
Planar graphs



A graph is planar (tasandiline, planaarne) if it can be

drawn on a plane in such a way that its edges do not in-

tersect outside their end-vertices.

Example: K4 and Q3 are planar, K3;3 is not.

This definition is not precise because the notion of “drawing”

is not precise.

The following illustrates the precise definition. However, in

this lecture we will still use the intuitivity of the “defini-

tion” given above.



A curve (k~over ) in the Euclidean space R n is a function : [a; b℄ −→ R n, where a; b 2 R .

The curve  is continuous , if limx!y (x) = (y) for all y 2[a; b℄.
The length of the curve  is

supf kXi=1 d((ti�1); (ti)) j k 2 N ; a = t0 < t1 < : : : < tk = bg :

A curve is rectifiable (sirgestuv) if it has a length.

Let Jn be the set of all curves in the space R n that are

continuous, rectifiable, and do not intersect itself.



The drawing of a graph G = (V;E) in the space R n is a
pair of mappings �V : V −→ R n�E : E −→ Jn;

such that� �V and �E are injective;� if E(e) = fu; vg, then the endpoints of �E(e) are �V (u)

and �V (v).� The curves �E(ei) intersect each other only in their
common end-points.

A graph is planar if it has a drawing in R 2.



The drawing of the graph partitions the rest of the pla-
ne (not covered by the drawing) into faces (tahk). Graafi
joonis tükeldab tasandi selle osa, mis joonise alla ei jää.

F1
F2

F3
The face F3 is the infinite face .

A graph can be drawn so, that any one of the faces was
infinite.) A graph can be drawn so, that any one of the edges was
outer.



f1
f2

f3

f4

Each face has a number of sides (külg).� Number of sides f1 — 4, f2 — 3, f3 — 8, f4 — 5.� I.e. if an edge has the same face in “both sides”, then
this edge countes as two sides of that face.� The number of sides of all faces equals the double of
the number of edges.



Theorem (Euler). Let G be a connected planar graph.

Define� n — the number of vertices of G,� m — the number of edges of G,� f — the number of faces of some drawing of G.

Then n+ f �m = 2.
Proof. Induction over m.

Base. G is a tree. Then n = m+ 1 and f = 1. Thusn+ f �m = m+ 1 + 1�m = 2.



Step. Let G be a connected graph that is not a tree. Let G

have m edges. There is an edge e whose removal does not

disconnect G.

e
The number of edges and faces in the graph G�e is one less

than in G. By induction assumption, n+(f�1)�(m�1) =2. Hence n+ f �m = 2. �



Corollary. Let G be a planar graph. Define� n — the number of vertices of G,� m — the number of edges of G,� f — the number of faces of some drawing of G.� k — the number of connected components of G.

Then n+ f �m = k + 1.
Proof. Apply the previous theorem to each connected com-

ponent of G. Pay attention to count the infinite face only

once. �



Corollary. If G is a simple connected planar graph with

at least 3 vertices, then m � 3n � 6 (same definitions ofm and n as before).

Proof. Each face of a drawing of such G has at least 3 sides.

Each edge occurs as a side of a face twice, hence2m = XF is a face
hnumber of sides of F i � 3f :

Euler’s formula gives

2 = n+ f �m � n+ 23m�m = 3n�m3
or 3n�m � 6. �



Corollary. K5 is not planar.

Tõestus. The graph K5 has n = 5 and m = 10. If K5 were

planar, then it had to have m � 3n� 6 or 10 � 9. �



Corollary. If G is a simple connected planar graph with

at least 3 vertices, and if G contains no cycles of length 3,
then m � 2n� 4.
Proof. Each face of a drawing of such G has at least 4 sides.

Each edge occurs as a side of a face twice, hence 2m � 4f .

Euler’s formula gives

2 = n+ f �m � n+ 12m�m = 2n�m2
or 2n�m � 4. �



Corollary. K3;3 is not planar.

Tõestus. The graph K3;3 has n = 6 and m = 9. It does not

contain cycles of length 3. If K3;3 were planar, then it had

to have m � 2n� 4 or 9 � 8. �



Corollary. A simple planar graph contains a vertex of deg-

ree at most 5.
Proof. Let G be a connected component of a simple planar

graph. Assume contrarywise, that the degrees of all vertices

of G are at least 6.
Each edge is incident to two vertices, hence 6n � 2m orm � 3n. But before we had m � 3n� 6. �.



Subdividing (poolitamine) of an edge: (G =) G0):

u
v

G0u
v

G
e we00 e0

Edge e is replaced by a vertex w and edges e0, e00.
Graphs G1 and G2 are homeomorphic (homöomorfsed),

if there is a graph G, such that both G1 and G2 can be

obtained from G by subdividing edges.



Theorem (Kuratowski). A graph is planar iff it has no

subgraphs homeomorphic to K5 or K3;3.
Hence a graph is non-planar iff it “contains” K5 or K3;3 in

the following sense:� The vertices of K5 or K3;3 are the vertices of G.� The edges of K5 or K3;3 are paths in G.� Those paths do not intersect each other, except at their

common end-vertices.



