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Recall the Dolev-Yao model
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■ The messages were terms (trees); elements of a free algebra.

◆ Certain values were represented as atomic messages

■ keys, nonces, user’s secrets, (random coins)

◆ There were constructors that made messages from messages

■ pairing (tupling), encryption, signatures, (MACs, etc.)

■ There were certain rules on how the messages could be decomposed,
given in terms of the structure of the messages.

◆ The adversary was also bound by these rules.

■ Secrecy of a message meant that the adversary could not obtain the
term corresponding to it.



THn — ideal UC cryptolib for n parties
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■ Connects to n users and the adversary.
■ Main part of the state — a database of terms.
■ For each term and each user/adversary:

◆ The database records whether this term is known to this user or
not.

■ If the term is known to the user/adversary, he has a handle for it.
■ The handles carry no information about the structure of terms.

◆ But for each term and each user/adversary, there is only one
handle.

■ The users and adversary can create new terms and move downwards
in the forest of terms.

■ Sending a message to a different user requires translation of handles.



Message manipulation commands
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■ Store and retrieve payloads.

◆ Storing the same payload twice creates just a single entry in the
database.

■ Construct tuples. Read components of tuples.

◆ Constructing the same tuple twice creates just a single entry in
the database.

■ Generate nonces.
■ Public-key encryption: generate keypairs, encrypt, decrypt.
■ Signatures: generate keypairs, sign, verify, get message.
■ Symmetric encryption: generate keys, encrypt, decrypt.
■ MACs: generate keys, tag, verify, get message.

◆ Models randomized tagging algorithm.

■ (Compare messages) — just compare handles.
■ Get the type of a message.



Sending messages
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■ Messages reside inside THn. Accessed through handles.
■ The only operation giving a non-handle is retrieval of payloads.
■ Transmission of messages has to be handled by THn as well.
■ Messages can be sent over secure or insecure channels.

◆ In the original formulation, authentic channels existed, too.

■ The adversary can impersonate anyone else on insecure channels.
■ The adversary schedules the secure channels.
■ Secret keys of asymmetric primitives may not be sent.

◆ They may only be used for signing or decryption. They cannot
be included in messages.



NonDY — message lengths
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■ Each term in the database has a well-defined length.
■ The formula for computing the length of a term from the lengths of

its subterms may depend on the security parameter.
■ The machine THn only agrees to do polynomial amount of work for

each user.
■ Each party can query THn for the length of any term that it has the

handle for.



NonDY — identities of keys
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■ Given a signature or a public-key ciphertext, it is possible to get the
public key from it.

■ Given a MAC or a symmetric ciphertext, the adversary is able to
learn the identity of the key from it:

◆ The commands gen symenc key and gen mac key actually create
two nodes — the key and its “identity”.

■ Only the handle to the key is returned.
■ But the adversary is able to get the handle to the identity as

well.
■ Given a ciphertext or a MAC, the adversary can ask for the

identity of the used key.



NonDY — abilities of the adversary
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The adversary can additionally generate the following nodes:

■ Garbage (of special type “garbage”).
■ Invalid asymmetric ciphertext of given length ℓ.

◆ Points to the key, but not to any plaintext.
◆ Attempt to decrypt results in error.

■ Transformed signatures

◆ Given a signature S of text T with the key K, generates a new
node S ′ that is also a signature of text T with the key K.

■ Transformed MACs
■ A MAC with no key.

◆ A new MAC-node M is created, that points to the given text T ,
but does not point to any tagging keys.

■ An empty symmetric ciphertext of given length ℓ.

◆ Neither the key nor the plaintext have to be fixed.



NonDY — abilities of the adversary
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The adversary can change the already created nodes as follows:

■ Given a MAC M , the adversary can add a new key, under which this
MAC verifies.

◆ The adversary must know that key.
◆ Hence, in general, a MAC-node M in the database of THn

points to a message m and to zero or more tagging keys.

■ Given a symmetric ciphertext, the adversary can add a new pair of
(key,plaintext), such that this ciphertext decrypts to the given
plaintext under the given key.

◆ The adversary must know the key and the plaintext.
◆ The key must not yet be a valid key of this ciphertext.
◆ In general, a symmetric encryption node SE contains a list of

pairs, each of them pointing to a symmetric key and a message.

When the adversary asks for the identity of the key of some symmetric
ciphertext or MAC, he gets a list of identities.



The real system
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■ One machine Mi for each of the parties i ∈ {1, . . . , n}.
■ Connected to the i-th user, the adversary and also to all other

machines (for implementing secure channels).
■ Internally, the machine Mi contains a list of pairs (handle, bit-string)

mapping handles to actual messages.

◆ Each message must contain its type.

■ The library works pretty much as you imagine.
■ Potential pitfall — no bit-string may have several different handles.
■ Use random bit-strings as key identities. If the key is used in a

message, pair it with its identity. Append each MAC or symmetric
encryption with the identity of the key.

