Defining security of cryptographic primitives The hybrid argument

Formally defining security of cryptoprimitives

- Let us move back to "computational" world:
- Messages are bit-strings;
- Encryption, decryption, key generation, signing, etc. are PPT algorithms on bit-strings.
- Adversary is an(y) interactive PPT algorithm.
- Primitive is secure if adversary's succeeds in breaking it with a low probability.
- A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for all polynomials, $\lim _{\eta \rightarrow \infty} f(\eta) \cdot p(\eta)=0$.
- I.e. the inverse of f is superpolynomial.
- $\quad \eta$ is the security parameter
- Where does it come from?

Security parameter

■ We need an integer parameter for speaking about asymptotic security.

- η is something that
- the work of honest participants is polynomial in η;
- the work of the adversary is hopefully superpolynomial in η.

■ It could be

- the key / plaintext length in asymmetric encryption and signing;
- the length of the challenge in identification protocols.

■ But also

- key / block length in block ciphers / symmetric encryption;
- key / tag length in MACs;
- output length in hash functions
although the common definitions for those are usually not parameterized.

Security of symmetric encryption

- We want the ciphertext to hide all partial information.
- At least information that can be found in polynomial time.

■ Let $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a polynomial-time algorithm.

- We pick a plaintext x.
- We give η and $y=\mathcal{E}_{k}(\eta, x)$ to the adversary.

■ The adversary answers with $z \in\{0,1\}^{*}$.
■ The adversary wins if $z=H(x)$.

- We want the adversary's winning probability to be negligible in η.

Exercise. What is wrong with this definition?

Semantic security

■ For all polynomial-time algorithms $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
■ for all polynomial-time constructible families of probability distributions $\left\{M_{\eta}\right\}_{\eta \in \mathbb{N}}$ over bit-strings
■ for all PPT adversaries \mathcal{A}
■ the probability

$$
\operatorname{Pr}\left[h^{*}=h \mid x \leftarrow M_{\eta}, h=H(x), y \leftarrow \mathcal{E}_{k}(\eta, x), h^{*} \leftarrow \mathcal{A}(\eta, y)\right]
$$

is at most negligibly larger than the probability

$$
\operatorname{Pr}\left[h^{*}=h \mid x, x^{\prime} \leftarrow M_{\eta}, h=H\left(x^{\prime}\right), y \leftarrow \mathcal{E}_{k}(\eta, x), h^{*} \leftarrow \mathcal{A}(\eta, y)\right]
$$

■ Then $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ has semantic security against chosen-plaintext attacks.

Simplifying semantic security

- H, M and \mathcal{A} are all polynomial-time algorithms.
- Put them all into \mathcal{A} :
- \mathcal{A} first outputs H and M;
- then x is picked according to M and $y=\mathcal{E}_{k}(\eta, x)$ is given to \mathcal{A};
- then \mathcal{A} tries to find $H(x)$.
- Restrict \mathcal{A} :
- Let H be identity function.
- Let M_{η} be a distribution that assigns 50% to some $m_{0}, 50 \%$ to some m_{1} and nothing to any other bit-string.
- To specify M_{η}, \mathcal{A} outputs m_{0} and m_{1}.
- m_{0} and m_{1} must have equal length.

Find-then-guess security

■ $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ - a symmetric encryption scheme.

- Let k be generated by $\mathcal{K}(\eta)$.
- Let $b \in_{R}\{0,1\}$ be uniformly generated.

■ The adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ works as follows:

- $\mathcal{A}_{1}(\eta)$ returns two messages m_{0}, m_{1} of equal length and some internal state s.
- Invoke $\mathcal{E}_{k}\left(\eta, m_{b}\right)$. Let y be the result.
- $\mathcal{A}_{2}(s, y)$ outputs a bit b^{*}.
- Encryption scheme has find-then-guess security against chosen-plaintext attacks if the probability of $b=b^{*}$ is not larger than $1 / 2+f(\eta)$ for some negligible f.

Exercise. Show that find-then-guess security implies semantic security.

Indistinguishability of probability distributions

■ For each $\eta \in \mathbb{N}$ let D_{η}^{0} and D_{η}^{1} be probability distributions over bit-strings.

