Universally Composable Cryptographic Library

Recall the Dolev-Yao model

The messages were terms (trees); elements of a free algebra.

- Certain values were represented as atomic messages
 - keys, nonces, user's secrets, (random coins)
- There were constructors that made messages from messages
 - pairing (tupling), encryption, signatures, (MACs, etc.)
- There were certain rules on how the messages could be decomposed, given in terms of the structure of the messages.
 - The adversary was also bound by these rules.
- Secrecy of a message meant that the adversary could not obtain the term corresponding to it.

\mathfrak{TH}_n — ideal UC cryptolib for n parties

- Connects to *n* users and the adversary.
- Main part of the state a database of terms.
- For each term and each user/adversary:
 - The database records whether this term is known to this user or not.
- If the term is known to the user/adversary, he has a handle for it.
 The handles carry no information about the structure of terms.
 - But for each term and each user/adversary, there is only one handle.
- The users and adversary can create new terms and move downwards in the forest of terms.
- Sending a message to a different user requires translation of handles.

Message manipulation commands

- Store and retrieve payloads.
 - Storing the same payload twice creates just a single entry in the database.
- Construct tuples. Read components of tuples.
 - Constructing the same tuple twice creates just a single entry in the database.
- Generate nonces.
- Public-key encryption: generate keypairs, encrypt, decrypt.
- Signatures: generate keypairs, sign, verify, get message.
- Symmetric encryption: generate keys, encrypt, decrypt.
- MACs: generate keys, tag, verify, get message.
 - Models randomized tagging algorithm.
- (Compare messages) just compare handles.
- Get the type of a message.

Sending messages

- Messages reside inside TH_n. Accessed through handles.
 The only operation giving a non-handle is retrieval of payloads.
 Transmission of messages has to be handled by TH_n as well.
 Messages can be sent over secure or insecure channels.
 - In the original formulation, authentic channels existed, too.
- The adversary can impersonate anyone else on insecure channels.
 The adversary schedules the secure channels.
 - Secret keys of asymmetric primitives may not be sent.
 - They may only be used for signing or decryption. They cannot be included in messages.

NonDY — message lengths

- Each term in the database has a well-defined length.
- The formula for computing the length of a term from the lengths of its subterms may depend on the security parameter.
- The machine \mathcal{TH}_n only agrees to do polynomial amount of work for each user.
- Each party can query \mathcal{TH}_n for the length of any term that it has the handle for.

NonDY — identities of keys

- Given a signature or a public-key ciphertext, it is possible to get the public key from it.
- Given a MAC or a symmetric ciphertext, the adversary is able to learn the identity of the key from it:
 - The commands gen_symenc_key and gen_mac_key actually create two nodes — the key and its "identity".
 - Only the handle to the key is returned.
 - But the adversary is able to get the handle to the identity as well.
 - Given a ciphertext or a MAC, the adversary can ask for the identity of the used key.

NonDY — abilities of the adversary

The adversary can additionally generate the following nodes:

- Garbage (of special type "garbage").
- Invalid asymmetric ciphertext of given length ℓ .
 - Points to the key, but not to any plaintext.
 - Attempt to decrypt results in error.
- Transformed signatures
 - ◆ Given a signature S of text T with the key K, generates a new node S' that is also a signature of text T with the key K.
- Transformed MACs
- A MAC with no key.
 - A new MAC-node M is created, that points to the given text T, but does not point to any tagging keys.
- An empty symmetric ciphertext of given length ℓ .
 - Neither the key nor the plaintext have to be fixed.

NonDY — abilities of the adversary

The adversary can change the already created nodes as follows:

- Given a MAC M, the adversary can add a new key, under which this MAC verifies.
 - The adversary must know that key.
 - Hence, in general, a MAC-node M in the database of \mathcal{TH}_n points to a message m and to zero or more tagging keys.
- Given a symmetric ciphertext, the adversary can add a new pair of (key,plaintext), such that this ciphertext decrypts to the given plaintext under the given key.
 - The adversary must know the key and the plaintext.
 - The key must not yet be a valid key of this ciphertext.
 - In general, a symmetric encryption node SE contains a list of pairs, each of them pointing to a symmetric key and a message.

When the adversary asks for the identity of the key of some symmetric ciphertext or MAC, he gets a list of identities.

The real system

- One machine M_i for each of the parties i ∈ {1,...,n}.
 Connected to the i-th user, the adversary and also to all other machines (for implementing secure channels).
- Internally, the machine M_i contains a list of pairs (handle, bit-string) mapping handles to actual messages.
 - Each message must contain its type.
- The library works pretty much as you imagine.
- Potential pitfall no bit-string may have several different handles.
 Use random bit-strings as key identities. If the key is used in a message, pair it with its identity. Append each MAC or symmetric encryption with the identity of the key.
 - Add the public key to all public-key ciphertexts and signatures.

The simulator

- The job of the simulator is to translate between the terms in the ideal system and the bit-strings in the real system.
- During its work it builds up a database of triples (*hnd*, *w*, *args*) where *w* is a bit-string and *hnd* is the handle for the ideal adversary.
 args contains additional information, for example the signing keys.
 This database serves as the dictionary.

Translating ideal \rightarrow real

The simulator has received a new handle from TH_n and has to produce a bit-string corresponding to it.

- Parse the ideal message as much as possible. Enter new payloads, generate new nonces, keys, ciphertexts, signatures, MACs as necessary.
- Whenever we see a handle (*hnd*) for a new verification key, generate a new signing keypair (*sk*, *vk*) and store (*hnd*, *vk*, *sk*).
 - Use sk to generate signatures that are verifiable with hnd.
- Same for public encryption keys and key identities.
 - For identities of keys we may later get the handle to the key itself, too.
- If we see the handle to a ciphertext, such that we do not have the handle to the decryption key, then we encrypt a random bit-string of correct length.

Translating real \rightarrow ideal

Simulator received a bit-string w and has to find a handle.

- Parse the bit-string as much as possible. Enter the new values in the databases of TH_n and simulator.
- When the bit-string w an unseen verification key, then ask \mathcal{TH}_n to create a new signing keypair (hnd_{sk}, hnd_{vk}) Add (hnd_{vk}, w, sk) to simulator's database.
- Same for public encryption keys.
 - Translating a signature:
 - If the simulator has the handle to the signing key, then ask TH_n to create a new signature.
 - Otherwise, if the simulator has the handle to a different signature of the same message with the same key, ask TH_n to transform this signature.
 - Otherwise give up.

Translating real \rightarrow ideal

Translating a public-key ciphertext:

- If the simulator does not know the secret key, then ask TH_n to create an invalid ciphertext.
- If the secret key is known, but the plaintext does not make sense, then also ask TH_n to create an invalid ciphertext.
- Otherwise ask \mathcal{TH}_n to create a real ciphertext.
- Translating a tagging key: for all MACs received so far, consider whether this key w successfully verifies them. If yes, then ask \mathcal{TH}_n to add hnd_{sk} to this tag as a verification key.
- Translating a MAC:
 - If we do not know a the secret key yet and the message is new (for this key identity), then as TH_n to add a MAC with no verification keys.
 - Translating symmetric keys and ciphertexts: similar.

The commitment problem

Simulation of symmetric encryption does not always work. Simulator fails if a user does the following:

$$\begin{split} \mathbf{k} &\leftarrow new_symmetric_key\\ \mathbf{x} &\leftarrow payload(M)\\ \mathbf{y} &\leftarrow sym_encrypt(\mathbf{k}, \mathbf{x})\\ \mathbf{send} \ \mathbf{y}\\ \mathbf{send} \ \mathbf{x}\\ \mathbf{send} \ \mathbf{k} \end{split}$$

■ Translate y: generate k ← K_s(), z ← rand_string, y ← E_s(k, z).
 ■ Translate x: x ← M (given x, simulator can ask for it).
 ■ Translate k: ???

• Translation k must satisfy $x = \mathcal{D}_s(k, y)$.

Restricting the honest user

The simulatability proof goes through if we demand that the honest user

- never causes a key to leak that it has already used;
 - leak in the sense of Dolev-Yao
- avoids encryption cycles.
 - There are several ways to formalize this.
 - Original paper let sk_1, sk_2, \ldots be all symmetric keys in the order they are first used for encryption. We demand that sk_i is only encrypted by keys sk_j where j < i.
 - A later formulation the command gen_symenc_key contains a parameter i — the "order" of the key. A key of order i is only allowed to encrypt keys of lower order.
- I This must be guaranteed by the honest user alone.

On proof of real \approx (ideal||simulator)

- Encapsulate asymmetric encryption and signatures into separate machines $\mathcal{E}nc^n$ and $\mathcal{S}ig^n$. Replace them with their ideal counterparts.
- Do the same for the symmetric encryption.
 - Can only do one key at a time.
 - There must be no encryption cycles.
- Construct the probabilistic bisimulation with error sets. Errors correspond to
 - Collisions in real nonces, keys, etc.
 - The adversary guessing the nonces, keys, etc.
 - The adversary forging a MAC.

Secrecy properties

- Let a structure S implement a protocol, using the UC cryptolib for cryptographic operations and networking.
- Let H be a user of S.
 - H gives payloads to S; S transports the payloads between different parties.
- key secrecy: Ideal-system A does not learn the handles of the newly generated keys we're interested in. The view of real-system A is independent from the values of actual keys.
- Payload secrecy The view of $H \parallel A$ does not distinguishably change, if the following change to the semantics is made:
 - Pick a random length-preserving permutation $\pi: \{0,1\}^* \to \{0,1\}^*.$
 - When H sends M to S, S receives $\pi(M)$.
 - When S sends M' back to H, H receives $\pi^{-1}(M')$.

Payload secrecy, symbolically

Theorem. $S || TH_n$ preserve the secrecy of payloads if

- \blacksquare S passes a payload M down to TH only as a payload;
- the adversary will not obtain the handle for M;
- M does not affect the control flow of the programs of S.

Very similar to secrecy in the formal model.

Payload secrecy and key secrecy are preserved under simulation.