
Finding a maximum matching
(in any graph)



To find a maximum matching in a graph G = (V;E), let

us start from any matching M .

It might be empty; or constructed with the greedy algorit-

hm.

By Berge’s theorem:� If we can find M -extensible paths for any non-maximalM , then we can increase the matching until it becomes

maximal.

By our proof of Berge’s theorem:� Increasing the matching M will give us a M -extensible

path.



We need to find an M -extensible path.

We are going to search it in the oriented graph

��!GM :V (��!GM) = VE(��!GM) = f(u;w) j 9v 2 V : (u; v) 2 EnM; (v;w) 2Mg :M ��!GMEnM
Let W = fv 2 V jdegM(v) = 0g.
Any directed path in

��!GM from W to N(W ) corresponds to

an M -extensible walk (not necessarily a path).



M -extensible walk (not path) from u to v:u
v

But we need to find a path, not a walk. . .



Lemma. Let P = v0 — v1 — � � �— vm be a minimum-lengthM -extensible walk from W (i.e. v0 2W ) to some v = vm.

One of the following holds:� P is a path.� There exist such 0 6 i < j 6 m, that

(i) vi = vj;
(ii) i is even, j is odd

– meaning that vi— vi+1 and vj�1 — vj are not inM ;

(iii) v0; : : : ; vj�1 are all distinct.



Proof. If P is a path then the lemma holds. Assume P is

not a path.

Let i; j be defined by vj being the first vertex that coincides

with some earlier vi. This choice satisfies (i) and (iii).

If (j � i) were even, then. . .

P vi = vj

P would not be of minimum length.



If i would be odd and j would be even, then. . .

v0

vj�1 vj�2

v1 v2 vi�1 vi+1 vi+2vi = vj

vi+1 would equal vj�1.
This contradicts the choice of vj. �



Let G = (V;E) be a simple graph and U � V . The cont-

raction (kokkutõmbamine) of U in G gives us the simple

graph G=U , where� instead of vertices of U , we have a single new vertex u;� all neighbours of U are connected to u.

G G=U
U

u



Also define:� If H 6 G, then G=H = G=V (H).� If M � E(G) ja U � V (G), then M=U is the set of

edges of the graph (V (G);M)=U .

M M=UG G=U
U

u



Let M be a matching in G = (V;E). A cycle C 6 G isM-blossom (M-õis), if� jV (C)j = 2k + 1 for some k 2 N ;� jE(C) \M j = k.� C passes through a vertex not covered by M .



Theorem. Let M be a matching in G = (V;E). Let C be

an M -blossom. M is a maximal matching in G iff M=C is

a maximal matching in G=C.

Proof. Let  2 V (G=C) be the vertex that C was contracted

to.M=C does not cover C, because no edge in M is betweenV (C) and V (G)nV (C).





Proof by contradiction:

1. M not maximal ) M=C not maximal.

Let P be a M -extensible path in G. If P does not intersectC, then it is a M=C-extensible path in G=C.

P P



If P intersects C, then at least one of its endpoints v is

outside C.� Because C contains only one vertex not covered by M .

Let Q be a subpath of P from v to the first vertex in C.

Then Q is M=C-extensible in G=C.

P QQ



2. M=C not maximal ) M not maximal.

Let P be a M=C-extensible path in G=C. If it does not

contain , then it is also M -extensible in G.

If P contains , then  is one of the end-vertices of P . Let� v be ’s neighbour on P ;� u be the other end-vertex of P .


Pu

v



Construct a M -extensible path in G by� Going from u to v along P ;� stepping from v to some vertex in C;� going along C from that vertex to the vertex not co-

vered by M . �


Pu

v

u u

v v



Algorithm for increasing the matching M in G by an edge:

1. Find the minimum-length M -extensible walk P fromW to W .� Find the shortest directed path from W to N(W )

in

��!GM .

– Do a breadth-first traversal of

��!GM .

2. If no such P exists, then M is maximal. Stop.

3. If P is a path, then return M 4 E(P ).� A4B = (AnB) [ (BnA).



4. If P = v0 — v1 — � � �— vm is not a path then let vj be

the first vertex, such that 9i < j : vi = vj.

vi = vjvi�1 = vj+1v1v0 vi+2vj�2vi+1vj�1

5. Let M :=M4fv0 — v1; v1 — v2; : : : ; vi�1 — vig.

vi = vjvi�1v1v0 vi+2vj�2vi+1vj�1

M remains a matching because only degM(v0) increased.C = vi— vi+1 — � � �— vj is a M -blossom.



6. Recursively invoke the algorithm for M=C and G=C.

7. If M=C is maximal, then M is maximal. Stop.

8. If a matching N was returned, then� If degN() = 0, then return(N \E(GnC)) [ (M \ E(C)) :



� If degN() = 1 then return(N \ E(GnC)) [ fv—wg [MwC

where

– v is the vertex, such that fv; g 2 N ;

– w 2 V (C) is a neighbour of v in G;

– MwC is the maximum matching in C not coveringw.
v v w



Complexity:� To find a maximal matching, the previous algorithm

has to be called up to jV j=2 times.� During one execution of the algorithm:

– The walk P can be found in time O(jEj). The matc-

hing M can be updated in time O(jEj).
– The recursion depth is O(jV j).

One execution requires O(jV j � jEj) time altogether.� Maximal matching can be found in time O(jV j2 � jEj).



G M W N(W )



G M W N(W )

Shortest M -extensible walk



M -blossom

G M W N(W )



G=C M=C W N(W )



G M
Shortest M -extensible walk

W N(W )



G M
Shortest M -extensible walk

W N(W )

A cycle on that walk



G M
Shortest M -extensible walk

W N(W )

M -blossom



G=C M=C W N(W )



G M
Shortest M -extensible walk

W N(W )



M -blossom

G M W N(W )



G=C M=C W N(W )



G M W N(W )M -blossom



G=C M=C W N(W )



G M W N(W )

Shortest M -extensible walk



G M



G M



G M



G M



G M



G M



G M



G M



G M


