Secret Sharing

Principle

■ There is a set of parties $\mathbf{P}=\left\{P_{1}, \ldots, P_{n}\right\}$.

- There is some (secret) value v.
- Shares of v are distributed among P_{1}, \ldots, P_{n}.
- There is a set of subsets of parties $\wp \subseteq \mathcal{P}(\mathbf{P})$.
- \wp is upwards closed - if $\mathbf{P}_{1} \in \wp$ and $\mathbf{P}_{1} \subseteq \mathbf{P}_{2}$, then also $\mathbf{P}_{2} \in \wp$.
- \wp is called an access structure.
- Let us call the elements of \wp privileged sets.
- Certain parties $P_{i_{1}}, \ldots, P_{i_{k}}$ have come together and are tring to find out v.
■ They must succeed only if $\left\{P_{i_{1}}, \ldots, P_{i_{k}}\right\} \in \wp$.

General solution

- Let v be an element of some (additive) group G.
- Express \wp as a propositional formula $\bar{\wp}\left(x_{1}, \ldots, x_{n}\right)$, such that for each $\mathbf{Q} \subseteq \mathbf{P}$

$$
\bar{\wp}\left(P_{1} \stackrel{?}{\in} \mathbf{Q}, \ldots, P_{n} \stackrel{?}{\in} \mathbf{Q}\right) \text { iff } \mathbf{Q} \in \wp .
$$

- Use only operations AND and OR (of arbitrary arity) in $\bar{\wp}$.
- Define a share for each node in the syntax tree of $\bar{\wp}$:
- The share of the root node is v.
- If the share of an OR-node is x, then the shares of all its immediate descendants are x, too.
- If the share of an AND-node of arity m is x, then generate $r_{1}, \ldots, r_{m-1} \in_{R} G$ and put $r_{m}=x-\sum_{i=1}^{m-1} r_{i}$. The shares of the immediate descendants are r_{1}, \ldots, r_{m}.
■ Give the party P_{i} the shares of all leaf nodes marked with x_{i}.

Example

■ Let $\mathbf{P}=\left\{P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}\right\}$.

- Let P_{1} and P_{2} be allowed to know the secret.

Let two Q-s be allowed to replace one of the P-s.
$\bar{\wp}\left(P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}\right)=P_{1} \& P_{2} \vee$
$P_{1} \&\left(Q_{1} \& Q_{2} \vee Q_{1} \& Q_{3} \vee Q_{2} \& Q_{3}\right) \vee P_{2} \&\left(Q_{1} \& Q_{2} \vee Q_{1} \& Q_{3} \vee Q_{2} \& Q_{3}\right)$

Example

Example

Example

Example

Example

Example

Example

- We generate the values $r_{1}, \ldots, r_{9} \in_{R} G$ and give the following values to following parties:
- $\quad P_{1}$ learns $s_{11}=v-r_{1}$ and $s_{12}=v-r_{2}$;
- P_{2} learns $s_{21}=r_{1}$ and $s_{22}=v-r_{3}$;
- Q_{1} learns $t_{11}=r_{4}, t_{12}=r_{5}, t_{13}=r_{7}$ and $t_{14}=r_{8}$;
- Q_{2} learns $t_{21}=r_{2}-r_{4}, t_{22}=r_{6}, t_{23}=r_{3}-r_{7}$ and $t_{24}=r_{9}$;
- Q_{3} learns $t_{31}=r_{2}-r_{5}, t_{32}=r_{2}-r_{6}, t_{33}=r_{3}-r_{8}$ and $t_{34}=r_{3}-r_{9}$.
- When a privileged set of parties meet then they figure out which of the values to add up to recover v.
- A non-privileged set gets no information about v.

The components

- Number of parties n.
- The secret v.

■ The parties P_{1}, \ldots, P_{n} holding the shares of v, and the dealer D that originally knows v.

- The access structure \wp.
- \wp is a t-threshold structure if all minimal elements in \wp have the cardinality t.
- The dealing protocol, where D distributes the shares among P_{1}, \ldots, P_{n}.
■ The recovery protocol, where a privileged set computes v.

Shamir's threshold secret sharing scheme

- Let $v \in \mathbb{F}$ for some (finite) field \mathbb{F}.
- In practice, \mathbb{F} is \mathbb{Z}_{p} for some suitable prime p.

■ Shamir's (n, t)-scheme is for n parties, where \wp is the t-threshold structure and $n<|\mathbb{F}|$.
Dealing:

- The dealer randomly chooses values $a_{1}, \ldots, a_{t-1} \in \mathbb{F}$.
- He defines the polynomial

$$
q(x)=v+a_{1} x+a_{2} x^{2}+\cdots+a_{t-1} x^{t-1}
$$

- The dealer securely sends to each P_{i} his share $s_{i}=q(i)$.
- Recovering v :
- The parties $P_{i_{1}}, \ldots, P_{i_{t}}$ together know that
- $q\left(i_{1}\right)=s_{i}, \ldots, q\left(i_{t}\right)=s_{t}$;
- The degree of q is at most $t-1$.
- This information is sufficient to recover the coefficients of q.

