Probabilistic proofs

A vertex colouring with k colours of a graph G = (V, E) is a mapping $\gamma : V \to \{1, \ldots, k\}$, such that $\gamma(u) \neq \gamma(v)$ for any edge $(u, v) \in E$.

The chromatic number $\chi(G)$ of a graph G is the smallest k, such that G has vertex colouring with k colours.

The girth g(G) of a graph G is the length of the shortest cycle in G.

A graph with a large girth "locally looks" like a tree. Trees can be coloured with two colours. Nevertheless

Theorem. For any $k \in \mathbb{N}$ there exists a graph G, such that g(G) > k and $\chi(G) > k$.

Proof follows...

A probability distribution on a set X is a function μ : X $\longrightarrow [0, 1]$, such that $\sum_{x \in \mathbf{X}} \mu(x) = 1$.

(we assume that X is finite)

An *event* on a set X is a subset $A \subseteq X$.

Let μ be fixed. Then $\mathbf{P}(A) = \sum_{x \in A} \mu(x).$

If $A, B \subseteq \mathbf{X}$, then $\mathbf{P}(A \cup B) \leq \mathbf{P}(A) + \mathbf{P}(B)$.

Let $F : \mathbf{X} \longrightarrow \mathbb{R}^+$. F can be seen as a *random variable* with the distribution μ .

The *mean* of
$$F$$
 is $\operatorname{E}(F) = \sum_{x \in \mathbf{X}} \mu(x) F(x)$.

E is linear: E(F + F') = E(F) + E(F'). This holds even if *F* and *F'* are not independent.

If
$$F(\mathbf{X}) \subseteq \{0, 1\}$$
, then $\mathbf{E}(F) = \mathbf{P}(F = 1)$.

If $A \subseteq \mathbf{X}$, then let χ_A be its characteristic function. Then $\mathrm{E}(\chi_A) = \mathrm{P}(A)$.

If $F(\mathbf{X}) \subseteq \mathbb{N}$, then $\mathbf{E}(F) \geq \mathbf{P}(F > 0)$.

Lemma (Markov's inequality). Let F be a random variable and a > 0. Then

 $\mathrm{P}(F\geq a)\leq \mathrm{E}(F)/a$.

Proof.

$$egin{aligned} \mathrm{E}(F) &= \sum_{x\in\mathbf{X}} \mu(x)F(x) \geq \sum_{\substack{x\in\mathbf{X}\F(x)\geq a}} \mu(x)F(x) \ &\geq \sum_{\substack{x\in\mathbf{X}\F(x)\geq a}} \mu(x)\cdot a = \mathrm{P}(F\geq a)\cdot a \ . \ & \Box \end{aligned}$$

This inequality is helpful for showing that P(F < a) is large.

Let $p \in [0, 1]$. Define the following probability distribution $\mathfrak{G}(n, p)$ on the set \mathbf{G}_n of *n*-vertex labeled graphs:

Picking G according to $\mathfrak{G}(n,p)$ (denote $G \leftarrow \mathfrak{G}(n,p)$) proceeds as follows:

- $V(G) := \{v_1, \ldots, v_n\}$. Let $E(G) := \emptyset$.
- For all $i \in \{1, \ldots, n-1\}$ and $j \in \{i+1, \ldots, n\}$:
 - Toss a coin, where the probability of *heads* is p.
 - If the result was *heads*, then $E(G) := E(G) \cup \{(v_i, v_j)\}.$
 - The coin-tosses must be mutually independent.

In the following denote q = 1 - p.

Example. Picking an (unlabeled) graph according to $\mathcal{G}(3, p)$ gives us the following graphs with the following probabilities:

 ${
m E}(\Delta)=3pq^2+6p^2q+p^3. \ {
m If}\ p=q=1/2, \ {
m then}\ {
m E}(\Delta)=5/4.$

Let $G \leftarrow \mathfrak{G}(n,p)$. Let H be a fixed graph with $n' \leq n$ vertices and m' edges.

Let $\psi : V(H) \longrightarrow V(G)$ be an injective function. The probability that ψ locates a copy of H as a subgraph of G, is $p^{m'}$.

The probability that ψ locates an induced subgraph H of G is $p^{m'}q^{\binom{n'}{2}-m'}$.

