Cryptographically sound formal verification of security protocols

Two views of cryptography

Formal ("Dolev-Yao") view

- Messages elements of a term algebra.
- Possible operations on messages are enumerated.
- Choices in semantics non-deterministic.
 - Protocol and the adversary are easily represented in some process calculus.

Computational view

- Messages bit strings.
- Possible operations on messages everything in PPT.
- Choices in semantics probabilistic.
 - Protocol and adversary a set of probabilistic interactive Turing machines.

Two views of cryptography

Formal ("Dolev-Yao") view

- Messages elements of a term algebra.
- Possible operations on messages are enumerated.
- Choices in semantics non-deterministic.
 - Protocol and the adversary are easily represented in some process calculus.
- Simpler to analyse.

Computational view

- Messages bit strings.
- Possible operations on messages everything in PPT.
- Choices in semantics probabilistic.
 - Protocol and adversary a set of probabilistic interactive Turing machines.
- Closer to the real world.

Table of Contents

- I The Abadi-Rogaway result on the indistinguishability of computational interpretations of formal messages.
- Translating protocol traces between formal and computational world.

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- **Bits** $b \in \{0, 1\}$

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- **Bits** $b \in \{0, 1\}$

A formal expression $e \in \mathbf{Exp}$ is

$$e ::= k \\ | b \\ | (e_1, e_2) \\ | \{e'\}_k^r$$

If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k = k' and e = e'.

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- **Bits** $b \in \{0, 1\}$

A formal expression $e \in \mathbf{Exp}$ is

$$e ::= k \\ | b \\ | (e_1, e_2) \\ | \{e'\}_k^r$$

If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k = k' and e = e'. \bullet is similar to Dolev-Yao messages.

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- **Bits** $b \in \{0, 1\}$

A formal expression $e \in \mathbf{Exp}$ is

$$e ::= k \\ | b \\ | (e_1, e_2) \\ | \{e'\}_k^r$$

If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k = k' and e = e'.

- \bullet is similar to Dolev-Yao messages.
- We can also interpret it as a program for computing a message.

Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.

- Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.
 - A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - \mathcal{K} (1^{η}) generates keys;
 - $\mathcal{E}(1^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts \mathbf{x} with \mathbf{k} ;
 - $\mathcal{D}(1^{\eta}, \mathbf{k}, \mathbf{y})$ decrypts y with k.
 - ${\mathcal K}$ and ${\mathcal E}$ probabilistic, ${\mathcal D}$ deterministic.

- Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.
 - A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - $\mathcal{K}^{\mathbf{r}}(\mathbf{1}^{\eta})$ generates keys from random coins **r**;
 - $\mathcal{E}^{\mathbf{r}}(\mathbf{1}^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts x with k using the random coins r;
 - $\mathcal{D}(1^{\eta}, \mathbf{k}, \mathbf{y})$ decrypts y with k.
 - ${\mathfrak K}$ and ${\mathcal E}$ probabilistic, ${\mathfrak D}$ deterministic.

- Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \rightarrow \{0, 1\}^*$ be easily computable and invertible injective function.
 - A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - $\mathcal{K}^{\mathbf{r}}(\mathbf{1}^{\eta})$ generates keys from random coins **r**;
 - $\mathcal{E}^{\mathbf{r}}(\mathbf{1}^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts \mathbf{x} with \mathbf{k} using the random coins \mathbf{r} ;
 - $\mathcal{D}(1^{\eta}, \mathbf{k}, \mathbf{y})$ decrypts y with k.

 ${\mathcal K}$ and ${\mathcal E}$ — probabilistic, ${\mathcal D}$ — deterministic.

Correctness:

$$\begin{aligned} \mathbf{k} &:= \mathcal{K}^{\mathbf{r}}(\eta) \\ \forall \eta, \mathbf{x}, \mathbf{r}, \mathbf{r}': & \mathbf{y} := \mathcal{E}^{\mathbf{r}'}(\eta, \mathbf{k}, \mathbf{x}) \\ \mathbf{x}' &:= \mathcal{D}(\eta, \mathbf{k}, \mathbf{y}) \\ & (\mathbf{x} = \mathbf{x}')? \end{aligned}$$

Semantics of a formal expression

For each
$$k \in \mathbf{Keys}$$
 let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$
For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0, 1\}^{\omega}$.

Define

$$\begin{bmatrix} k \end{bmatrix}_{\eta} = \mathbf{s}_{k}$$
$$\begin{bmatrix} b \end{bmatrix}_{\eta} = b$$
$$\begin{bmatrix} (e_{1}, e_{2}) \end{bmatrix}_{\eta} = \langle \llbracket e_{1} \rrbracket_{\eta}, \llbracket e_{2} \rrbracket_{\eta} \rangle$$
$$\begin{bmatrix} \{e'\}_{k}^{r} \rrbracket_{\eta} = \mathcal{E}^{\mathbf{s}_{r}}(\eta, \mathbf{s}_{k}, \llbracket e' \rrbracket_{\eta}) \end{pmatrix}$$

Semantics of a formal expression

■ For each
$$k \in \mathbf{Keys}$$
 let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$
■ For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0, 1\}^{\omega}$.

Define

$$\begin{bmatrix} k \end{bmatrix}_{\eta} = \mathbf{s}_{k}$$
$$\begin{bmatrix} b \end{bmatrix}_{\eta} = b$$
$$\begin{bmatrix} (e_{1}, e_{2}) \end{bmatrix}_{\eta} = \langle \llbracket e_{1} \rrbracket_{\eta}, \llbracket e_{2} \rrbracket_{\eta} \rangle$$
$$\begin{bmatrix} \{e'\}_{k}^{r} \rrbracket_{\eta} = \mathcal{E}^{\mathbf{s}_{r}}(\eta, \mathbf{s}_{k}, \llbracket e' \rrbracket_{\eta}) \end{cases}$$

 $[\![\cdot]\!]$ assigns to each formal expression a family of probability distributions over bit-strings

Computational indistinguishability

We are looking for sufficient conditions in terms of e_1 and e_2 for

 $\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$.

Computational indistinguishability

We are looking for sufficient conditions in terms of e_1 and e_2 for

 $\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket \ .$

Two families of probability distributions over bit-strings $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$ and $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$ are computationally indistinguishable if for all PPT algorithms \mathcal{A} :

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D^b_\eta, b^* \leftarrow \mathcal{A}(\mathbf{1}^\eta, x)] = 1/2 + \varepsilon(\eta)$$

for some negligible function ε .

Computational indistinguishability

We are looking for sufficient conditions in terms of e_1 and e_2 for

 $\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket \ .$

Two families of probability distributions over bit-strings $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$ and $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$ are computationally indistinguishable if for all PPT algorithms \mathcal{A} :

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D^b_\eta, b^* \leftarrow \mathcal{A}(\mathbf{1}^\eta, x)] = 1/2 + \varepsilon(\eta)$$

for some negligible function ε . A function ε is negligible if

$$\lim_{\eta \to \infty} \varepsilon(\eta) \cdot p(\eta) = 0$$

for all polynomials p.

 $e_1 \vdash e_2$

The value of e_1 tells us the value of e_2

 $e_1 \vdash e_2$

The value of e_1 tells us the value of e_2

$$e \vdash e$$
$$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$
$$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$

 $e_1 \vdash e_2$

The value of e_1 tells us the value of e_2

$$e \vdash e$$
$$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$
$$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$

Examples:

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2) \vdash 1011$$
$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''}) \not\vdash 1011$$
$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''}) \not\vdash 1011$$

 $e_1 \vdash e_2$

The value of e_1 tells us the value of e_2

$$e \vdash e$$
$$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$
$$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$

Examples:

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2) \vdash 1011$$
$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''}) \not\vdash 1011$$
$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''}) \not\vdash 1011$$

Let $openkeys(e) = \{k \in \mathbf{Keys} \mid e \vdash k\}.$

The pattern of a formal expression

Enlarge the set Exp: $e ::= ... |\Box^r$.
 For a set $K \subseteq Keys$ define

$$pat(k, K) = k$$

$$pat(b, K) = b$$

$$pat((e_1, e_2), K) = (pat(e_1, K), pat(e_2, K))$$

$$pat(\{e\}_k^r, K) = \begin{cases} \{pat(e, K)\}_k^r, & \text{if } k \in K \\ \Box^r, & \text{if } k \notin K \end{cases}$$

• Let pattern(e) = pat(e, openkeys(e)).

The pattern of a formal expression

Enlarge the set Exp: $e ::= ... |\Box^r$.
 For a set $K \subseteq Keys$ define

$$pat(k, K) = k$$

$$pat(b, K) = b$$

$$pat((e_1, e_2), K) = (pat(e_1, K), pat(e_2, K))$$

$$pat(\{e\}_k^r, K) = \begin{cases} \{pat(e, K)\}_k^r, & \text{if } k \in K \\ \Box^r, & \text{if } k \notin K \end{cases}$$

Let pattern(e) = pat(e, openkeys(e)). Define $e_1 \cong e_2$ if $pattern(e_1) = pattern(e_2)\sigma_K\sigma_R$ for some

- σ_K a permutation of the keys Keys;
- σ_R a permutation of the random coins Coins.

Examples

 $pattern((\{1011\}_{k_{1}}^{r},\{k_{1}\}_{k_{2}}^{r'},k_{2})) = (\{1011\}_{k_{1}}^{r},\{k_{1}\}_{k_{2}}^{r'},k_{2})$ $pattern((\{1011\}_{k_{1}}^{r},\{k_{1}\}_{k_{2}}^{r'},\{k_{2}\}_{k_{3}}^{r''})) = (\Box^{r},\Box^{r'},\Box^{r''})$ $pattern((\{1011\}_{k_{1}}^{r},\{k_{1}\}_{k_{2}}^{r'},\{k_{2}\}_{k_{1}}^{r''})) = (\Box^{r},\Box^{r'},\Box^{r''})$ $pattern((\{1\}_{k_{2}}^{r},\{k_{2}\}_{k_{3}}^{r_{2}},\{\{0\}_{k_{2}}^{r_{4}}\}_{k_{1}}^{r_{3}},k_{1})) = (\Box^{r_{1}},\Box^{r_{2}},\{\Box^{r_{4}}\}_{k_{1}}^{r_{3}},k_{1})$ $pattern((\{k_{4},0\}_{k_{3}}^{r_{1}},\{k_{3}\}_{k_{2}}^{r_{2}},\{\{11\}_{k_{4}}^{r_{4}}\}_{k_{1}}^{r_{3}},k_{1})) = (\Box^{r_{1}},\Box^{r_{2}},\{\Box^{r_{4}}\}_{k_{1}}^{r_{3}},k_{1})$

IND-CPA-security of an encryption scheme

 $(\mathcal{K},\mathcal{E},\mathcal{D})$ is IND-CPA-secure if for all PPT algorithms $\mathcal A$ exists a negligible $\varepsilon,$ such that

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, b^* \leftarrow \mathcal{A}^{\mathcal{O}_b^{\mathrm{IND-CPA}}}(\mathbf{1}^{\eta})] = 1/2 + \varepsilon(\eta)$$

IND-CPA-security of an encryption scheme

 $(\mathcal{K},\mathcal{E},\mathcal{D})$ is IND-CPA-secure if for all PPT algorithms $\mathcal A$ exists a negligible $\varepsilon,$ such that

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, b^* \leftarrow \mathcal{A}^{\mathcal{O}_b^{\mathrm{IND-CPA}}}(\mathbf{1}^{\eta})] = 1/2 + \varepsilon(\eta)$$

In other words: $\mathcal{O}_1^{\text{IND}-\text{CPA}} \approx \mathcal{O}_0^{\text{IND}-\text{CPA}}$

Hiding the identities of keys

Oracle with two keys $\mathcal{O}_1^{\text{hide}-\text{key}}$: Initialization: **method** encrypt1(x) **method** encrypt2(x) $\mathbf{k}_1 \leftarrow \mathcal{K}(\mathbf{1}^\eta)$ $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}_1, \mathbf{x})$ $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k_2}, \mathbf{x})$ $k_2 \leftarrow \mathcal{K}(1^{\eta})$ return y return y • Oracle with one key $\mathcal{O}_{0}^{\text{hide}-\text{key}}$: Initialization: **method** encrypt1(x)**method** encrypt2(x) $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{x})$ $\mathtt{k} \leftarrow \mathfrak{K}(\mathtt{1}^{\eta})$ $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{x})$ return y return y

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ hides the identities of keys / is which-key concealing if $\mathcal{O}_1^{\mathrm{hide-key}} \approx \mathcal{O}_0^{\mathrm{hide-key}}$.

Hiding the identities of keys

Oracle with two keys $\mathcal{O}_1^{\text{hide}-\text{key}}$: Initialization: **method** encrypt1(x) **method** encrypt2(x) $k_1 \leftarrow \mathcal{K}(1^\eta)$ $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}_1, \mathbf{x})$ $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}_2, \mathbf{x})$ $k_2 \leftarrow \mathcal{K}(1^{\eta})$ return y return y • Oracle with one key $\mathcal{O}_0^{\text{hide}-\text{key}}$: Initialization: **method** encrypt1(x)**method** encrypt2(x) $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{x})$ $\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{x})$ $\mathtt{k} \leftarrow \mathfrak{K}(\mathtt{1}^{\eta})$ return y return y

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ hides the identities of keys / is which-key concealing if $\mathcal{O}_1^{\mathrm{hide-key}} \approx \mathcal{O}_0^{\mathrm{hide-key}}$.

IND-CPA-secure which-key concealing encryption schemes are easily constructed (CCA- or CTR-mode of operation of block ciphers).

Hiding the length of the plaintext

- An encryption scheme is length-concealing if the length of the plaintext cannot be determined from the ciphertext.
 Achievable by padding the plaintexts.
 - Questionable for nested encryptions...
- For simplicity, we will assume that our encryption scheme is length-concealing.
 - ◆ And also which-key concealing and IND-CPA-secure.
- Otherwise we'd need to define lengths of formal expressions.
 - Not difficult, but currently not so interesting

IND-CPA, which-key and length-concealing:

Let $\mathbf{0}$ be a fixed bit-string.

Oracle $\mathcal{O}_1^{\text{type}=0}$: Initialization: $k_1 \leftarrow \mathcal{K}(1^\eta)$ $k_2 \leftarrow \mathcal{K}(1^\eta)$	$\begin{array}{l} \textbf{method} \; encrypt1(x) \\ y \leftarrow \mathcal{E}(k_1, x) \\ \textbf{return} \; y \end{array}$	$\begin{array}{l} \textbf{method} \; encrypt2(x) \\ y \leftarrow \mathcal{E}(\texttt{k}_2, x) \\ \textbf{return} \; y \end{array}$
Oracle \mathcal{O}_0^{oppo} : Initialization: $\mathbf{k} \leftarrow \mathcal{K}(1^{\eta})$	$\begin{array}{l} \textbf{method} \; \texttt{encrypt1}(x) \\ \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{0}) \\ \textbf{return} \; \textbf{y} \end{array}$	$\begin{array}{l} \textbf{method} \; \texttt{encrypt2}(x) \\ \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{0}) \\ \textbf{return} \; \textbf{y} \end{array}$

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ has all three listed properties if $\mathcal{O}_1^{\mathrm{type}-0} \approx \mathcal{O}_0^{\mathrm{type}-0}$.

Semantics of expressions and patterns

Define

Theorem of equivalence

Theorem. Let $e_1, e_2 \in \mathbf{Exp.}$ If $e_1 \cong e_2$ then* $\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$.

Replacing one key

For a key $\overline{k} \in \mathbf{Keys}$ define

$$\begin{aligned} replacekey(k,\overline{k}) &= k \\ replacekey(b,\overline{k}) &= b \\ replacekey((e_1, e_2), \overline{k}) &= (replacekey(e_1, \overline{k}), replacekey(e_2, \overline{k})) \\ replacekey(\{e\}_k^r, \overline{k}) &= \begin{cases} \Box^r, & \text{if } k = \overline{k} \\ \{replacekey(e, \overline{k})\}_k^r, & \text{if } k \neq \overline{k} \end{cases} \\ replacekey(\Box^r, \overline{k}) &= \Box^r \end{aligned}$$

Lemma. Let $e \in \mathbf{Exp}$. Let key \overline{k} occur in e only as encryption key. Then $\llbracket e \rrbracket \approx \llbracket replacekey(e, \overline{k}) \rrbracket$.

Proof of the lemma

Assume that \mathcal{B} distinguishes $\llbracket e \rrbracket$ from $\llbracket replacekey(e, \overline{k}) \rrbracket$. Let $\mathcal{A}^{\mathfrak{O}}(\eta)$ work as follows:

Initialize:

- Let $\mathbf{s}_k \leftarrow \mathcal{K}(\eta)$ for all keys k occurring in e, except \overline{k} .
- Let s_r ∈_R {0,1}^ω for all r occurring in e, except as {...}^r/_k.
 Let k_□ ← ℋ(1^η).

Let L = {} (empty mapping).
 Compute the "semantics" v of e as follows by invoking SEM^O(e)

•
$$\operatorname{SEM}^{\mathfrak{O}}(e) = \llbracket e \rrbracket \text{ if } \mathfrak{O} = \mathfrak{O}_1^{\operatorname{type}-0}.$$

• $\operatorname{SEM}^{\mathfrak{O}}(e) = \llbracket replacekey(e, \overline{k}) \rrbracket \text{ if } \mathfrak{O} = \mathfrak{O}_0^{\operatorname{type}-0}$

return $\mathcal{B}(\eta, v)$.

 \mathcal{A} can distinguish $\mathcal{O}_1^{\text{type}-0}$ and $\mathcal{O}_0^{\text{type}-0}$ as well as \mathcal{B} can distinguish $\llbracket e \rrbracket$ and $\llbracket replacekey(e, \overline{k}) \rrbracket$.

Computing $\llbracket e \rrbracket$ or $\llbracket replacekey(e, \overline{k}) \rrbracket$

 $\operatorname{Sem}^{\operatorname{O}}(e)$ is: case e of

- $\blacksquare k: \textbf{ return } s_k \text{ (note that } k \neq \overline{k} \text{)}$
- b: return b

•
$$(e_1, e_2)$$
: let $v_i = \operatorname{SEM}^{\mathfrak{O}}(e_i)$; return $\langle v_1, v_2 \rangle$
• $\{e\}_k^r$: let $v = \operatorname{SEM}^{\mathfrak{O}}(e)$;

• If
$$k \neq \overline{k}$$
 then **return** $\mathcal{E}^{\mathbf{s}_r}(\eta, \mathbf{s}_k, v)$

• If
$$k = \overline{k}$$
 and $L(r)$ is not defined then

• let
$$L(r) = \mathfrak{O}.\mathrm{encrypt1}(v)$$
;

- return L(r)
- If $k = \overline{k}$ and L(r) is defined then **return** L(r)
- \square^r : return O.encrypt2(0)

Proof of the theorem

- replacekey(replacekey(··· replacekey(e, k₁), k₂) ··· , kₙ) = pattern(e)
 if {k₁,...,kₙ} are all keys in e that the adversary cannot obtain.
 Denote this set of keys by hidkeys(e).
- 2. Apply the **lemma** sequentially to each key in hidkeys(e), thereby establishing

$$\llbracket e \rrbracket \approx \llbracket pattern(e) \rrbracket.$$

- * In general, not all orders of keys in hidkeys(e) are suitable.
- 3. Permuting the formal keys and coins does not change the generated probability distribution over bit-strings.

If $e_1 \cong e_2$ then^{*} $\llbracket e_1 \rrbracket \approx \llbracket pattern(e_1) \rrbracket = \llbracket pattern(e_2) \rrbracket = \llbracket e_2 \rrbracket$.
$[\![(\{k_4,0\}_{k_3}^{r_1},\{k_3\}_{k_2}^{r_2},\{\{\texttt{11}\}_{k_4}^{r_4}\}_{k_1}^{r_3},k_1)]\!]$

$[\![(\{\mathbf{1}\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{\mathbf{0}\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]\!]$

$[\![(\{k_4,0\}_{k_3}^{r_1},\{k_3\}_{k_2}^{r_2},\{\{\texttt{11}\}_{k_4}^{r_4}\}_{k_1}^{r_3},k_1)]\!]$

$[\![(\{\mathbf{1}\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{\mathbf{0}\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]\!]$

$\begin{bmatrix} (\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \end{bmatrix} \approx \\ \begin{bmatrix} (\{k_4, 0\}_{k_3}^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \end{bmatrix}$

$$\begin{split} \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \end{split}$$

$$\begin{split} \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\Box^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \end{split}$$

$$\begin{split} \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\Box^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \end{split}$$

$$\begin{split} \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\{k_4, 0\}_{k_3}^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\Box^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \\ \approx \\ \llbracket (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket \end{split}$$

 $\llbracket (\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$ \approx $\llbracket (\{k_4, 0\}_{k_3}^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$ \approx $\llbracket (\Box^{r_1}, \Box^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$ \approx $\llbracket (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$ \approx $\llbracket (\{1\}_{k_2}^{r_1}, \Box^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$ \approx $\llbracket (\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$

$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1)$

$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1)$

$\llbracket (\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \rrbracket$

 $pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1)$

 $\begin{bmatrix} (\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1) \end{bmatrix} \\ \text{(cannot apply the lemma)}$

Encryption cycles

Let e be a formal expression.

Consider the following directed graph G = (V, E):

- $\bullet \quad V = hidkeys(e)$
- $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form

 $\{\cdots k_j \cdots\}_{k_i}^r$

(we say that k_i encrypts k_j)

e has no encryption cycles if G does not contain directed cycles.

Encryption cycles

Let e be a formal expression.

Consider the following directed graph G = (V, E):

- $\bullet \quad V = hidkeys(e)$
- $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form

 $\{\cdots k_j \cdots\}_{k_i}^r$

(we say that k_i encrypts k_j)

• e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then $\llbracket e \rrbracket \approx \llbracket pattern(e) \rrbracket$.

Encryption cycles

Let e be a formal expression.

Consider the following directed graph G = (V, E):

- $\bullet \quad V = hidkeys(e)$
- $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form

 $\{\cdots k_j \cdots\}_{k_i}^r$

(we say that k_i encrypts k_j)

• e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then $\llbracket e \rrbracket \approx \llbracket pattern(e) \rrbracket$.

"No encryption cycles" is sufficient, but not necessary condition for the sequential applicability of our lemma.

Example: $(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3})$ is OK.

Severity of encryption cycles

Exercise. Take an encryption scheme that is assumed to be IND-CPA-secure. Modify it so, that it is still IND-CPA-secure, but defenseless against an adversary that has somehow obtained $\{k\}_k$.

Dealing with encryption cycles

- We could increase the relation \vdash
 - Thereby allowing the adversary to "break encryption cycles".
- We could strengthen the security definition of the symmetric encryption scheme
 - KDM-IND-CPA-security
 - ♦ <u>k</u>ey-<u>d</u>ependent <u>m</u>essages
 - Is such definition instantiable?

Breaking encryption cycles

Define the relations $\vdash_{\mathbf{K}}$ for any set \mathbf{K} of formal keys as follows:

$$e \vdash_{\mathbf{K}} e$$

$$e \vdash_{\mathbf{K}} (e_1, e_2) \Rightarrow e \vdash_{\mathbf{K}} e_1 \wedge e \vdash_{\mathbf{K}} e_2$$

$$e \vdash_{\mathbf{K}} e' \Rightarrow e \vdash_{\mathbf{K} \cup \mathbf{K}'} e'$$

$$e \vdash_{\mathbf{K}} \{e'\}_k^r \Rightarrow e \vdash_{\mathbf{K} \cup \{k\}} e'$$

$$e \vdash_{\mathbf{K} \cup \{k\}} e' \wedge e \vdash_{\mathbf{K}} k \Rightarrow e \vdash_{\mathbf{K}} e'$$

$$e \vdash_{\mathbf{K} \cup \{k\}} k \Rightarrow e \vdash_{\mathbf{K}} k$$

And define \vdash as the relation \vdash_{\emptyset} .

Exercise. What is the pattern of messages $(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)$ and $(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3})$ by the new definition of \vdash ?

KDM-IND-CPA-security

- Defined as the indistinguishability of certain two encrypting oracles \mathcal{O}_0 and \mathcal{O}_1 .
- Both "initially create" an array $\mathbf{k}[0..\infty]$ of fresh keys.
- A query to an oracle is a pair (j,g), where
 - $j \in \mathbb{N}$
 - \bullet g is a program that returns a bit-string
 - g may refer to **k**.
 - the length of g's output may not depend on \mathbf{k} .
- \mathcal{O}_1 returns $\mathcal{E}_{\mathbf{k}[j]}(g(\mathbf{k}))$ to the query (j,g). ■ \mathcal{O}_0 returns $\mathcal{E}_{\mathbf{k}[j]}(0^{|g(\mathbf{k})|})$ to the query (j,g).

(this definition allows ${\mathcal E}$ to reveal the lengths of plaintexts and identities of keys)

Achieving KDM-IND-CPA-security

Simple in the random oracle model

- Let H(x) denote random oracle's output for the query x
- The program g may also contain instructions to call H
- Let $\mathcal{K}(\eta)$ just output a random element of $\{0,1\}^{\eta}$. Let $\mathcal{E}^r(\eta, k, x) = (r, H(k||r) \oplus x)$
 - Assume that the output of H has the same length as x
 - Exercise. How do we construct such a H from some random oracle H₀ whose output length is fixed?

Exercise. Show that this scheme is KDM-IND-CPA-secure.

- It is not known how to achieve KDM-security in the plain model.
- Possible, if we restrict the shape of g in a certain way.
- This restricted set can still be large enough to contain the computation of [[·]].

Table of Contents

- The Abadi-Rogaway result on the indistinguishability of computational interpretations of formal messages.
- I Translating protocol traces between formal and computational world.

Public-key primitives

Extend the construction of the set of formal messages by

- keypairs $kp \in \mathbf{EKeys}$ for encryption and $kp \in \mathbf{SKeys}$ for signing;
- operations kp⁺ and kp⁻ to take the public and secret components of keys;
- public-key encryptions $\{[e]\}_{kp^+}^r$ and signatures $[\{e\}]_{kp^-}^r$.
- Fix a public-key encryption scheme $(\mathcal{K}_p, \mathcal{E}_p, \mathcal{D}_p)$ and a signature scheme $(\mathcal{K}_s, \mathcal{S}_s, \mathcal{V}_s).$
- Use \mathcal{K}_p , \mathcal{E}_p , \mathcal{K}_s , \mathcal{K}_s to define the semantics of new constructs.
- Similar results can be obtained with $\{[\cdot]\}_{\cdot}$ in messages.
 - If secret keys are not part of messages then encryption cycles are not an issue.

Specifying the protocols

- A set \mathcal{P} of principals (some of them possibly corrupted). Each one with fixed keypairs for signing and encryption.
 - There are keys ek(P), dk(P), sk(P), vk(P) for each principal P.
 - A set of roles.
 - A list of pairs of incoming and outgoing messages.
 - May contain nonces.
 - Also may contain message variables and principal variables.

Example roles

Needham-Schroeder-Lowe public-key protocol:

$$A \longrightarrow B : \{[N_A, A]\}_{\mathsf{ek}(B)}$$
$$B \longrightarrow A : \{[N_A, N_B, B]\}_{\mathsf{ek}(A)}$$
$$A \longrightarrow B : \{[N_B]\}_{\mathsf{ek}(B)}$$

I Initiator role:

$$(Start, \{[N_A, X_{\text{Init}}]\}_{\mathsf{ek}(X_{\text{Resp}})})$$
$$(\{[N_A, X_N, X_{\text{Resp}}]\}_{\mathsf{ek}(X_{\text{Init}})}, \{[X_N]\}_{\mathsf{ek}(X_{\text{Resp}})})$$

Responder role:

$$(\{[X_N, X_{\text{Init}}]\}_{\mathsf{ek}(X_{\text{Resp}})}, \{[X_N, N_B, X_{\text{Resp}}]\}_{\mathsf{ek}(X_{\text{Init}})}) \\ (\{[N_B]\}_{\mathsf{ek}(X_{\text{Resp}})}, Ok)$$

Adversary may start new runs by stating $new(sid; P_1, \ldots, P_n)$.

- \bullet *sid* is the unique session identifier of the run.
- P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .

Adversary may start new runs by stating $new(sid; P_1, \ldots, P_n)$.

- sid is the unique session identifier of the run.
- P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Adversary may send messages by stating $recv(sid, R_i, m)$ where m is a message.
 - The role R_i in the run sid will receive the message m and process it.

Adversary may start new runs by stating $new(sid; P_1, \ldots, P_n)$.

sid is the unique session identifier of the run.

- P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Adversary may send messages by stating $recv(sid, R_i, m)$ where m is a message.
 - The role R_i in the run sid will receive the message m and process it.
- When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will
 - match m with $m_{
 m i}$;
 - generate a new message m' by instantiating the outgoing message m_o and send it: send(sid, R_i, m');
 - Set R_i to R'_i (in *sid* only).

Decompose m according to m_i .

- Use $dk(P_i)$ to decrypt messages encrypted with $ek(P_i)$.
- The keys for symmetric encryption are contained in m_{i} .
- Verify the equality of instantiated parts of m_i to the corresponding parts of m'.
- Initialize the new variables in m_i with the corresponding parts of m'.
- Verify the signatures in m'.
- When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will
 - match m with $m_{
 m i}$;
 - generate a new message m' by instantiating the outgoing message m_o and send it: send (sid, R_i, m') ;
 - Set R_i to R'_i (in *sid* only).

rem

Adversary may start new runs by stating $new(sid; P_1, \ldots, P_n)$.

sid is the unique session identifier of the run.

- P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Adversary may send messages by stating $recv(sid, R_i, m)$ where m is a message.
 - The role R_i in the run sid will receive the message m and process it.
- When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will
 - match m with $m_{
 m i}$;
 - generate a new message m' by instantiating the outgoing message m_o and send it: send(sid, R_i, m');
 - Set R_i to R'_i (in *sid* only).

Adversary may start new runs by stating $new(sid; P_1, \ldots, P_n)$.

sid is the unique session identifier of the run.

- P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Use the values of already known keys, nonces, variables, etc. $r_{
 m e}~m$

Generate new values for keys and nonces that occur first time in $m_{\rm o}$.

When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will

- match m with m_{i} ;
- generate a new message m' by instantiating the outgoing message m_o and send it: $send(sid, R_i, m')$;
- Set R_i to R'_i (in *sid* only).

Execution traces

- An execution trace is a sequence of new-, recv- and send-statements.
- We have traces in both models there are
 - formal traces sequences of terms over a message algebra with a countable number of atoms for keys, nonces, random coins;
 - computational traces sequences of bit-strings.
- A formal trace is valid if each message in a recv-statement can be generated from messages in previous send- and recv-statements.

Translating Formal \rightarrow Computational

- A formal trace t^f is a sequence consisting of principal names and formal messages.
- Formal messages are made up of formal nonces, formal keys, formal encryptions and decryptions using formal coins.
- Fix a mapping c from formal constants, nonces, keys and coins to bit-strings.
- Extend c to the entire trace, giving the computational trace c(t^f).
 Denote t^f ≤ t^c if the computational trace t^c can be obtained as a translation of the formal trace t^f.

Translating Formal \rightarrow Computational

- A formal trace t^f is a sequence consisting of principal names and formal messages.
- Formal messages are made up of formal nonces, formal keys, formal encryptions and decryptions using formal coins.
- Fix a mapping *c* from formal constants, nonces, keys and coins to bit-strings.
- Extend c to the entire trace, giving the computational trace c(t^f).
 Denote t^f ≤ t^c if the computational trace t^c can be obtained as a translation of the formal trace t^f.

Lemma. If the used cryptographic primitives are secure then for any computational adversary \mathcal{A} , if t^c is a computational trace of the protocol running together with \mathcal{A} then with overwhelming probability there exists a valid formal trace t^f , such that $t^f \leq t^c$.

Security of primitives

The encryption systems must be IND-CCA secure.

- Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathcal{D}(k, \cdot)$.
- Results from the encryption oracle may not be submitted to the decryption oracle.