- The families of probability distributions $D^{0}=\left\{D_{\eta}^{0}\right\}_{\eta \in \mathbb{N}}$ and $D^{1}=\left\{D_{\eta}^{1}\right\}_{\eta \in \mathbb{N}}$ are indistinguishable if
- for any adversary \mathcal{A}
- The running time of $\mathcal{A}(\eta, \cdot)$ must be polynomial in η
- the difference of probabilities

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, x)=1 \mid x \leftarrow D_{\eta}^{0}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, x)=1 \mid x \leftarrow D_{\eta}^{1}\right]
$$

is a negligible function of η.
■ Denote $D^{0} \approx D^{1}$.

Transitivity

Theorem. If $D^{0} \approx D^{1}$ and $D^{1} \approx D^{2}$, then $D^{0} \approx D^{2}$.
Proof.
■ Suppose that $D^{0} \not \approx D^{2}$.

- Let \mathcal{A} be a polynomial-time adversary such that \mathcal{A} can distinguish D^{0} and D^{2} with non-negligible advantage.
■ For $i \in\{0,1,2\}$, let

$$
p_{\eta}^{i}=\operatorname{Pr}\left[\mathcal{A}(\eta, x)=1 \mid x \leftarrow D_{\eta}^{i}\right]
$$

- There is a polynomial q, such that for infinitely many η, $\left|p^{0}{ }_{\eta}-p^{2}{ }_{\eta}\right| \geq q(\eta)$.
■ For any such η, either $\left|p^{0}{ }_{\eta}-p^{1}{ }_{\eta}\right| \geq q(\eta) / 2$ or $\left|p^{1}{ }_{\eta}-p^{2}{ }_{\eta}\right| \geq q(\eta) / 2$.
■ Either $\left|p^{0}{ }_{\eta}-p^{1}{ }_{\eta}\right| \geq q(\eta) / 2$ holds for infinitely many η, or $\left|p^{1}{ }_{\eta}-p^{2}{ }_{\eta}\right| \geq q(\eta) / 2$ holds for infinitely many η.
- \mathcal{A} distinguishes either D^{0} and D^{1}, or D^{1} and D^{2}.

Independent components

- Let D^{0}, D^{1}, E be families of probability distributions.
- Define the probability distribution F_{η}^{i} by

1. Let $x \leftarrow D_{\eta}^{i}$.
2. Let $y \leftarrow E_{\eta}$.
3. Output (x, y).

- E is polynomial-time constructible if there is a polynomial-time algorithm \mathcal{E}, such that the output of $\mathcal{E}(\eta)$ is distributed identically to E_{η}.
- Theorem. If $D^{0} \approx D^{1}$ and E is polynomial-time constructible, then $F^{0} \approx F^{1}$.

Proof

- Suppose that $F^{0} \not \approx F^{1}$.
- Let \mathcal{A} be a polynomial-time adversary such that \mathcal{A} can distinguish F^{0} and F^{1} with non-negligible advantage.
- Construct \mathcal{B} as follows: on input (η, x), it will
- call $\mathcal{E}(\eta)$, giving y;
- call $\mathcal{A}(\eta,(x, y))$, giving b;
- return b.

■ We see that

- if x is distributed according to $D^{0}{ }_{\eta}$, then the argument to \mathcal{A} is distributed according to $F^{0}{ }_{\eta}$;
- if x is distributed according to $D^{1}{ }_{\eta}$, then the argument to \mathcal{A} is distributed according to $F^{1}{ }_{\eta}$;
hence the advantage of \mathcal{B} is equal to the advantage of \mathcal{A}.

Multiple sampling

- Let $D^{0}=\left\{D_{\eta}^{0}\right\}_{\eta \in \mathbb{N}}$ and $D^{1}=\left\{D_{\eta}^{1}\right\}_{\eta \in \mathbb{N}}$ be two families of probability distributions.
- Let p be a positive polynomial.
- Let \vec{D}_{η}^{b} be a probability distribution over tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{p(\eta)}\right) \in\left(\{0,1\}^{*}\right)^{p(\eta)}
$$

such that

- each x_{i} is distributed according to D_{η}^{b};
- each x_{i} is is independent of all other x-s.

Multiple sampling

- Let $D^{0}=\left\{D_{\eta}^{0}\right\}_{\eta \in \mathbb{N}}$ and $D^{1}=\left\{D_{\eta}^{1}\right\}_{\eta \in \mathbb{N}}$ be two families of probability distributions.
- Let p be a positive polynomial.
- Let \vec{D}_{η}^{b} be a probability distribution over tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{p(\eta)}\right) \in\left(\{0,1\}^{*}\right)^{p(\eta)}
$$

such that

- each x_{i} is distributed according to D_{η}^{b};
- each x_{i} is is independent of all other x-s.

■ To sample \vec{D}_{η}^{b}, sample $D_{\eta}^{b} \quad p(\eta)$ times and construct the tuple of sampled values.

\vec{D}-s indistinguishable $\Rightarrow D$-s indistinguishable

Theorem. If $\vec{D}^{0} \approx \vec{D}^{1}$ then $D^{0} \approx D^{1}$.

\vec{D}-s indistinguishable $\Rightarrow D$-s indistinguishable

Theorem. If $\vec{D}^{0} \approx \vec{D}^{1}$ then $D^{0} \approx D^{1}$.
If $\bullet \bullet \approx \bullet \bullet$ then $\bullet \approx \bullet$.
Contrapositive: if $\not \not \approx \bullet$ then $\bullet \bullet \not \approx \bullet \bullet \bullet$

\vec{D}-s indistinguishable $\Rightarrow D$-s indistinguishable

Theorem. If $\vec{D}^{0} \approx \vec{D}^{1}$ then $D^{0} \approx D^{1}$.
If $\bullet \bullet \bullet \bullet \bullet \bullet$ then $\bullet \approx \bullet$.
Contrapositive: if $\bullet \not \approx \bullet$ then $\bullet \bullet \not \approx \bullet \bullet \bullet$ If $\bullet \not \approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, x)=0 \mid x \leftarrow D_{\eta}^{0}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, x)=0 \mid x \leftarrow D_{\eta}^{1}\right] \geq 1 / q(\eta)
$$

for some polynomial q and infinitely many η.

\vec{D}-s indistinguishable $\Rightarrow D$-s indistinguishable

Theorem. If $\vec{D}^{0} \approx \vec{D}^{1}$ then $D^{0} \approx D^{1}$.
If $\bullet \bullet \bullet \bullet \bullet \bullet$ then $\bullet \approx \bullet$.
Contrapositive: if $\bullet \not \approx \bullet$ then $\bullet \bullet \not \approx \bullet \bullet \bullet$ If $\bullet \not \approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, x)=0 \mid x \leftarrow D_{\eta}^{0}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, x)=0 \mid x \leftarrow D_{\eta}^{1}\right] \geq 1 / q(\eta)
$$

for some polynomial q and infinitely many η.
Let $\mathcal{B}\left(\eta,\left(x_{1}, \ldots, x_{p(\eta)}\right)\right)=\mathcal{A}\left(\eta, x_{1}\right)$.
Then \mathcal{B} distinguishes $\bullet \bullet$ and $\bullet \bullet \bullet$.

\vec{D}-s indistinguishable $\Rightarrow D$-s indistinguishable

Theorem. If $\vec{D}^{0} \approx \vec{D}^{1}$ then $D^{0} \approx D^{1}$.
If $\bullet \bullet \approx \bullet \bullet$ then $\bullet \approx \bullet$.
Contrapositive: if $\bullet \not \approx \bullet$ then $\bullet \bullet \not \approx \bullet \bullet \bullet$ If $\bullet \not \approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, x)=0 \mid x \leftarrow D_{\eta}^{0}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, x)=0 \mid x \leftarrow D_{\eta}^{1}\right] \geq 1 / q(\eta)
$$

for some polynomial q and infinitely many η.
Let $\mathcal{B}\left(\eta,\left(x_{1}, \ldots, x_{p(\eta)}\right)\right)=\mathcal{A}\left(\eta, x_{1}\right)$.
Then \mathcal{B} distinguishes $\bullet \bullet$ and $\bullet \bullet \bullet$.
l.e. we can distinguish $\bullet \bullet$ from $\bullet \bullet$ by just considering the first elements of the tuples.