Interpolating polynomials

Theorem. Let $x_{1}, y_{1}, \ldots, x_{t}, y_{t} \in \mathbb{F}$, such that the values x_{1}, \ldots, x_{t} are all different. Then there exists exactly one polynomial q of degree at most $t-1$, such that $q\left(x_{i}\right)=y_{i}$ for all $i \in\{1, \ldots, t\}$.

Proof. This polynomial q is (Lagrange interpolation formula)

$$
q(x)=\sum_{j=1}^{t} y_{j} \prod_{k \neq j} \frac{x-x_{k}}{x_{j}-x_{k}}
$$

It's degree is $\leq t-1$ and it satisfies $q\left(x_{i}\right)=y_{i}$ for all i.
There cannot be more than one: if $q^{\prime}\left(x_{i}\right)=y_{i}$ for all $i \in\{1, \ldots, t\}$ and $\operatorname{deg} q^{\prime} \leq t-1$, then $\left(q-q^{\prime}\right)$ is a polynomial of degree at most $t-1$ with at least t roots $\left(x_{1}, \ldots, x_{t}\right)$. Hence $q-q^{\prime}=0$.

Shamir's scheme: simpler recovery

■ The parties $P_{i_{1}}, \ldots, P_{i_{t}}$ are not interested in the entire polynomial, but just the secret value $v=q(0)$.

- According to Lagrange interpolation formula

$$
v=\sum_{j=1}^{t} s_{i_{j}} \prod_{k \neq j} \frac{i_{k}}{i_{k}-i_{j}} .
$$

■ In particular, note that v is computed as a linear combination of the shares $s_{i_{j}}$ with public coefficients.

Security of Shamir's scheme

■ Suppose that we are given shares $s_{i_{1}}, \ldots, s_{i_{t-1}}$.

- Then for each possible value of v, there exists eaxctly one polynomial q of degree at most t, such that

$$
q(0)=v, q\left(i_{1}\right)=s_{i_{1}}, \ldots q\left(i_{t-1}\right)=s_{i_{t-1}} .
$$

- Hence all values of v are possible. Moreover, they are equally possible.
- There is the same number of suitable polynomials for each value of v.
- Similarly, if we have even less shares then all values of v are equally possible.

Exercise

Let two secrets be shared:
■ the shares of v are s_{1}, \ldots, s_{n}; the shares of v^{\prime} are $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$.
Let $a, b \in \mathbb{F}$. How can the parties P_{1}, \ldots, P_{n} obtain shares for the value $a v+b v^{\prime}$?

Verifiable secret sharing

■ If some party P_{i} is malicious, then it can input a wrong share to the recovery protocol.

- The recovered secret v will then be incorrect.
- Also, a malicious dealer may give inconsistent shares to the parties P_{i}.
■ In verifiable secret sharing the parties commit to the shares they have received.

Verifiable secret sharing

■ If some party P_{i} is malicious, then it can input a wrong share to the recovery protocol.

- The recovered secret v will then be incorrect.
- Also, a malicious dealer may give inconsistent shares to the parties P_{i}.
- In verifiable secret sharing the parties commit to the shares they have received.
- A malicious party P_{i} may also send $s_{i_{t}}$ to one party, but $s_{i_{t}}^{\prime}$ to some other party.
- In multi-party protocols with malicious participants, a broadcast channel is often needed.
- We thus assume the existence of a broadcast channel.

■ It can be implemented using point-to-point channels and the Byzantine agreement.

Feldman's scheme

■ Let $\mathbb{F}=\mathbb{Z}_{p}$. Let G be a group with hard discrete log., such that $|G|$ is divisible by p. Let $g \in G$ have order p.
■ Let D use Shamir's scheme to share v. When D has constructed the polynomial $q(x)=v+\sum_{i=1}^{t-1} a_{i} x^{i}$, he (authentically) broadcasts

$$
y_{0}=g^{v}, y_{1}=g^{a_{1}}, \ldots, y_{t-1}=g^{a_{t-1}}
$$

in addition to sending the shares to the parties P_{i}.
■ Whenever a party sees a share s_{j} he checks its consistency:

$$
g^{s_{j}} \stackrel{?}{=} \prod_{i=0}^{t-1} y_{i}^{j^{i}}
$$

Exercise. What does the consistency check do?

Security of Feldman's scheme

■ Nobody can cheat - the "commitments" y_{0}, \ldots, y_{t-1} fix the polynomial q.

- Everybody can check whether $q(i)$ equals a given value.
- Something about the secret can be leaked, because $y_{0}=g^{v}$ does not fully hide v.
- Use only the hard-core bits of discrete logarithm to store the "real" secret in v.
- This makes the shares larger.