Security of primitives

The encryption systems must be IND-CCA secure.

- Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathcal{D}(k, \cdot)$.
- Results from the encryption oracle may not be submitted to the decryption oracle.
- The signature system must be EF-CMA secure.
 - Adversary may not be able to produce a valid (message,signature)-pair, even when interacting with a signing oracle.
 - Messages submitted to the oracle do not count.

Security of primitives

The encryption systems must be IND-CCA secure.

- Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathcal{D}(k, \cdot)$.
- Results from the encryption oracle may not be submitted to the decryption oracle.
- The signature system must be **EF-CMA** secure.
 - Adversary may not be able to produce a valid (message,signature)-pair, even when interacting with a signing oracle.
 - Messages submitted to the oracle do not count.
- I The message must be recoverable from the signature (and the verification key).

Translating Computational \rightarrow Formal

Consider

- a computational trace,
 - Actually, the set $\mathcal M$ of messages appearing in it.
- the set \mathcal{K} of secret decryption keys of participants.

Iterate:
Consider

- a computational trace,
 - Actually, the set $\mathcal M$ of messages appearing in it.
- I the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like a pair $\langle M_1, M_2 \rangle$ then

- add M_1, M_2 to \mathfrak{M} ;
- for M, record that it is a pair $\langle M_1, M_2 \rangle$.

Consider

- a computational trace,
 - Actually, the set $\mathcal M$ of messages appearing in it.
- I the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M\in \mathcal{M}$ looks like a symmetric key then

- add M to \mathcal{K} ;
- \blacksquare pick a new formal symmetric key K and associate it with M.

Concerning symmetric encryption, attention has to be paid to encryption cycles.

Consider

- a computational trace,
 - Actually, the set ${\mathcal M}$ of messages appearing in it.
- I the set ${\mathcal K}$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like an encryption then try to decrypt it with all keys in \mathcal{K} . If $M_0 = \mathcal{D}(M_k, M)$ for some $M_k \in \mathcal{K}$, then

- add M_0 to \mathfrak{M} ;
- for M, record that it is an encryption of M_0 with the formal key corresponding to the encryption key of M_k .

Consider

- a computational trace,
 - Actually, the set ${\mathcal M}$ of messages appearing in it.
- the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like a signature then try to verify it with all verification keys in \mathcal{M} . If $\mathcal{V}(M_k, M)$ is successful, then

- add $M_0 = get_message(M)$ to \mathcal{M} ;
- for M, record that it is the signature of M_0 verifiable with the formal key corresponding to M_k .

Consider

- a computational trace,
 - Actually, the set $\mathcal M$ of messages appearing in it.
- the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

etc. Try to decompose the messages in $\mathcal M$ as much as possible.

Consider

- a computational trace,
 - Actually, the set $\mathcal M$ of messages appearing in it.
- the set $\mathcal K$ of secret decryption keys of participants.
- In the end:
- for each uninterpreted message in M: associate it with a new formal nonce.
- Construct the formal trace using the structure of messages that we recorded.

Invalid formal trace \Rightarrow broken primitive

If the trace is invalid, then the adversary did one of the following:

- forged a signature;
- guessed a nonce, symmetric key, or signature that it had only seen encrypted.

We run the protocol while using the encryption / signing oracles to encrypt / sign. We guess at which point the break happens.

- We use the oracles for this particular key.
- A forged signature promptly gives us a break of UF-CMA.
- For guessed nonce, key or signature we generate two copies of it and use the messages derived from these two copies as the inputs to the oracle $\mathcal{E}(k, \pi_b(\cdot, \cdot))$.
 - After learning the nonce / key / signature, we learn b.

Trace properties

- A trace property of P is a subset of the set of all formal traces.
- A protocol formally satisfies a trace property P if all its formal traces belong to P.
- A protocol computationally satisfies a trace property P if for almost all computational traces t^c of the protocol there exists a trace $t^f \in P$, such that $t^f \leq t^c$.

Theorem. If a protocol formally satisfies some trace property P, then it also computationally satisfies P.

Confidentiality of nonces

- In the formal setting, the confidentiality of a certain nonce N means that N will not be included in the knowledge set of the adversary. In the computational setting, the confidentiality of a certain nonce Nmeans that no PPT adversary \mathcal{A} can guess b from the following:
 - Run the protocol normally, with \mathcal{A} as the adversary, until...
 - ♦ A denotes one of the just started protocol sessions as "under attack".
 - Generate a random bit b and two nonces N_0 and N_1 .
 - Use N_b in the attacked session in the place of N.
 - Continue executing the protocol until A stops it.
 - Give N_0 and N_1 to \mathcal{A} .

Theorem. Formal confidentiality of a nonce implies its computational confidentiality.