm{supp}\,f=\{e\in E\,:\,f(e)>0\}$$

võimsuse, et suvalise voo f hind on mittenegatiivne.

Baas. $|\operatorname{supp} f| = 0$. Siis c(f) = 0.

Samm. $|\operatorname{supp} f| = n > 0$. Olgu $V' \subseteq V$ kõigi nende tippude hulk, kuhu suubub mõni serv e, nii et f(e) > 0. Kõigist neist tippudest ka väljub mõni serv e, nii et f(e) > 0.

Graafis $(V', \operatorname{supp} f)$ leidub mingi suunatud tsükkel C. Olgu $\delta = \min_{e \in C} f(e)$. Olgu g järgmine ringlus:

$$g(e) = egin{cases} f(e), \ \mathrm{kui} \ e
ot\in C \ f(e) - \delta, \ \mathrm{kui} \ e \in C \end{array} .$$

Teoreem. Olgu (G, ψ) võrk, c selle servade hinnad ja fringlus sellel. Siis f on minimaalse hinnaga parajasti siis, kui võrgus (G_f, ψ_f) servade hindadega c_f ei leidu negatiivse hinnaga tsükleid.

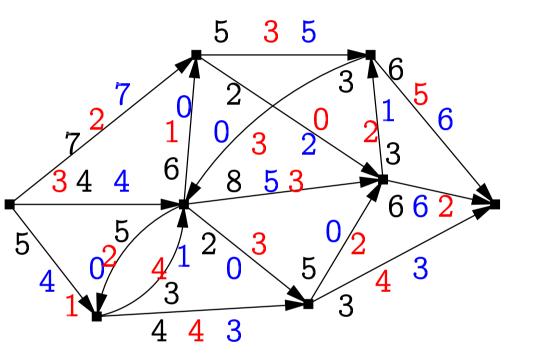
Tõestus. \Rightarrow . Kui võrgus (G_f, c_f) leiduks negatiivse hinnaga tsükkel C, siis leiduks seal ka negatiivse hinnaga ringlus f'. f + f' oleks väiksema hinnaga kui f.

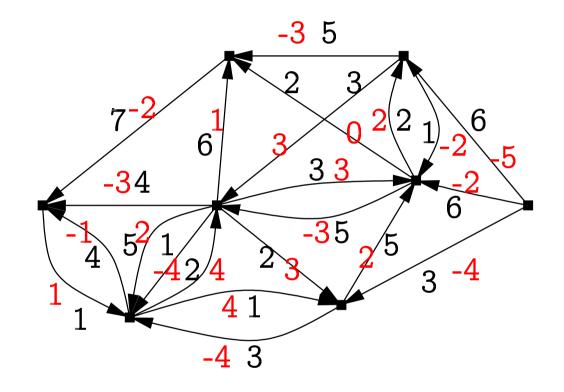
 \Leftarrow . Olgu f võrgu (G, ψ) ringlus, mis ei ole minimaalse hinnaga. Olgu f^* minimaalse hinnaga ringlus võrgus (G, ψ) . Siis $f^* - f$ on negatiivse hinnaga ringlus võrgus (G_f, ψ_f) . Seega leidub seal negatiivse hinnaga tsükkel. Algoritm minimaalse hinnaga ringluse leidmiseks võrgus (G, ψ) servade hinnaga c. Olgu f mingi esialgne ringlus. Tee tsüklis:

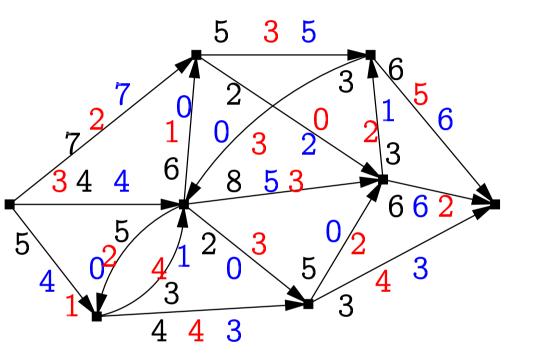
- 1. Leia negatiivse hinnaga tsükkel C võrgus (G_f, ψ_f) . Kui sellist ei ole, lõpeta töö. f on minimaalse hinnaga ringlus.
- Olgu δ = min_{e[?]∈C} ψ_f(e[?]). Olgu f' ringlus võrgus (G_f, ψ_f), nii et f'(e[?]) = δ või f'(e[?]) = 0, sõltuvalt sellest kas e[?] asub tsüklil C või ei.

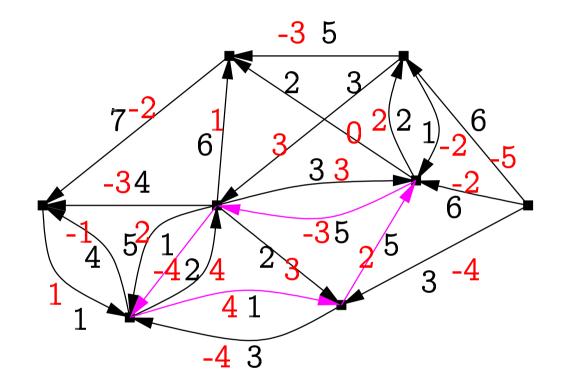
3. võta
$$f := f + f'$$
.

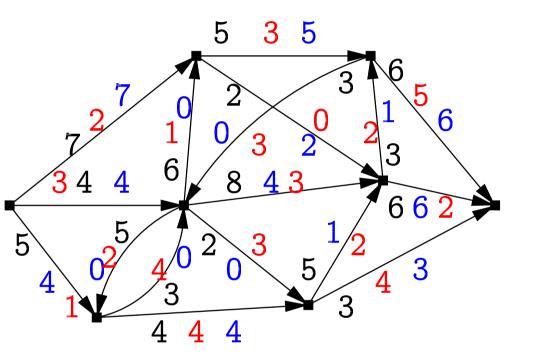
Minimaalse hinnaga maksimaalse voo leidmisel võib esialgse f-i leida näiteks Ford-Fulkersoni algoritmiga.

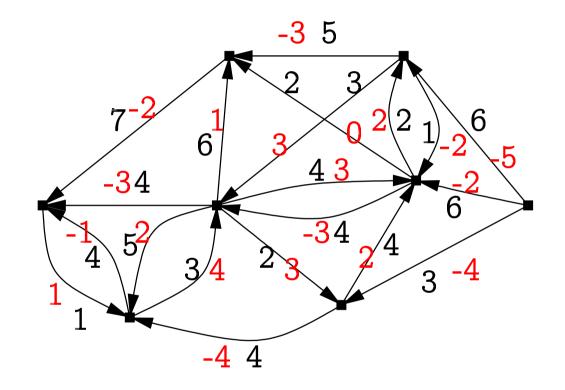












Negatiivse hinnaga tsükli leidmiseks: Bellman-Fordi algoritm.

Lisame graafile G_f täiendava tipu x, lisame temast kaared hinnaga 0 kõigisse teistesse tippudesse, leiame kõigi tippude kauguse x-st (kaare pikkuseks on tema hind), leiame ka lühimad teed (s.t. iga tipu jaoks leiame talle eelneva tipu vastaval lühimal teel).

Kui |V|-ndal iteratsioonil midagi muutub, siis tipud, mille juures muutub, asuvad negatiivse pikkusega tsüklil. Viidad eelnevatele tippudele annavadki selle tsükli.