■ Add the public key to all public-key ciphertexts and signatures.



The simulator
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■ The job of the simulator is to translate between the terms in the
ideal system and the bit-strings in the real system.

■ During its work it builds up a database of triples (hnd , w, args)
where w is a bit-string and hnd is the handle for the ideal adversary.

■ args contains additional information, for example the signing keys.
■ This database serves as the dictionary.



Translating ideal → real
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The simulator has received a new handle from THn and has to produce
a bit-string corresponding to it.

■ Parse the ideal message as much as possible. Enter new payloads,
generate new nonces, keys, ciphertexts, signatures, MACs as
necessary.

■ Whenever we see a handle (hnd) for a new verification key, generate
a new signing keypair (sk , vk) and store (hnd , vk , sk).

◆ Use sk to generate signatures that are verifiable with hnd .

■ Same for public encryption keys and key identities.

◆ For identities of keys — we may later get the handle to the key
itself, too.

■ If we see the handle to a ciphertext, such that we do not have the
handle to the decryption key, then we encrypt a random bit-string of
correct length.



Translating real → ideal
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Simulator received a bit-string w and has to find a handle.

■ Parse the bit-string as much as possible. Enter the new values in the
databases of THn and simulator.

■ When the bit-string w an unseen verification key, then ask THn to
create a new signing keypair (hnd sk, hndvk) Add (hndvk , w, sk) to
simulator’s database.

■ Same for public encryption keys.
■ Translating a signature:

◆ If the simulator has the handle to the signing key, then ask THn

to create a new signature.
◆ Otherwise, if the simulator has the handle to a different

signature of the same message with the same key, ask THn to
transform this signature.

◆ Otherwise give up.



Translating real → ideal
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■ Translating a public-key ciphertext:

◆ If the simulator does not know the secret key, then ask THn to
create an invalid ciphertext.

◆ If the secret key is known, but the plaintext does not make
sense, then also ask THn to create an invalid ciphertext.

◆ Otherwise ask THn to create a real ciphertext.

■ Translating a tagging key: for all MACs received so far, consider
whether this key w successfully verifies them. If yes, then ask THn

to add hnd sk to this tag as a verification key.
■ Translating a MAC:

◆ If we do not know a the secret key yet and the message is new
(for this key identity), then as THn to add a MAC with no
verification keys.

■ Translating symmetric keys and ciphertexts: similar.



The commitment problem
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Simulation of symmetric encryption does not always work.
Simulator fails if a user does the following:

k← new symmetric key

x← payload(M)
y← sym encrypt(k, x)
send y

send x

send k

■ Translate y: generate k ← Ks(), z ← rand string, y ← Es(k, z).
■ Translate x: x←M (given x, simulator can ask for it).
■ Translate k: ???

◆ Translation k must satisfy x = Ds(k, y).



Restricting the honest user
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The simulatability proof goes through if we demand that the honest user

■ never causes a key to leak that it has already used;

◆ leak in the sense of Dolev-Yao

■ avoids encryption cycles.

◆ There are several ways to formalize this.
◆ Original paper — let sk 1, sk 2, . . . be all symmetric keys in the

order they are first used for encryption. We demand that sk i is
only encrypted by keys sk j where j < i.

◆ A later formulation — the command gen symenc key contains a
parameter i — the “order” of the key. A key of order i is only
allowed to encrypt keys of lower order.

■ This must be guaranteed by the honest user alone.



On proof of real ≈ (ideal‖simulator)
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■ Encapsulate asymmetric encryption and signatures into separate
machines Encn and Sign. Replace them with their ideal
counterparts.

■ Do the same for the symmetric encryption.

◆ Can only do one key at a time.
◆ There must be no encryption cycles.

■ Construct the probabilistic bisimulation with error sets. Errors
correspond to

◆ Collisions in real nonces, keys, etc.
◆ The adversary guessing the nonces, keys, etc.
◆ The adversary forging a MAC.



Secrecy properties
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■ Let a structure S implement a protocol, using the UC cryptolib for
cryptographic operations and networking.

■ Let H be a user of S.

◆ H gives payloads to S; S transports the payloads between
different parties.

■ key secrecy: Ideal-system A does not learn the handles of the newly
generated keys we’re interested in. The view of real-system A is
independent from the values of actual keys.

■ payload secrecy — The view of H‖A does not distinguishably
change, if the following change to the semantics is made:

◆ Pick a random length-preserving permutation
π : {0, 1}∗ → {0, 1}∗.

◆ When H sends M to S, S receives π(M).
◆ When S sends M ′ back to H, H receives π−1(M ′).



Payload secrecy, symbolically
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Theorem. S‖THn preserve the secrecy of payloads if

■ S passes a payload M down to TH only as a payload;
■ the adversary will not obtain the handle for M ;
■ M does not affect the control flow of the programs of S.

Very similar to secrecy in the formal model.

Payload secrecy and key secrecy are preserved under simulation.
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