In general,
$$\mathbf{P}(H \hookrightarrow G) \leq \sum_{\substack{U \subseteq V(G) \ |U| = n'}} \mathbf{P}(H \cong G[U]).$$

This sum is the average number of times H occurs in G as an induced subgraph.

Lemma. Let $G \leftarrow \mathfrak{G}(n,p)$. The average number of k-vertex cliques in G is $\binom{n}{k}p^{\binom{k}{2}}$ and the average number of k-vertex independent sets is $\binom{n}{k}q^{\binom{k}{2}}$.

Proof. Fix $U \subseteq V(G)$, such that |U| = k. The probability that U is a clique is $p^{\binom{k}{2}}$.

The average number of cliques in position U is $p^{\binom{k}{2}}$. There are $\binom{n}{k}$ possible positions, and we can just add the averages.

Let $\alpha(G)$ be the size of the largest independent set that G contains. Then $\mathbf{P}(\alpha \ge k) \le \binom{n}{k}q^{\binom{k}{2}}$.

Recall that $\chi(G) \geq n/\alpha(G)$, where n is the number of vertices of G.

Denote

$$(n)_k = n(n-1)(n-2)\cdots(n-k+1)$$
 .

Lemma. Let $G \leftarrow \mathfrak{G}(n,p)$. The average number of cycles of length $k \geq 3$ in G is $p^k(n)_k/2k$.

Proof. A cycle of length k is determined by a sequence (v_1, v_2, \ldots, v_k) of different vertices of G.

Such a sequence can be chosen in $(n)_k$ different ways. Each cycle corresponds to 2k such sequences.

The probability that G contains the edges $(v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k), (v_k, v_1)$ is p^k .

Let $X_k(G)$ be the number of cycles of length at most k in the graph G. If $G \leftarrow \mathfrak{G}(n, p)$, then

$${
m E}[X_k] = \sum_{i=3}^k rac{(n)_i}{2i} p^i \leq rac{1}{2} \sum_{i=3}^k n^i p^i \leq \left\{ egin{array}{cc} rac{k-2}{2} n^k p^k, & ext{ if } np \geq 1 \ rac{k-2}{2n^3 p^3} \cdot rac{1}{1-np}, & ext{ if } np < 1 \end{array}
ight.$$

This is an upper bound for $\mathbf{P}(g \leq k)$.

To show the existence of a graph G with $g(G) \ge k$ and $\chi(G) \ge k$ we could try to fix n and p so, that

$$\mathrm{P}(g \leq k-1) + \mathrm{P}(lpha \geq n/k) < 1$$

It turns out that there are no such n and p...

We will show that we can fix n and p so, that

- ${
 m P}(X_k \ge n/2) < 1/2;$
- $\mathbf{P}(lpha \geq n/2k) < 1/2.$

We fix p as a function of n so, that both of those probabilities approach 0 if $n \to \infty$.

Hence there exists an *n*-vertex graph G containing less than n/2 cycles of length $\geq k$, and no independent set of size n/2k. Let H be a graph obtained from G by removing one vertex from each of those short cycles.

|V(H)| > n/2. Obviously g(H) > k and $\alpha(H) < n/2k < |V(H)|/k$. Hence k colours are not sufficient to colour H.

Fix $\varepsilon \in \mathbb{R}$, such that $0 < \varepsilon < 1/k$. Let $p = n^{\varepsilon - 1}$. Then 0 .

$$egin{aligned} {f P}(X_k \ge n/2) \le {f E}[X_k]/(n/2) \le rac{k-2}{2 \cdot (n/2)} n^k p^k = \ (k-2)(np)^k/n = (k-2)n^{karepsilon-1} \end{aligned}$$

• because $np = n^{\varepsilon} \ge n^0 = 1$.

As $k\varepsilon - 1 < 0$, the above expression tends to 0 if $n \to \infty$.

Let r be such, that $n \ge r \ge n/2k$. Note that $p \ge (6k \ln n)/n$ if n is large enough.

$$egin{aligned} \mathbf{P}(lpha \geq r) &\leq inom{n}{r} q^{inom{r}{2}} \leq n^r q^{rac{r(r-1)}{2}} = (nq^{(r-1)/2})^r \leq \ (ne^{-p(r-1)/2})^r &= (ne^{-pr/2+p/2})^r \leq (ne^{-(3/2)\ln n+p/2})^r \leq \ (nn^{-3/2}e^{1/2})^r = (e/n)^{r/2} \end{aligned}$$

•

- because $1 p \le e^{-p}$ if $0 \le p \le 1$
- because of the lower bounds on r and p

If $n \to \infty$, then $e/n \to 0$ and $r/2 \to \infty$. Hence the whole expression tends to 0.

