Secret Sharing

Principle

- There is a set of parties $\mathbf{P} = \{P_1, \dots, P_n\}$. There is some (secret) value v.
 - Shares of v are distributed among P_1, \ldots, P_n .

• There is a set of subsets of parties $\wp \subseteq \mathcal{P}(\mathbf{P})$.

- \wp is upwards closed if $\mathbf{P}_1 \in \wp$ and $\mathbf{P}_1 \subseteq \mathbf{P}_2$, then also $\mathbf{P}_2 \in \wp$.
- \wp is called an access structure.
- Let us call the elements of \wp privileged sets.
- Certain parties P_{i_1}, \ldots, P_{i_k} have come together and are tring to find out v.
- They must succeed only if $\{P_{i_1}, \ldots, P_{i_k}\} \in \wp$.

General solution

Let v be an element of some (additive) group G.
Express ℘ as a propositional formula ℘(x₁,...,x_n), such that for each Q ⊆ P

$$\overline{\wp}(P_1 \stackrel{?}{\in} \mathbf{Q}, \ldots, P_n \stackrel{?}{\in} \mathbf{Q}) \text{ iff } \mathbf{Q} \in \wp$$
.

- Use only operations AND and OR (of arbitrary arity) in $\overline{\wp}$.
- Define a *share* for each node in the syntax tree of $\overline{\wp}$:
 - The share of the root node is v.
 - If the share of an OR-node is x, then the shares of all its immediate descendants are x, too.
 - If the share of an AND-node of arity m is x, then generate $r_1, \ldots, r_{m-1} \in_R G$ and put $r_m = x \sum_{i=1}^{m-1} r_i$. The shares of the immediate descendants are r_1, \ldots, r_m .
 - Give the party P_i the shares of all leaf nodes marked with x_i .

• Let $\mathbf{P} = \{P_1, P_2, Q_1, Q_2, Q_3\}.$

- Let P_1 and P_2 be allowed to know the secret.
- Let two Q-s be allowed to replace one of the P-s.

 $\overline{\wp}(P_1, P_2, Q_1, Q_2, Q_3) = P_1 \& P_2 \lor$ $P_1 \& (Q_1 \& Q_2 \lor Q_1 \& Q_3 \lor Q_2 \& Q_3) \lor P_2 \& (Q_1 \& Q_2 \lor Q_1 \& Q_3 \lor Q_2 \& Q_3)$

We generate the values $r_1, \ldots, r_9 \in_R G$ and give the following values to following parties:

- When a privileged set of parties meet then they figure out which of the values to add up to recover v.
 - A non-privileged set gets no information about v.

The components

- Number of parties *n*.
- The secret v.
- The parties P_1, \ldots, P_n holding the shares of v, and the dealer D that originally knows v.
 - The access structure \wp .
 - \wp is a *t*-threshold structure if all minimal elements in \wp have the cardinality *t*.
 - The dealing protocol, where D distributes the shares among P_1, \ldots, P_n .
 - The recovery protocol, where a privileged set computes v.

Shamir's threshold secret sharing scheme

- Let $v \in \mathbb{F}$ for some (finite) field \mathbb{F} .
 - In practice, \mathbb{F} is \mathbb{Z}_p for some suitable prime p.
- Shamir's (n, t)-scheme is for n parties, where \wp is the t-threshold structure and $n < |\mathbb{F}|$.
 - Dealing:
 - The dealer randomly chooses values $a_1, \ldots, a_{t-1} \in \mathbb{F}$.
 - He defines the polynomial
 - $q(x) = v + a_1 x + a_2 x^2 + \dots + a_{t-1} x^{t-1}.$
 - The dealer securely sends to each P_i his share $s_i = q(i)$.
 - Recovering v:
 - The parties P_{i_1}, \ldots, P_{i_t} together know that

•
$$q(i_1) = s_i, \dots, q(i_t) = s_t;$$

- The degree of q is at most t 1.
- This information is sufficient to recover the coefficients of q.

Interpolating polynomials

Theorem. Let $x_1, y_1, \ldots, x_t, y_t \in \mathbb{F}$, such that the values x_1, \ldots, x_t are all different. Then there exists exactly one polynomial q of degree at most t - 1, such that $q(x_i) = y_i$ for all $i \in \{1, \ldots, t\}$.

Proof. This polynomial q is (Lagrange interpolation formula)

$$q(x) = \sum_{j=1}^{t} y_j \prod_{k \neq j} \frac{x - x_k}{x_j - x_k}$$

It's degree is $\leq t - 1$ and it satisfies $q(x_i) = y_i$ for all *i*.

There cannot be more than one: if $q'(x_i) = y_i$ for all $i \in \{1, \ldots, t\}$ and $\deg q' \leq t - 1$, then (q - q') is a polynomial of degree at most t - 1 with at least t roots (x_1, \ldots, x_t) . Hence q - q' = 0.

Shamir's scheme: simpler recovery

The parties P_{i_1}, \ldots, P_{i_t} are not interested in the entire polynomial, but just the secret value v = q(0). According to Lagrange interpolation formula

$$v = \sum_{j=1}^{t} s_{i_j} \prod_{k \neq j} \frac{i_k}{i_k - i_j}$$

In particular, note that v is computed as a linear combination of the shares s_{i_i} with public coefficients.

Security of Shamir's scheme

Suppose that we are given shares $s_{i_1}, \ldots, s_{i_{t-1}}$. Then for each possible value of v, there exists eaxctly one polynomial q of degree at most t, such that

$$q(0) = v, q(i_1) = s_{i_1}, \dots q(i_{t-1}) = s_{i_{t-1}}$$

- Hence all values of v are possible. Moreover, they are equally possible.
 - There is the same number of suitable polynomials for each value of v.
- Similarly, if we have even less shares then all values of v are equally possible.

Exercise

Let two secrets be shared:

- the shares of v are s_1, \ldots, s_n ;
- the shares of v' are s'_1, \ldots, s'_n .

Let $a, b \in \mathbb{F}$. How can the parties P_1, \ldots, P_n obtain shares for the value av + bv'?

Verifiable secret sharing

- If some party P_i is malicious, then it can input a wrong share to the recovery protocol.
- The recovered secret v will then be incorrect.
- Also, a malicious dealer may give inconsistent shares to the parties P_i .
- In verifiable secret sharing the parties commit to the shares they have received.

Verifiable secret sharing

- If some party P_i is malicious, then it can input a wrong share to the recovery protocol.
- The recovered secret v will then be incorrect.
- Also, a malicious dealer may give inconsistent shares to the parties P_i .
- In verifiable secret sharing the parties commit to the shares they have received.
- A malicious party P_i may also send s_{i_t} to one party, but s'_{i_t} to some other party.
- In multi-party protocols with malicious participants, a broadcast channel is often needed.
 - We thus assume the existence of a broadcast channel.
 - It can be implemented using point-to-point channels and the Byzantine agreement.

Feldman's scheme

- Let $\mathbb{F} = \mathbb{Z}_p$. Let G be a group with hard discrete log., such that |G| is divisible by p. Let $g \in G$ have order p.
- Let D use Shamir's scheme to share v. When D has constructed the polynomial $q(x) = v + \sum_{i=1}^{t-1} a_i x^i$, he (authentically) broadcasts

$$y_0 = g^v, \ y_1 = g^{a_1}, \ \dots, \ y_{t-1} = g^{a_{t-1}}$$

in addition to sending the shares to the parties P_i . Whenever a party sees a share s_j he checks its consistency:

$$g^{s_j} \stackrel{?}{=} \prod_{i=0}^{t-1} y_i^{j^i}$$

Exercise. What does the consistency check do?

Security of Feldman's scheme

- Nobody can cheat the "commitments" y_0, \ldots, y_{t-1} fix the polynomial q.
 - Everybody can check whether q(i) equals a given value.
- Something about the secret can be leaked, because $y_0 = g^v$ does not fully hide v.
 - Use only the hard-core bits of discrete logarithm to store the "real" secret in v.
 - This makes the shares larger.

Pedersen's scheme

Recall Pedersen's commitment scheme:

- Let $h \in G$ be another element of order p, such that nobody knows $\log_q h$.
 - To commit $m \in \mathbb{Z}_p$, the committer randomly generates $r \in \mathbb{Z}_p$ and sends $g^m h^r$ to the verifier.
- To open the commitment, send (m, r) to the verifier.
- The commitment is unconditionally hiding, because $g^m h^r$ is a random element of $\langle g \rangle$.
- The commitment is computationally binding, because the ability to open a commitment in two different ways allows to compute $\log_q h$.

In Pedersen's VSS, the dealer commits to the coefficients of the polynomial q.

Pedersen's scheme

Dealing protocol

- *D* randomly chooses $a_1, \ldots, a_{t-1}, a'_0, \ldots, a'_{t-1} \in \mathbb{Z}_p$. Also defines $a_0 = v$.
- Define $q(x) = \sum_{i=0}^{t-1} a_i x^i$ and $q'(x) = \sum_{i=0}^{t-1} a'_i x^i$.
- The share (s_i, s'_i) of P_i is (q(i), q'(i)).
- D broadcasts $y_i = g^{a_i} h^{a'_i}$ for $i \in \{0, \dots, t-1\}$.

Verification: when somebody sees a share (s_i, s'_i) , he verifies

$$g^{s_i} h^{s'_i} \stackrel{?}{=} \prod_{i=0}^{t-1} y_i^{j^i}$$

Security of Pedersen's scheme

- The broadcast value y_0 hides v unconditionally.
- Ability to change a share (or the pair (v, a'_0)) implies the knowledge of $\log_a h$.
- Having less than t shares allows one to freely choose the secret v. Then there exists an a'_0 that is consistent with y_0 .

Exercise. How to construct linear combinations of shared secrets when using Feldman's or Pedersen's secret sharing scheme? I.e. how do the dealer's commitments change?

Threshold encryption

- Public-key encryption system.
- The public key is a single value.
- The secret key is distributed among several *authorities*.
- To decrypt a ciphertext c:
 - Each authority computes $D(sk_i, c)$ and broadcasts it.
 - If at least t authorities have broadcast the share of the decrypted ciphertext, the plaintext can be reconstructed from them.

ElGamal encryption scheme

Let G, g, p be as before.

Secret key — $\alpha \in_R \mathbb{Z}_p$. Public key — $\chi := g^{\alpha}$.

Plaintext space: G. Ciphertext space: $G \times G$.

To encrypt a plaintext $m \in G$:

• randomly generate $r \in \mathbb{Z}_p$;

• output $(g^r, m \cdot \chi^r)$.

To decrypt a ciphertext (c_1, c_2) :

• output
$$c_2 \cdot c_1^{-\alpha}$$
.

Note, that after the decryption, the value $c_1^{\alpha} = \chi^r$ is not sensitive any more.

Threshold scheme

- Use ElGamal scheme. Distribute the secret key α among the n authorities P_1, \ldots, P_n using Shamir's (n, t)-scheme.
 - Let the shares be s_1, \ldots, s_n .
 - Recall that for each $\mathbf{Q} = \{i_1, \ldots, i_t\}$ there exist coefficients $\gamma_{i_1}^{\mathbf{Q}}, \ldots, \gamma_{i_t}^{\mathbf{Q}} \in \mathbb{Z}_p$, depending only on \mathbf{Q} , such that $\alpha = \sum_{j=1}^t \gamma_{i_j}^{\mathbf{Q}} s_{i_j}$.
- Decryption:
 - given (c_1, c_2) , the authority P_i broadcasts $d_i = c_1^{s_i}$.
 - given d_{i_1}, \ldots, d_{i_t} , where $\{i_1, \ldots, i_t\} = \mathbf{Q}$, we find

$$c_1^{\alpha} = \prod_{j=1}^t d_{i_j}^{\gamma_{i_j}^{\mathbf{Q}}}$$

and the plaintext is $m = c_2 \cdot (c_1^{\alpha})^{-1}$.

Exercise. How could we use Feldman's scheme for verifiability?