Proof. Assume the contrary — there exist non-planar grap-
hs that “contain” neither K5 or K3;3. Let G be such a graph,
with minimal number of edges and no isolated vertices.G obviously satisfies the following:� G is a simple graph.� G is connected.� G has no bridges.� G has no cut-vertices.

Let e be an edge of G, let E(e) = fu; vg. Let F = G�feg.
Then F is planar, because it satisfies the claims of the
theorem and contains no K5 or K3;3.



Claim 1. Graph F contains no vertex w, such that F has

the form

u vwF
i.e. w is a cut-vertex of F whose removal separates u andv.



Assume contrarywise that F has the shape

u vwF
Let F 0 be obtained from F by adding the following two

edges to it:
u vwF 0



Let B1 and B2 be the following graphs:

u vwF 0
u wB1

vw B2
The graphs B1 and B2 have less edges than G, hence they
satisfy the claim of the theorem.

There are two possibilities:



1. possibility. B1 (or B2) contains K5 or K3;3.
This containment must use the new edge between u andw.

But then also G contains K5 or K3;3:

eu
GB1 w v

New edge can be replaced by a path that is outside of B1.



2. possibility. Both B1 and B2 are planar.

Then G is planar, too. Draw B1 and B2 so, that the new

edges were on the infinite face:B1 B2

u w ve

G

Claim 1 has been proved.

Hence F contains a block containing both u and v. HenceF contains a cycle passing through both u and v.



Draw F on the plane and choose a cycle C passing throughu and v in such a way, that the number of faces located
inside C is as large as possible .

u v
C



Besides the cycle C, the graph F contains more compo-

nents . Some of them are inner , the others are outer .

Let x and y be vertices on C. Some inner/outer component

separates x and y if it is on the way of drawing a line fromx to y inside/outside C.

y
x C



Claim: all outer components separate u and v and are con-

nected to C with exactly two edges:

vCu vCu

C 0

Otherwise there is a drawing / cycle that puts more faces

inside C.



Claim 2. There exist an inner component and an outer

component (attached to C at vertices u0 and v0), such that

this inner component separates both u and v, and u0 andv0.

vu C u0
v0



Proof of the claim: let I be an inner component separa-

ting u and v, that for no outer components separates the

vertices where this outer component attaches to C:

vu C
I



We can move I outside:

vu C

I



If claim 2 was wrong, then we can move out all inner com-

ponents that separate u and v. Afterwards we can re-add

the edge e to the graph F , giving us the graph G. This

gives us a planar drawing of G. Hence the claim 2 must

hold.

vu C e



Let x; y be the vertices that I has separating u and v.
Let x0; y0 be the vertices that I has separating u0 and v0.

u v
u0

v0
I

x
y

x0 y0

e

They can be arranged in several ways. We will consider

them and find K5 or K3;3 from G in all cases.



1st way. x0; y0 differ from u and v and I separates u andv due to x0; y0 as well.

u v
u0

v0x0
y0

e K3;3



2nd way x0; y0 differ from u and v and I does not separateu and v due to x0; y0.
We can assume that x0; y0 are on the same side as x.

1st option. y is between u and v0.
u v

u0
v0y

y0

e K3;3



2nd way. x0; y0 differ from u and v and I does not sepa-

rate u and v due to x0; y0.
We can assume that x0; y0 are on the same side as x.

2nd option. y is between v0 and v.
u v

u0
v0

x0
e K3;3

y



2nd way. x0; y0 differ from u and v and I does not sepa-

rate u and v due to x0; y0.
We can assume that x0; y0 are on the same side as x.

3rd option. y = v0.
u v

u0
v0

x0 y0

e K3;3

y



3rd way. x0 = u and y0 6= v. Assume that y0 is betweenu0 and v.
1st option. y is between u and v0.

u v
u0

v0
y0

e K3;3

y
x0



3rd way. x0 = u and y0 6= v. Assume that y0 is betweenu0 and v.
2nd option. y is between v0 and v or y = v0.

u v
u0

v0
y0

e K3;3

yx0



4th way. x0 = u and y0 = v.
u v

u0
v0

I
x

y
ex0 y0

If x and y are not u0 and v0, then we exchange the nota-

tions (u$ u0, v $ v0, x$ x0, y $ y0, e$ the path outside C).

We are back to one of the three first ways.



We are left with the case x0 = u, y0 = v, x = u0, y = v0.
The vertices neighbouring u; v; u0; v0 within the inner com-

ponent are connected somehow within the component.

The first possible connection:

u v
u0

v0
ex0 y0

x
y

K5



The second possible connection:
u v

u0
v0

ex0 y0
x

y

K3;3
The theorem is proven. �



Edge contraction (kokkutõmbamine) (G =) G0):
eu

v
G G0

w
When edges are contracted, a planar graph remains pla-

nar.

Theorem (Wagner). A graph is planar iff it has no

subrgaphs contractible to K5 or K3;3.



Proof. If G is planar, then all its subrgaphs are planar.

If we contract edges in a planar subgraph, we still get a

planar graph, thus we can’t get K5 or K3;3.
If G is not planar then there exists H � G such that H

is homeomorphic to K5 or K3;3. Contracting the edges

we can reverse the effect of subdividivision. �


