
Universally Composable

Cryptographic Library

Recall the Dolev-Yao model

2 / 19

■ The messages were terms (trees); elements of a free algebra.

◆ Certain values were represented as atomic messages

■ keys, nonces, user’s secrets, (random coins)

◆ There were constructors that made messages from messages

■ pairing (tupling), encryption, signatures, (MACs, etc.)

■ There were certain rules on how the messages could be decomposed,
given in terms of the structure of the messages.

◆ The adversary was also bound by these rules.

■ Secrecy of a message meant that the adversary could not obtain the
term corresponding to it.

THn — ideal UC cryptolib for n parties

3 / 19

■ Connects to n users and the adversary.
■ Main part of the state — a database of terms.
■ For each term and each user/adversary:

◆ The database records whether this term is known to this user or
not.

■ If the term is known to the user/adversary, he has a handle for it.
■ The handles carry no information about the structure of terms.

◆ But for each term and each user/adversary, there is only one
handle.

■ The users and adversary can create new terms and move downwards
in the forest of terms.

■ Sending a message to a different user requires translation of handles.

Message manipulation commands

4 / 19

■ Store and retrieve payloads.

◆ Storing the same payload twice creates just a single entry in the
database.

■ Construct tuples. Read components of tuples.

◆ Constructing the same tuple twice creates just a single entry in
the database.

■ Generate nonces.
■ Public-key encryption: generate keypairs, encrypt, decrypt.
■ Signatures: generate keypairs, sign, verify, get message.
■ Symmetric encryption: generate keys, encrypt, decrypt.
■ MACs: generate keys, tag, verify, get message.

◆ Models randomized tagging algorithm.

■ (Compare messages) — just compare handles.
■ Get the type of a message.

Sending messages

5 / 19

■ Messages reside inside THn. Accessed through handles.
■ The only operation giving a non-handle is retrieval of payloads.
■ Transmission of messages has to be handled by THn as well.
■ Messages can be sent over secure or insecure channels.

◆ In the original formulation, authentic channels existed, too.

■ The adversary can impersonate anyone else on insecure channels.
■ The adversary schedules the secure channels.
■ Secret keys of asymmetric primitives may not be sent.

◆ They may only be used for signing or decryption. They cannot
be included in messages.

NonDY — message lengths

6 / 19

■ Each term in the database has a well-defined length.
■ The formula for computing the length of a term from the lengths of

its subterms may depend on the security parameter.
■ The machine THn only agrees to do polynomial amount of work for

each user.
■ Each party can query THn for the length of any term that it has the

handle for.

NonDY — identities of keys

7 / 19

■ Given a signature or a public-key ciphertext, it is possible to get the
public key from it.

■ Given a MAC or a symmetric ciphertext, the adversary is able to
learn the identity of the key from it:

◆ The commands gen symenc key and gen mac key actually create
two nodes — the key and its “identity”.

■ Only the handle to the key is returned.
■ But the adversary is able to get the handle to the identity as

well.
■ Given a ciphertext or a MAC, the adversary can ask for the

identity of the used key.

NonDY — abilities of the adversary

8 / 19

The adversary can additionally generate the following nodes:

■ Garbage (of special type “garbage”).
■ Invalid asymmetric ciphertext of given length ℓ.

◆ Points to the key, but not to any plaintext.
◆ Attempt to decrypt results in error.

■ Transformed signatures

◆ Given a signature S of text T with the key K, generates a new
node S ′ that is also a signature of text T with the key K.

■ Transformed MACs
■ A MAC with no key.

◆ A new MAC-node M is created, that points to the given text T ,
but does not point to any tagging keys.

■ An empty symmetric ciphertext of given length ℓ.

◆ Neither the key nor the plaintext have to be fixed.

NonDY — abilities of the adversary

9 / 19

The adversary can change the already created nodes as follows:

■ Given a MAC M , the adversary can add a new key, under which this
MAC verifies.

◆ The adversary must know that key.
◆ Hence, in general, a MAC-node M in the database of THn

points to a message m and to zero or more tagging keys.

■ Given a symmetric ciphertext, the adversary can add a new pair of
(key,plaintext), such that this ciphertext decrypts to the given
plaintext under the given key.

◆ The adversary must know the key and the plaintext.
◆ The key must not yet be a valid key of this ciphertext.
◆ In general, a symmetric encryption node SE contains a list of

pairs, each of them pointing to a symmetric key and a message.

When the adversary asks for the identity of the key of some symmetric
ciphertext or MAC, he gets a list of identities.

The real system

10 / 19

■ One machine Mi for each of the parties i ∈ {1, . . . , n}.
■ Connected to the i-th user, the adversary and also to all other

machines (for implementing secure channels).
■ Internally, the machine Mi contains a list of pairs (handle, bit-string)

mapping handles to actual messages.

◆ Each message must contain its type.

■ The library works pretty much as you imagine.
■ Potential pitfall — no bit-string may have several different handles.
■ Use random bit-strings as key identities. If the key is used in a

message, pair it with its identity. Append each MAC or symmetric
encryption with the identity of the key.

■ Add the public key to all public-key ciphertexts and signatures.

The simulator

11 / 19

■ The job of the simulator is to translate between the terms in the
ideal system and the bit-strings in the real system.