Let us now consider simple graphs with countably many vertices. In particular, consider graphs distributed according to $\mathcal{G}(\mathbb{N}, 1/2)$.

Theorem. Let $G_1 \leftarrow \mathcal{G}(\mathbb{N}, 1/2)$ and $G_2 \leftarrow \mathcal{G}(\mathbb{N}, 1/2)$, where G_1 and G_2 are two independent random variables. Then the following event occurs with probability 1:

There exists an isomorphism from G_1 to G_2 .

In other words, there exists exactly one random countably infinite simple graph.

Consider the following property (*), that a graph G = (V, E) may or may not satisfy:

- for any finite $U, W \subseteq V$, where $U \cap W = \emptyset$
- ullet exists $z\in Vackslash(U\cup W)$
- such that
 - $- ext{ for all } u \in U, \ (u,z) \in V;$
 - $ext{ for all } w \in W, \, (w,z)
 ot\in V.$

Lemma. Let $G \leftarrow \mathcal{G}(\mathbb{N}, 1/2)$. Then G satisfies (*) with probability 1.

Proof. Fix U and W. If we also fix z, then the probability of (*) holding is $1/2^{|U|+|W|}$. We have infinitely many choices for z, thus the probability of (*) holding for some choice of z is 1.

Lemma. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two countably infinite simple graphs that satisfy (*). Then $G_1 \cong G_2$.

Proof. Identify both V_1 and V_2 with \mathbb{N} . We construct the isomorphism $\varphi: V_1 \to V_2$ in rounds.

- In the beginning, φ is everywhere undefined. Each round defines φ for one element of V_1 (and V_2).
- For any $v_1 \in V_1$, $\varphi(v_1)$ will be defined after a finite number of rounds.
- For any v₂ ∈ V₂, φ⁻¹(v₂) will be defined after a finite number of rounds.

After countably many rounds, we have a uniquely defined bijection between V_1 and V_2 . It will be an isomorphism.

n-th round (for odd n):

- ullet Let $x_n = \min\{x \in V_1 \,|\, arphi(x) ext{ is undefined}\}.$
- Let $U_n = \{v \in V_1 \, | \, (x_n,v) \in E_1 \land arphi(v) ext{ is defined} \}.$
- Let $W_n = \{v \in V_1 \, | \, (x_n,v) \not\in E_1 \land \varphi(v) ext{ is defined} \}.$
- By (*) for G_2 , there exists some $y_n \in V_2 \setminus (\varphi(U_n) \cup \varphi(W_n))$, such that y_n is connected to all vertices in $\varphi(U_n)$ and to no vertices in $\varphi(W_n)$.

 $- arphi^{-1}$ is defined only for vertices in $arphi(U_n) \cup arphi(W_n)$,

- hence $\varphi^{-1}(y_n)$ is not defined.

• Let the new value of φ be $\varphi[x_n \mapsto y_n]$.

n-th round (for even n) (just swap G_1 and G_2):

- Let $y_n = \min\{y \in V_2 \,|\, \varphi^{-1}(y) ext{ is undefined}\}.$
- Let $U_n=\{v\in V_2\,|\,(y_n,v)\in E_2\wedge arphi^{-1}(v) ext{ is defined}\}.$
- Let $W_n = \{v \in V_2 \, | \, (y_n,v)
 ot\in E_2 \land arphi(v) ext{ is defined} \}.$
- By (*) for G_1 , there exists some $x_n \in V_1 \setminus (\varphi^{-1}(U_n) \cup \varphi^{-1}(W_n))$, such that x_n is connected to all vertices in $\varphi^{-1}(U_n)$ and to no vertices in $\varphi^{-1}(W_n)$.
 - arphi is defined only for vertices in $arphi^{-1}(U_n) \cup arphi^{-1}(W_n)$,
 - hence $\varphi(x_n)$ is not defined.
- Let the new value of arphi be $arphi[x_n\mapsto y_n].$

From those two lemmas, the theorem immediately follows.