
Probabilistic proofs



A vertex colouring with k colours of a graph G = (V;E) is

a mapping  : V ! f1; : : : ; kg, such that (u) 6= (v) for

any edge (u; v) 2 E.

The chromatic number �(G) of a graph G is the smallestk, such that G has vertex colouring with k colours.

The girth g(G) of a graph G is the length of the shortest

cycle in G.

A graph with a large girth “locally looks” like a tree. Trees

can be coloured with two colours. Nevertheless

Theorem. For any k 2 N there exists a graph G, such

that g(G) > k and �(G) > k.
Proof follows. . .



A probability distribution on a set X is a function � :

X −→ [0; 1℄, such that

Px2X

�(x) = 1.
(we assume that X is finite)

An event on a set X is a subset A � X.

Let � be fixed. Then P(A) = Px2A�(x).
If A;B � X, then P(A [B) � P(A) + P(B).



Let F : X −→ R +. F can be seen as a random variable

with the distribution �.

The mean of F is E(F ) = Px2X

�(x)F (x).
E is linear: E(F +F 0) = E(F ) +E(F 0). This holds even ifF and F 0 are not independent.

If F (X) � f0; 1g, then E(F ) = P(F = 1).
If A � X, then let �A be its characteristic function. Then

E(�A) = P(A).
If F (X) � N , then E(F ) � P(F > 0).



Lemma (Markov’s inequality). Let F be a random vari-

able and a > 0. Then

P(F � a) � E(F )=a :

Proof.

E(F ) =Xx2X

�(x)F (x) � Xx2XF (x)�a�(x)F (x)� Xx2XF (x)�a�(x) � a = P(F � a) � a : �

This inequality is helpful for showing that P(F < a) is

large.



Let p 2 [0; 1℄. Define the following probability distribution

G(n; p) on the set Gn of n-vertex labeled graphs:

Picking G according to G(n; p) (denote G  G(n; p)) pro-

ceeds as follows:� V (G) := fv1; : : : ; vng. Let E(G) := ;.� For all i 2 f1; : : : ; n� 1g and j 2 fi+ 1; : : : ; ng:
– Toss a coin, where the probability of heads is p.
– If the result was heads, then E(G) := E(G) [f(vi; vj)g.
– The coin-tosses must be mutually independent.

In the following denote q = 1� p.



Example. Picking an (unlabeled) graph according to G(3; p)

gives us the following graphs with the following probabili-

ties:

q3
3pq2

3p2q
p3

E(�) = 3pq2+6p2q+p3. If p = q = 1=2, then E(�) = 5=4.



Let G  G(n; p). Let H be a fixed graph with n0 � n

vertices and m0 edges.

Let  : V (H) −→ V (G) be an injective function. The

probability that  locates a copy of H as a subgraph of G,

is pm0
.

The probability that  locates an induced subgraph H ofG is pm0q(n02 )�m0
.

In general, P(H →֒ G) � PU�V (G)jU j=n0 P(H �= G[U ℄).
This sum is the average number of times H occurs in G as

an induced subgraph.



Lemma. Let G  G(n; p). The average number of k-
vertex cliques in G is

�nk�p(k2) and the average number ofk-vertex independent sets is

�nk�q(k2).
Proof. Fix U � V (G), such that jU j = k. The probability

that U is a clique is p(k2).
The average number of cliques in position U is p(k2).
There are

�nk� possible positions, and we can just add the

averages. �

Let �(G) be the size of the largest independent set that G

contains. Then P(� � k) � �nk�q(k2).
Recall that �(G) � n=�(G), where n is the number of

vertices of G.



Denote (n)k = n(n� 1)(n� 2) � � � (n� k + 1) :

Lemma. Let G  G(n; p). The average number of cycles

of length k � 3 in G is pk(n)k=2k.
Proof. A cycle of length k is determined by a sequence(v1; v2; : : : ; vk) of different vertices of G.

Such a sequence can be chosen in (n)k different ways. Each

cycle corresponds to 2k such sequences.

The probability thatG contains the edges (v1; v2), (v2; v3),. . . ,(vk�1; vk), (vk; v1) is pk. �



Let Xk(G) be the number of cycles of length at most k in

the graph G. If G G(n; p), then

E[Xk℄ = kXi=3 (n)i2i pi � 12 kXi=3 nipi �
8<:k�22 nkpk; if np � 1k�22n3p3 � 11�np ; if np < 1

This is an upper bound for P(g � k).



