
Secret Sharing

Principle

2 / 21

■ There is a set of parties P = {P1, . . . , Pn}.
■ There is some (secret) value v.

◆ Shares of v are distributed among P1, . . . , Pn.

■ There is a set of subsets of parties ℘ ⊆ P(P).

◆ ℘ is upwards closed — if P1 ∈ ℘ and P1 ⊆ P2, then also
P2 ∈ ℘.

◆ ℘ is called an access structure.
◆ Let us call the elements of ℘ privileged sets.

■ Certain parties Pi1 , . . . , Pik have come together and are tring to find
out v.

■ They must succeed only if {Pi1, . . . , Pik} ∈ ℘.

General solution

3 / 21

■ Let v be an element of some (additive) group G.
■ Express ℘ as a propositional formula ℘(x1, . . . , xn), such that for

each Q ⊆ P

℘(P1

?

∈ Q, . . . , Pn

?

∈ Q) iff Q ∈ ℘ .

◆ Use only operations AND and OR (of arbitrary arity) in ℘.

■ Define a share for each node in the syntax tree of ℘:

◆ The share of the root node is v.
◆ If the share of an OR-node is x, then the shares of all its

immediate descendants are x, too.
◆ If the share of an AND-node of arity m is x, then generate

r1, . . . , rm−1 ∈R G and put rm = x −
∑m−1

i=1
ri. The shares of

the immediate descendants are r1, . . . , rm.

■ Give the party Pi the shares of all leaf nodes marked with xi.

Example

4 / 21

■ Let P = {P1, P2, Q1, Q2, Q3}.

◆ Let P1 and P2 be allowed to know the secret.
◆ Let two Q-s be allowed to replace one of the P -s.

℘(P1, P2, Q1, Q2, Q3) = P1&P2∨

P1&(Q1&Q2 ∨Q1&Q3 ∨Q2&Q3)∨ P2&(Q1&Q2 ∨Q1&Q3 ∨Q2&Q3)

Example

5 / 21

∨

∨∨

&

& & & & & &

& &

P1 P2

P1 P2

Q1 Q2 Q3 Q1 Q2 Q1 Q3 Q2 Q3Q1 Q2 Q3

Example

5 / 21

∨

∨∨

&

& & & & & &

& &

P1 P2

P1 P2

Q1 Q2 Q3 Q1 Q2 Q1 Q3 Q2 Q3Q1 Q2 Q3

v

Example

5 / 21

∨

∨∨

&

& & & & & &

& &

P1 P2

P1 P2

Q1 Q2 Q3 Q1 Q2 Q1 Q3 Q2 Q3Q1 Q2 Q3

v

v v v

Example

5 / 21

∨

∨∨

&

& & & & & &

& &

P1 P2

P1 P2

Q1 Q2 Q3 Q1 Q2 Q1 Q3 Q2 Q3Q1 Q2 Q3

v

v v v

v − r1 r1

r2 r3v − r2

v − r3

Example

5 / 21

∨

∨∨

&

& & & & & &

& &

P1 P2

P1 P2

Q1 Q2 Q3 Q1 Q2 Q1 Q3 Q2 Q3Q1 Q2 Q3

v

v v v

v − r1 r1

r2 r3v − r2

v − r3

r2 r2 r2 r3 r3 r3

Example

5 / 21

∨

∨∨

&

& & & & & &

& &

P1 P2

P1 P2

Q1 Q2 Q3 Q1 Q2 Q1 Q3 Q2 Q3Q1 Q2 Q3

v

v v v

v − r1 r1

r2 r3v − r2

v − r3

r2 r2 r2 r3 r3 r3

r4 r5 r6 r7 r8 r9

r2 − r4 r2 − r5 r2 − r6 r3 − r7 r3 − r8 r3 − r9

Example

6 / 21

■ We generate the values r1, . . . , r9 ∈R G and give the following values
to following parties:

◆ P1 learns s11 = v − r1 and s12 = v − r2;
◆ P2 learns s21 = r1 and s22 = v − r3;
◆ Q1 learns t11 = r4, t12 = r5, t13 = r7 and t14 = r8;
◆ Q2 learns t21 = r2 − r4, t22 = r6, t23 = r3 − r7 and t24 = r9;
◆ Q3 learns t31 = r2 − r5, t32 = r2 − r6, t33 = r3 − r8 and

t34 = r3 − r9.

■ When a privileged set of parties meet then they figure out which of
the values to add up to recover v.

■ A non-privileged set gets no information about v.