Pedersen's scheme

Recall Pedersen's commitment scheme:
■ Let $h \in G$ be another element of order p, such that nobody knows $\log _{g} h$.
■ To commit $m \in \mathbb{Z}_{p}$, the committer randomly generates $r \in \mathbb{Z}_{p}$ and sends $g^{m} h^{r}$ to the verifier.

- To open the commitment, send (m, r) to the verifier.
- The commitment is unconditionally hiding, because $g^{m} h^{r}$ is a random element of $\langle g\rangle$.
- The commitment is computationally binding, because the ability to open a commitment in two different ways allows to compute $\log _{g} h$.
In Pedersen's VSS, the dealer commits to the coefficients of the polynomial q.

Pedersen's scheme

- Dealing protocol
- D randomly chooses $a_{1}, \ldots, a_{t-1}, a_{0}^{\prime}, \ldots, a_{t-1}^{\prime} \in \mathbb{Z}_{p}$. Also defines $a_{0}=v$.
- Define $q(x)=\sum_{i=0}^{t-1} a_{i} x^{i}$ and $q^{\prime}(x)=\sum_{i=0}^{t-1} a_{i}^{\prime} x^{i}$.
- The share $\left(s_{i}, s_{i}^{\prime}\right)$ of P_{i} is $\left(q(i), q^{\prime}(i)\right)$.
- D broadcasts $y_{i}=g^{a_{i}} h^{a_{i}^{\prime}}$ for $i \in\{0, \ldots, t-1\}$.
- Verification: when somebody sees a share $\left(s_{i}, s_{i}^{\prime}\right)$, he verifies

$$
g^{s_{i}} h^{s_{i}^{\prime}} \stackrel{?}{=} \prod_{i=0}^{t-1} y_{i}^{j^{i}}
$$

Security of Pedersen's scheme

- The broadcast value y_{0} hides v unconditionally.
- Ability to change a share (or the pair $\left(v, a_{0}^{\prime}\right)$) implies the knowledge of $\log _{g} h$.
■ Having less than t shares allows one to freely choose the secret v. Then there exists an a_{0}^{\prime} that is consistent with y_{0}.

Exercise. How to construct linear combinations of shared secrets when using Feldman's or Pedersen's secret sharing scheme? I.e. how do the dealer's commitments change?

Threshold encryption

- Public-key encryption system.
- The public key is a single value.
- The secret key is distributed among several authorities.
- To decrypt a ciphertext c :
- Each authority computes $D\left(s k_{i}, c\right)$ and broadcasts it.
- If at least t authorities have broadcast the share of the decrypted ciphertext, the plaintext can be reconstructed from them.

EIGamal encryption scheme

Let G, g, p be as before.
■ Secret key $-\alpha \in_{R} \mathbb{Z}_{p}$. Public key - $\chi:=g^{\alpha}$.
■ Plaintext space: G. Ciphertext space: $G \times G$.
■ To encrypt a plaintext $m \in G$:

- randomly generate $r \in \mathbb{Z}_{p}$;
- output $\left(g^{r}, m \cdot \chi^{r}\right)$.
- To decrypt a ciphertext $\left(c_{1}, c_{2}\right)$:
- output $c_{2} \cdot c_{1}^{-\alpha}$.

■ Note, that after the decryption, the value $c_{1}^{\alpha}=\chi^{r}$ is not sensitive any more.

Threshold scheme

■ Use ElGamal scheme. Distribute the secret key α among the n authorities P_{1}, \ldots, P_{n} using Shamir's (n, t)-scheme.

- Let the shares be s_{1}, \ldots, s_{n}.
- Recall that for each $\mathbf{Q}=\left\{i_{1}, \ldots, i_{t}\right\}$ there exist coefficients $\gamma_{i_{1}}^{\mathbf{Q}}, \ldots, \gamma_{i_{t}}^{\mathbf{Q}} \in \mathbb{Z}_{p}$, depending only on \mathbf{Q}, such that $\alpha=\sum_{j=1}^{t} \gamma_{i_{j}}^{\mathbf{Q}} s_{i_{j}}$.
- Decryption:
- given $\left(c_{1}, c_{2}\right)$, the authority P_{i} broadcasts $d_{i}=c_{1}^{s_{i}}$.
- given $d_{i_{1}}, \ldots, d_{i_{t}}$, where $\left\{i_{1}, \ldots, i_{t}\right\}=\mathbf{Q}$, we find

$$
c_{1}^{\alpha}=\prod_{j=1}^{t} d_{i_{j}}^{\gamma_{i_{j}}^{\mathbf{Q}}}
$$

and the plaintext is $m=c_{2} \cdot\left(c_{1}^{\alpha}\right)^{-1}$.
Exercise. How could we use Feldman's scheme for verifiability?