■ During its work it builds up a database of triples (hnd , w, args)
where w is a bit-string and hnd is the handle for the ideal adversary.

■ args contains additional information, for example the signing keys.
■ This database serves as the dictionary.

Translating ideal → real

12 / 19

The simulator has received a new handle from THn and has to produce
a bit-string corresponding to it.

■ Parse the ideal message as much as possible. Enter new payloads,
generate new nonces, keys, ciphertexts, signatures, MACs as
necessary.

■ Whenever we see a handle (hnd) for a new verification key, generate
a new signing keypair (sk , vk) and store (hnd , vk , sk).

◆ Use sk to generate signatures that are verifiable with hnd .

■ Same for public encryption keys and key identities.

◆ For identities of keys — we may later get the handle to the key
itself, too.

■ If we see the handle to a ciphertext, such that we do not have the
handle to the decryption key, then we encrypt a random bit-string of
correct length.

Translating real → ideal

13 / 19

Simulator received a bit-string w and has to find a handle.

■ Parse the bit-string as much as possible. Enter the new values in the
databases of THn and simulator.

■ When the bit-string w an unseen verification key, then ask THn to
create a new signing keypair (hnd sk, hndvk) Add (hndvk , w, sk) to
simulator’s database.

■ Same for public encryption keys.
■ Translating a signature:

◆ If the simulator has the handle to the signing key, then ask THn

to create a new signature.
◆ Otherwise, if the simulator has the handle to a different

signature of the same message with the same key, ask THn to
transform this signature.

◆ Otherwise give up.

Translating real → ideal

14 / 19

■ Translating a public-key ciphertext:

◆ If the simulator does not know the secret key, then ask THn to
create an invalid ciphertext.

◆ If the secret key is known, but the plaintext does not make
sense, then also ask THn to create an invalid ciphertext.

◆ Otherwise ask THn to create a real ciphertext.

■ Translating a tagging key: for all MACs received so far, consider
whether this key w successfully verifies them. If yes, then ask THn

to add hnd sk to this tag as a verification key.
■ Translating a MAC:

◆ If we do not know a the secret key yet and the message is new
(for this key identity), then as THn to add a MAC with no
verification keys.

■ Translating symmetric keys and ciphertexts: similar.

The commitment problem

15 / 19

Simulation of symmetric encryption does not always work.
Simulator fails if a user does the following:

k← new symmetric key

x← payload(M)
y← sym encrypt(k, x)
send y

send x

send k

■ Translate y: generate k ← Ks(), z ← rand string, y ← Es(k, z).
■ Translate x: x←M (given x, simulator can ask for it).
■ Translate k: ???

◆ Translation k must satisfy x = Ds(k, y).

Restricting the honest user

16 / 19

The simulatability proof goes through if we demand that the honest user

■ never causes a key to leak that it has already used;

◆ leak in the sense of Dolev-Yao

■ avoids encryption cycles.

◆ There are several ways to formalize this.
◆ Original paper — let sk 1, sk 2, . . . be all symmetric keys in the

order they are first used for encryption. We demand that sk i is
only encrypted by keys sk j where j < i.

◆ A later formulation — the command gen symenc key contains a
parameter i — the “order” of the key. A key of order i is only
allowed to encrypt keys of lower order.

■ This must be guaranteed by the honest user alone.

On proof of real ≈ (ideal‖simulator)

17 / 19

■ Encapsulate asymmetric encryption and signatures into separate
machines Encn and Sign. Replace them with their ideal
counterparts.

■ Do the same for the symmetric encryption.

◆ Can only do one key at a time.
◆ There must be no encryption cycles.

■ Construct the probabilistic bisimulation with error sets. Errors
correspond to

◆ Collisions in real nonces, keys, etc.
◆ The adversary guessing the nonces, keys, etc.
◆ The adversary forging a MAC.

Secrecy properties

18 / 19

■ Let a structure S implement a protocol, using the UC cryptolib for
cryptographic operations and networking.

■ Let H be a user of S.

◆ H gives payloads to S; S transports the payloads between
different parties.

■ key secrecy: Ideal-system A does not learn the handles of the newly
generated keys we’re interested in. The view of real-system A is
independent from the values of actual keys.

■ payload secrecy — The view of H‖A does not distinguishably
change, if the following change to the semantics is made:

◆ Pick a random length-preserving permutation
π : {0, 1}∗ → {0, 1}∗.

◆ When H sends M to S, S receives π(M).
◆ When S sends M ′ back to H, H receives π−1(M ′).

Payload secrecy, symbolically

19 / 19

Theorem. S‖THn preserve the secrecy of payloads if

■ S passes a payload M down to TH only as a payload;
■ the adversary will not obtain the handle for M ;
■ M does not affect the control flow of the programs of S.

Very similar to secrecy in the formal model.

Payload secrecy and key secrecy are preserved under simulation.

	Recall the Dolev-Yao model
	THn --- ideal UC cryptolib for n parties
	Message manipulation commands
	Sending messages
	NonDY --- message lengths
	NonDY --- identities of keys
	NonDY --- abilities of the adversary
	NonDY --- abilities of the adversary
	The real system
	The simulator
	Translating ideal real
	Translating real ideal
	Translating real ideal
	The commitment problem
	Restricting the honest user
	On proof of real (ideal"026B30D simulator)
	Secrecy properties
	Payload secrecy, symbolically