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet \bullet$. (let $p=3$)

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet \bullet$. (let $p=3$)
Our lemmas said $(\bullet \approx \bullet \wedge \bullet \approx \bullet) \Rightarrow \bullet \approx \bullet$ and $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$.

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet \bullet$. (let $p=3$)
Our lemmas said $(\bullet \approx \bullet \wedge \bullet \approx \bullet) \Rightarrow \bullet \approx \bullet$ and $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$.

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet \bullet$. (let $p=3$)
Our lemmas said $(\bullet \approx \bullet \wedge \bullet \approx \bullet) \Rightarrow \bullet \approx \bullet$ and $\bullet \approx \bullet \Rightarrow \bullet \bullet \bullet \bullet$.
$\bullet \bullet \bullet \approx \bullet \bullet$

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet$. (let $p=3$)
Our lemmas said $(\bullet \approx \bullet \wedge \bullet \approx \bullet) \Rightarrow \bullet \approx \bullet$ and $\bullet \approx \bullet \Rightarrow \bullet \bullet \bullet \bullet$.
$0.00 \approx$

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet \bullet$. (let $p=3$)
Our lemmas said $(\bullet \approx \bullet \wedge \bullet \approx \bullet) \Rightarrow \bullet \approx \bullet$ and $\bullet \approx \bullet \Rightarrow \bullet \bullet \bullet \bullet$.
$00 \approx 000000$

D-s indistinguishable $\Rightarrow \vec{D}$-s indistinguishable

(Interesting) theorem. If $D^{0} \approx D^{1}$ and there exist polynomial-time algorithms \mathcal{D}^{0} and \mathcal{D}^{1}, such that the output distribution of $\mathcal{D}^{b}(\eta)$ is equal to D_{η}^{b}, then $\vec{D}^{0} \approx \vec{D}^{1}$.

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η.
Let p be the common value of $p(\eta)$ for all η.
Theorem statement: if $\bullet \approx \bullet$ then $\bullet \bullet \approx \bullet \bullet \bullet$. (let $p=3$)
Our lemmas said $(\bullet \approx \bullet \wedge \bullet \approx \bullet) \Rightarrow \bullet \approx \bullet$ and $\bullet \approx \bullet \Rightarrow \bullet \bullet \bullet \bullet$.
$\bullet \bullet \approx \bullet \bullet \approx \bullet \bullet \bullet \approx \bullet \bullet$. By transitivity, $\bullet \bullet \bullet \approx \bullet \bullet$.
(Actually, we're done with this case)

Constructing the distinguisher

Contrapositive: if $\bullet \bullet \not \approx \bullet \bullet$ then $\bullet \not \approx \bullet$.

Constructing the distinguisher

Contrapositive: if $\bullet \bullet \not \approx \bullet \bullet$ then $\bullet \not \approx \bullet$. If $\bullet \not \not \approx \bullet \bullet \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{D}_{\eta}^{0}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{D}_{\eta}^{1}\right] \geq 1 / q(\eta)
$$

for some polynomial q and infinitely many η.

Hybrid distributions

If $\bullet \bullet \not \approx \bullet \bullet$ then

$$
(\bullet \bullet \bullet \not \approx \bullet \bullet \bullet) \vee(\bullet \bullet \bullet \not \approx \bullet \bullet \bullet) \vee(\bullet \bullet \not \approx \bullet \bullet \bullet)
$$

Hybrid distributions

If $\bullet \bullet \not \approx \bullet \bullet \bullet$ then

```
(\bullet\bullet\not\approx\bullet\bullet\bullet)\vee(\bullet\bullet\bullet\not\approx\bullet\bullet\bullet)\vee(\bullet\bullet\not~\not~\bullet\bullet\bullet)
```

Let \vec{E}_{η}^{k}, where $0 \leq k \leq p$, be a probability distribution over tuples $\left(x_{1}, \ldots, x_{p}\right)$, where

- each x_{i} is independent of all other x-s;
- x_{1}, \ldots, x_{k} are distributed according to D_{η}^{0};
- x_{k+1}, \ldots, x_{p} are distributed according to D_{η}^{1}.

Thus $\vec{E}_{\eta}^{0}=\vec{D}_{\eta}^{1}$ and $\vec{E}_{\eta}^{p}=\vec{D}_{\eta}^{0}$. Define $P_{\eta}^{k}=\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{E}_{\eta}^{k}\right]$. Then for infinitely many η :

$$
1 / q(\eta) \leq P_{\eta}^{p}-P_{\eta}^{0}=\sum_{i=1}^{p}\left(P_{\eta}^{i}-P_{\eta}^{i-1}\right)
$$

And for some $j_{\eta}, P_{\eta}^{j_{\eta}}-P_{\eta}^{j_{\eta}-1} \geq 1 /(p \cdot q(\eta))$.

\mathcal{A} distinguishes hybrids

There exists j, such that $j=j_{\eta}$ for infinitely many η. Thus

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{E}_{\eta}^{j}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}\right] \geq 1 /(p \cdot q(\eta))
$$

for infinitely many η. We have $\vec{E}^{j-1} \not \approx \vec{E}^{j}$.

\mathcal{A} distinguishes hybrids

There exists j, such that $j=j_{\eta}$ for infinitely many η. Thus

$$
\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{E}_{\eta}^{j}\right]-\operatorname{Pr}\left[\mathcal{A}(\eta, \vec{x})=0 \mid \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}\right] \geq 1 /(p \cdot q(\eta))
$$

for infinitely many η. We have $\vec{E}^{j-1} \not \approx \vec{E}^{j}$.
If we can distinguish

$$
\vec{E}^{j}=\underbrace{\bullet \bullet \cdots}_{j-1} \bullet \underbrace{\bullet \cdots \cdots}_{p-j}
$$

from

$$
\vec{E}^{j-1}=\underbrace{\bullet \bullet \cdots \bullet}_{j-1} \cdot \underbrace{\bullet \bullet \cdots \bullet}_{p-j}
$$

using \mathcal{A}, then how do we distinguish \bullet and \bullet ?

Distinguisher for D^{0} and D^{1}

On input (η, x) :

1. Let $x_{1}:=\mathcal{D}^{0}(\eta), \ldots, x_{j-1}:=\mathcal{D}^{0}(\eta)$.
2. Let $x_{j}:=x$
3. Let $x_{j+1}:=\mathcal{D}^{1}(\eta), \ldots, x_{p}:=\mathcal{D}^{1}(\eta)$
4. Let $\vec{x}=\left(x_{1}, \ldots, x_{p}\right)$.
5. Call $b^{*}:=\mathcal{A}(\eta, \vec{x})$ and return b^{*}.

The advantage of this distinguisher is at least $1 /(p \cdot q(\eta))$.

Distinguisher for D^{0} and D^{1}

On input (η, x) :

1. Let $x_{1}:=\mathcal{D}^{0}(\eta), \ldots, x_{j-1}:=\mathcal{D}^{0}(\eta)$.
2. Let $x_{j}:=x$
3. Let $x_{j+1}:=\mathcal{D}^{1}(\eta), \ldots, x_{p}:=\mathcal{D}^{1}(\eta)$
4. Let $\vec{x}=\left(x_{1}, \ldots, x_{p}\right)$.
5. Call $b^{*}:=\mathcal{A}(\eta, \vec{x})$ and return b^{*}.

The advantage of this distinguisher is at least $1 /(p \cdot q(\eta))$.
Unfortunately, the above construction was not constructive.

Being constructive

For infinitely many η we had

$$
1 / q(\eta) \leq P_{\eta}^{p}-P_{\eta}^{0}=\sum_{i=1}^{p}\left(P_{\eta}^{i}-P_{\eta}^{i-1}\right)
$$

Hence the average value of $P_{\eta}^{j}-P_{\eta}^{j-1}$ is $\geq 1 /(p \cdot q(\eta))$.

Being constructive

For infinitely many η we had

$$
1 / q(\eta) \leq P_{\eta}^{p}-P_{\eta}^{0}=\sum_{i=1}^{p}\left(P_{\eta}^{i}-P_{\eta}^{i-1}\right)
$$

Hence the average value of $P_{\eta}^{j}-P_{\eta}^{j-1}$ is $\geq 1 /(p \cdot q(\eta))$.
Consider the following distinguisher $\mathcal{B}(\eta, x)$:

1. Let $j \in_{R}\{1, \ldots, p\}$.
2. Let $x_{1}:=\mathcal{D}^{0}(\eta), \ldots, x_{j-1}:=\mathcal{D}^{0}(\eta)$.
3. Let $x_{j}:=x$
4. Let $x_{j+1}:=\mathcal{D}^{1}(\eta), \ldots, x_{p}:=\mathcal{D}^{1}(\eta)$
5. Let $\vec{x}=\left(x_{1}, \ldots, x_{p}\right)$.
6. Call $b^{*}:=\mathcal{A}(\eta, \vec{x})$ and return b^{*}.

What \mathcal{B} does

If (for example) $p=5$, then \mathcal{B} tries to distinguish
$\bullet \bullet \bullet \bullet$ and $\bullet \bullet \bullet \bullet \bullet$ with probability $1 / 5$
$\bullet \bullet \bullet \bullet$ and $\bullet \bullet \bullet \bullet$ with probability $1 / 5$
$\bullet \bullet \bullet \bullet$ and $\bullet \bullet \bullet \bullet$ with probability $1 / 5$
$\bullet \bullet \bullet \bullet$ and $\bullet \bullet \bullet \bullet$ with probability $1 / 5$
$\bullet \bullet \bullet \bullet$ and $\bullet \bullet \bullet \bullet$ with probability $1 / 5$
The advantage of \mathcal{B} is $1 / p$ times the sum of \mathcal{A} 's advantages of distinguishing these pairs of distributions.

The advantage of \mathcal{B} is

$$
\frac{1}{p} \sum_{j=1}^{p} P_{\eta}^{j}-P_{\eta}^{j-1}=\frac{1}{p}\left(P_{\eta}^{p}-P_{\eta}^{0}\right) \geq \frac{1}{p \cdot q(\eta)}
$$

If p depends on η

$\mathcal{B}(\eta, x)$ is:

1. Let $j \in_{R}\{1, \ldots, p(\eta)\}$.
2. Let $x_{1}:=\mathcal{D}^{0}(\eta), \ldots, x_{j-1}:=\mathcal{D}^{0}(\eta)$.
3. Let $x_{j}:=x$
4. Let $x_{j+1}:=\mathcal{D}^{1}(\eta), \ldots, x_{p(\eta)}:=\mathcal{D}^{1}(\eta)$
5. Let $\vec{x}=\left(x_{1}, \ldots, x_{p(\eta)}\right)$.
6. Call $b^{*}:=\mathcal{A}(\eta, \vec{x})$ and return b^{*}.

The advantage of \mathcal{B} is at least $1 /(p(\eta) \cdot q(\eta))$.

Left-or-right security

■ Consider again symmetric encryption $(\mathcal{K}, \mathcal{E}, \mathcal{D})$.
■ Let k be generated by $\mathcal{K}(\eta)$.

- Let \mathcal{O}_{b} be the following oracle:
- On input (m_{0}, m_{1}) where $\left|m_{0}\right|=\left|m_{1}\right|$, it returns an encryption of m_{b} with the key k.
- Let $b \in_{R}\{0,1\}$ be uniformly generated.
- Let \mathcal{A} have access to the oracle \mathcal{O}_{b}.
- \mathcal{A} can make as many oracle queries as it wants to.
- Encryption system has left-or-right security against chosen-plaintext attacks if no PPT \mathcal{A} can guess b with probability more that $1 / 2+f(\eta)$, where f is negligible.
Exercise. Show that an encryption system has left-or-right security against CPA iff it has find-then-guess security against CPA.

Real-or-constant security

- Let \mathcal{O}_{0} be the following oracle:
- On input m, it returns an encryption of m with the key k.
- Let \mathcal{O}_{1} be the following oracle:
- On input m, it returns an encryption of $\mathbf{0}^{|m|}$ with the key k.
- Let $b \in_{R}\{0,1\}$ be uniformly generated.
- Let \mathcal{A} have access to the oracle \mathcal{O}_{b}.
- Encryption system has real-or-constant security against chosen-plaintext attacks if no PPT \mathcal{A} can guess b with probability more that $1 / 2+f(\eta)$, where f is negligible.

Exercise. Show that an encryption system has left-or-right security against CPA iff it has real-or-constant security against CPA.