The components

7 / 21

■ Number of parties n.
■ The secret v.
■ The parties P1, . . . , Pn holding the shares of v, and the dealer D

that originally knows v.
■ The access structure ℘.

◆ ℘ is a t-threshold structure if all minimal elements in ℘ have the
cardinality t.

■ The dealing protocol, where D distributes the shares among
P1, . . . , Pn.

■ The recovery protocol, where a privileged set computes v.

Shamir’s threshold secret sharing scheme

8 / 21

■ Let v ∈ F for some (finite) field F.

◆ In practice, F is Zp for some suitable prime p.

■ Shamir’s (n, t)-scheme is for n parties, where ℘ is the t-threshold
structure and n < |F|.

■ Dealing:

◆ The dealer randomly chooses values a1, . . . , at−1 ∈ F.
◆ He defines the polynomial

q(x) = v + a1x + a2x
2 + · · · + at−1x

t−1.
◆ The dealer securely sends to each Pi his share si = q(i).

■ Recovering v:

◆ The parties Pi1, . . . , Pit together know that

■ q(i1) = si, . . . , q(it) = st;
■ The degree of q is at most t − 1.

◆ This information is sufficient to recover the coefficients of q.

Interpolating polynomials

9 / 21

Theorem. Let x1, y1, . . . , xt, yt ∈ F, such that the values x1, . . . , xt are
all different. Then there exists exactly one polynomial q of degree at
most t − 1, such that q(xi) = yi for all i ∈ {1, . . . , t}.

Proof. This polynomial q is (Lagrange interpolation formula)

q(x) =
t∑

j=1

yj

∏

k 6=j

x − xk

xj − xk

.

It’s degree is ≤ t − 1 and it satisfies q(xi) = yi for all i.

There cannot be more than one: if q′(xi) = yi for all i ∈ {1, . . . , t} and
deg q′ ≤ t− 1, then (q − q′) is a polynomial of degree at most t− 1 with
at least t roots (x1, . . . , xt). Hence q − q′ = 0. 2

Shamir’s scheme: simpler recovery

10 / 21

■ The parties Pi1, . . . , Pit are not interested in the entire polynomial,
but just the secret value v = q(0).

■ According to Lagrange interpolation formula

v =
t∑

j=1

sij

∏

k 6=j

ik

ik − ij
.

■ In particular, note that v is computed as a linear combination of the
shares sij with public coefficients.

Security of Shamir’s scheme

11 / 21

■ Suppose that we are given shares si1 , . . . , sit−1
.

■ Then for each possible value of v, there exists eaxctly one polynomial
q of degree at most t, such that

q(0) = v, q(i1) = si1 , . . . q(it−1) = sit−1
.

■ Hence all values of v are possible. Moreover, they are equally
possible.

◆ There is the same number of suitable polynomials for each value
of v.

■ Similarly, if we have even less shares then all values of v are equally
possible.

Exercise

12 / 21

Let two secrets be shared:

■ the shares of v are s1, . . . , sn;
■ the shares of v′ are s′

1
, . . . , s′n.

Let a, b ∈ F. How can the parties P1, . . . , Pn obtain shares for the value
av + bv′?

Verifiable secret sharing

13 / 21

■ If some party Pi is malicious, then it can input a wrong share to the
recovery protocol.

■ The recovered secret v will then be incorrect.
■ Also, a malicious dealer may give inconsistent shares to the parties

Pi.
■ In verifiable secret sharing the parties commit to the shares they

have received.

Verifiable secret sharing

13 / 21

■ If some party Pi is malicious, then it can input a wrong share to the
recovery protocol.

■ The recovered secret v will then be incorrect.
■ Also, a malicious dealer may give inconsistent shares to the parties

Pi.
■ In verifiable secret sharing the parties commit to the shares they

have received.
■ A malicious party Pi may also send sit to one party, but s′it to some

other party.
■ In multi-party protocols with malicious participants, a broadcast

channel is often needed.

◆ We thus assume the existence of a broadcast channel.

■ It can be implemented using point-to-point channels and the
Byzantine agreement.

Feldman’s scheme

14 / 21

■ Let F = Zp. Let G be a group with hard discrete log., such that |G|
is divisible by p. Let g ∈ G have order p.

■ Let D use Shamir’s scheme to share v. When D has constructed the
polynomial q(x) = v +

∑t−1

i=1
aix

i, he (authentically) broadcasts

y0 = gv, y1 = ga1 , . . . , yt−1 = gat−1

in addition to sending the shares to the parties Pi.
■ Whenever a party sees a share sj he checks its consistency:

gsj
?
=

t−1∏

i=0

y
ji

i .

Exercise. What does the consistency check do?

Security of Feldman’s scheme

15 / 21

■ Nobody can cheat — the “commitments” y0, . . . , yt−1 fix the
polynomial q.

◆ Everybody can check whether q(i) equals a given value.

■ Something about the secret can be leaked, because y0 = gv does not
fully hide v.

◆ Use only the hard-core bits of discrete logarithm to store the
“real” secret in v.

■ This makes the shares larger.

Pedersen’s scheme

16 / 21

Recall Pedersen’s commitment scheme:

■ Let h ∈ G be another element of order p, such that nobody knows
logg h.

■ To commit m ∈ Zp, the committer randomly generates r ∈ Zp and
sends gmhr to the verifier.

■ To open the commitment, send (m, r) to the verifier.
■ The commitment is unconditionally hiding, because gmhr is a

random element of 〈g〉.
■ The commitment is computationally binding, because the ability to

open a commitment in two different ways allows to compute logg h.

In Pedersen’s VSS, the dealer commits to the coefficients of the
polynomial q.

Pedersen’s scheme

17 / 21

■ Dealing protocol

◆ D randomly chooses a1, . . . , at−1, a
′
0
, . . . , a′

t−1
∈ Zp. Also

defines a0 = v.
◆ Define q(x) =

∑t−1

i=0
aix

i and q′(x) =
∑t−1

i=0
a′

ix
i.

◆ The share (si, s
′
i) of Pi is (q(i), q′(i)).

◆ D broadcasts yi = gaiha′

i for i ∈ {0, . . . , t − 1}.

■ Verification: when somebody sees a share (si, s
′
i), he verifies

gsihs′i
?
=

t−1∏

i=0

y
ji

i

Security of Pedersen’s scheme

18 / 21

■ The broadcast value y0 hides v unconditionally.
■ Ability to change a share (or the pair (v, a′

0
)) implies the knowledge

of logg h.
■ Having less than t shares allows one to freely choose the secret v.

Then there exists an a′
0

that is consistent with y0.

Exercise. How to construct linear combinations of shared secrets when
using Feldman’s or Pedersen’s secret sharing scheme? I.e. how do the
dealer’s commitments change?

Threshold encryption

19 / 21

■ Public-key encryption system.
■ The public key is a single value.
■ The secret key is distributed among several authorities.
■ To decrypt a ciphertext c:

◆ Each authority computes D(sk i, c) and broadcasts it.
◆ If at least t authorities have broadcast the share of the decrypted

ciphertext, the plaintext can be reconstructed from them.

ElGamal encryption scheme

20 / 21

Let G, g, p be as before.

■ Secret key — α ∈R Zp. Public key — χ := gα.
■ Plaintext space: G. Ciphertext space: G × G.
■ To encrypt a plaintext m ∈ G:

◆ randomly generate r ∈ Zp;
◆ output (gr,m · χr).

■ To decrypt a ciphertext (c1, c2):

◆ output c2 · c
−α
1

.

■ Note, that after the decryption, the value cα
1

= χr is not sensitive
any more.

Threshold scheme

21 / 21

■ Use ElGamal scheme. Distribute the secret key α among the n

authorities P1, . . . , Pn using Shamir’s (n, t)-scheme.

◆ Let the shares be s1, . . . , sn.
◆ Recall that for each Q = {i1, . . . , it} there exist coefficients

γ
Q
i1

, . . . , γ
Q
it
∈ Zp, depending only on Q, such that

α =
∑t

j=1
γ

Q
ij

sij .

■ Decryption:

◆ given (c1, c2), the authority Pi broadcasts di = csi

1
.

◆ given di1 , . . . , dit , where {i1, . . . , it} = Q, we find

cα
1

=
t∏

j=1

d
γ
Q
ij

ij

and the plaintext is m = c2 · (c
α
1
)−1.

Exercise. How could we use Feldman’s scheme for verifiability?

	Principle
	General solution
	Example
	Example
	Example
	The components
	Shamir's threshold secret sharing scheme
	Interpolating polynomials
	Shamir's scheme: simpler recovery
	Security of Shamir's scheme
	Exercise
	Verifiable secret sharing
	Feldman's scheme
	Security of Feldman's scheme
	Pedersen's scheme
	Pedersen's scheme
	Security of Pedersen's scheme
	Threshold encryption
	ElGamal encryption scheme
	Threshold scheme