To show the existence of a graph G with g(G) � k and�(G) � k we could try to fix n and p so, that

P(g � k � 1) + P(� � n=k) < 1 :

It turns out that there are no such n and p. . .



We will show that we can fix n and p so, that� P(Xk � n=2) < 1=2;� P(� � n=2k) < 1=2.
We fix p as a function of n so, that both of those

probabilities approach 0 if n!1.

Hence there exists an n-vertex graphG containing less thann=2 cycles of length � k, and no independent set of sizen=2k. Let H be a graph obtained from G by removing one

vertex from each of those short cycles.jV (H)j > n=2. Obviously g(H) > k and �(H) < n=2k <jV (H)j=k. Hence k colours are not sufficient to colour H.



Fix " 2 R , such that 0 < " < 1=k. Let p = n"�1. Then0 < p � 1.
P(Xk � n=2) � E[Xk℄=(n=2) � k � 22 � (n=2)nkpk =(k � 2)(np)k=n = (k � 2)nk"�1� because np = n" � n0 = 1.

As k"� 1 < 0, the above expression tends to 0 if n!1.



Let r be such, that n � r � n=2k.
Note that p � (6k lnn)=n if n is large enough.

P(� � r) � �nr�q(r2) � nrq r(r�1)2 = (nq(r�1)=2)r �(ne�p(r�1)=2)r = (ne�pr=2+p=2)r � (ne�(3=2) lnn+p=2)r �(nn�3=2e1=2)r = (e=n)r=2 :� because 1� p � e�p if 0 � p � 1� because of the lower bounds on r and p
If n ! 1, then e=n ! 0 and r=2 ! 1. Hence the whole

expression tends to 0. �



Let us now consider simple graphs with countably many

vertices. In particular, consider graphs distributed accord-

ing to G(N ; 1=2).
Theorem. Let G1  G(N ; 1=2) and G2  G(N ; 1=2),
where G1 and G2 are two independent random variables.

Then the following event occurs with probability 1:
There exists an isomorphism from G1 to G2.

In other words, there exists exactly one random countably

infinite simple graph.



Consider the following property (*), that a graph G =(V;E) may or may not satisfy:� for any finite U;W � V , where U \W = ;� exists z 2 V n(U [W )� such that

– for all u 2 U , (u; z) 2 V ;

– for all w 2W , (w; z) 62 V .



Lemma. Let G  G(N ; 1=2). Then G satisfies (*) with

probability 1.
Proof. Fix U and W . If we also fix z, then the probability

of (*) holding is 1=2jU j+jW j. We have infinitely many choices

for z, thus the probability of (*) holding for some choice

of z is 1. �



Lemma. Let G1 = (V1; E1) and G2 = (V2; E2) be two

countably infinite simple graphs that satisfy (*). ThenG1 �= G2.
Proof. Identify both V1 and V2 with N .

We construct the isomorphism ' : V1 ! V2 in rounds.� In the beginning, ' is everywhere undefined. Each

round defines ' for one element of V1 (and V2).� For any v1 2 V1, '(v1) will be defined after a finite

number of rounds.� For any v2 2 V2, '�1(v2) will be defined after a finite

number of rounds.

After countably many rounds, we have a uniquely defined

bijection between V1 and V2. It will be an isomorphism.



n-th round (for odd n):� Let xn = minfx 2 V1 j'(x) is undefinedg.� Let Un = fv 2 V1 j (xn; v) 2 E1 ^ '(v) is definedg.� Let Wn = fv 2 V1 j (xn; v) 62 E1 ^ '(v) is definedg.� By (*) for G2, there exists some yn 2 V2n('(Un) ['(Wn)), such that yn is connected to all vertices in'(Un) and to no vertices in '(Wn).
– '�1 is defined only for vertices in '(Un) [ '(Wn),
– hence '�1(yn) is not defined.� Let the new value of ' be '[xn 7! yn℄.



n-th round (for even n) (just swap G1 and G2):� Let yn = minfy 2 V2 j'�1(y) is undefinedg.� Let Un = fv 2 V2 j (yn; v) 2 E2 ^ '�1(v) is definedg.� Let Wn = fv 2 V2 j (yn; v) 62 E2 ^ '(v) is definedg.� By (*) for G1, there exists some xn 2 V1n('�1(Un) ['�1(Wn)), such that xn is connected to all vertices in'�1(Un) and to no vertices in '�1(Wn).
– ' is defined only for vertices in '�1(Un)['�1(Wn),
– hence '(xn) is not defined.� Let the new value of ' be '[xn 7! yn℄. �

From those two lemmas, the theorem immediately follows.�


