Defining security of cryptographic primitives The hybrid argument

## Formally defining security of cryptoprimitives

- Let us move back to "computational" world:
  - Messages are bit-strings;
  - Encryption, decryption, key generation, signing, etc. are PPT algorithms on bit-strings.
  - Adversary is an(y) interactive PPT algorithm.
- Primitive is secure if adversary's succeeds in breaking it with a low probability.
  - A function  $f : \mathbb{N} \to \mathbb{R}$  is negligible if for all polynomials,  $\lim_{\eta \to \infty} f(\eta) \cdot p(\eta) = 0.$
  - I.e. the inverse of f is superpolynomial.
  - $\eta$  is the security parameter
    - Where does it come from?

### **Security parameter**

- We need an integer parameter for speaking about asymptotic security.
  - $\eta$  is something that
    - the work of honest participants is polynomial in  $\eta$ ;
    - the work of the adversary is hopefully superpolynomial in  $\eta$ .
- It could be
  - the key / plaintext length in asymmetric encryption and signing;
  - the length of the challenge in identification protocols.
- I But also
  - key / block length in block ciphers / symmetric encryption;
  - key / tag length in MACs;
  - output length in hash functions

although the common definitions for those are usually not parameterized.

### **Security of symmetric encryption**

We want the ciphertext to hide all partial information.

• At least information that can be found in polynomial time.

• Let  $H : \{0,1\}^* \to \{0,1\}^*$  be a polynomial-time algorithm.

We pick a plaintext x.

- We give  $\eta$  and  $y = \mathcal{E}_k(\eta, x)$  to the adversary.
- The adversary answers with  $z \in \{0, 1\}^*$ .
- The adversary wins if z = H(x).
- We want the adversary's winning probability to be negligible in  $\eta$ .

**Exercise.** What is wrong with this definition?

### **Semantic security**

For all polynomial-time algorithms H : {0,1}\* → {0,1}\*
 for all polynomial-time constructible families of probability distributions {M<sub>η</sub>}<sub>η∈ℕ</sub> over bit-strings
 for all PPT adversaries A

the probability

$$\Pr[h^* = h \mid x \leftarrow M_{\eta}, h = H(x), y \leftarrow \mathcal{E}_k(\eta, x), h^* \leftarrow \mathcal{A}(\eta, y)]$$

is at most negligibly larger than the probability

$$\Pr[h^* = h \mid x, x' \leftarrow M_{\eta}, h = H(x'), y \leftarrow \mathcal{E}_k(\eta, x), h^* \leftarrow \mathcal{A}(\eta, y)]$$

Then  $(\mathcal{K}, \mathcal{E}, \mathcal{D})$  has semantic security against chosen-plaintext attacks.

### Simplifying semantic security

H, M and A are all polynomial-time algorithms. Put them all into A:

- $\mathcal{A}$  first outputs H and M;
- then x is picked according to M and  $y = \mathcal{E}_k(\eta, x)$  is given to  $\mathcal{A}$ ;
- then  $\mathcal{A}$  tries to find H(x).
- Restrict  $\mathcal{A}$ :
  - Let H be identity function.
  - Let  $M_{\eta}$  be a distribution that assigns 50% to some  $m_0$ , 50% to some  $m_1$  and nothing to any other bit-string.
    - To specify  $M_{\eta}$ ,  $\mathcal{A}$  outputs  $m_0$  and  $m_1$ .
    - $m_0$  and  $m_1$  must have equal length.

### **Find-then-guess security**

- $(\mathcal{K}, \mathcal{E}, \mathcal{D})$  a symmetric encryption scheme.
- Let k be generated by  $\mathcal{K}(\eta)$ .
- Let  $b \in_R \{0, 1\}$  be uniformly generated.
  - The adversary  $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$  works as follows:
    - $\mathcal{A}_1(\eta)$  returns two messages  $m_0, m_1$  of equal length and some internal state s.
    - Invoke  $\mathcal{E}_k(\eta, m_b)$ . Let y be the result.
    - $\mathcal{A}_2(s, y)$  outputs a bit  $b^*$ .
- Encryption scheme has find-then-guess security against chosen-plaintext attacks if the probability of  $b = b^*$  is not larger than  $1/2 + f(\eta)$  for some negligible f.

**Exercise.** Show that find-then-guess security implies semantic security.

### Indistinguishability of probability distributions

- For each  $\eta \in \mathbb{N}$  let  $D_{\eta}^{0}$  and  $D_{\eta}^{1}$  be probability distributions over bit-strings.
- The families of probability distributions  $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$  and  $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$  are indistinguishable if
  - for any adversary  $\mathcal{A}$ 
    - The running time of  $\mathcal{A}(\eta,\cdot)$  must be polynomial in  $\eta$
  - the difference of probabilities

 $\Pr[\mathcal{A}(\eta, x) = 1 \mid x \leftarrow D_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 1 \mid x \leftarrow D_{\eta}^{1}]$ 

is a negligible function of  $\eta$ .

I Denote  $D^0 pprox D^1$ .

### Transitivity

**Theorem.** If  $D^0 \approx D^1$  and  $D^1 \approx D^2$ , then  $D^0 \approx D^2$ . Proof.

• Suppose that  $D^0 \not\approx D^2$ .

 Let A be a polynomial-time adversary such that A can distinguish D<sup>0</sup> and D<sup>2</sup> with non-negligible advantage.

 For i ∈ {0, 1, 2}, let

$$p^i_\eta = \Pr[\mathcal{A}(\eta, x) = 1 \,|\, x \leftarrow D^i_\eta]$$

There is a polynomial q, such that for infinitely many  $\eta$ ,  $|p^0_{\eta} - p^2_{\eta}| \ge q(\eta)$ . For any such  $\eta$ , either  $|p^0_{\eta} - p^1_{\eta}| \ge q(\eta)/2$  or  $|p^1_{\eta} - p^2_{\eta}| \ge q(\eta)/2$ . Either  $|p^0_{\eta} - p^1_{\eta}| \ge q(\eta)/2$  holds for infinitely many  $\eta$ , or  $|p^1_{\eta} - p^2_{\eta}| \ge q(\eta)/2$  holds for infinitely many  $\eta$ .  $\mathcal{A}$  distinguishes either  $D^0$  and  $D^1$ , or  $D^1$  and  $D^2$ .

### **Independent components**

- Let D<sup>0</sup>, D<sup>1</sup>, E be families of probability distributions.
   Define the probability distribution F<sup>i</sup><sub>n</sub> by
  - 1. Let  $x \leftarrow D^i_{\eta}$ .
  - 2. Let  $y \leftarrow E_{\eta}$ .
  - 3. Output (x, y).
- *E* is polynomial-time constructible if there is a polynomial-time algorithm  $\mathcal{E}$ , such that the output of  $\mathcal{E}(\eta)$  is distributed identically to  $E_{\eta}$ .
  - **Theorem.** If  $D^0 \approx D^1$  and E is polynomial-time constructible, then  $F^0 \approx F^1$ .

# Proof

- Suppose that  $F^0 \not\approx F^1$ .
  - Let  $\mathcal{A}$  be a polynomial-time adversary such that  $\mathcal{A}$  can distinguish  $F^0$  and  $F^1$  with non-negligible advantage.
- Construct  ${\mathcal B}$  as follows: on input  $(\eta,x)$ , it will
  - call  $\mathcal{E}(\eta)$ , giving y;
  - call  $\mathcal{A}(\eta, (x, y))$ , giving b;
  - return b.
  - We see that
  - if x is distributed according to  $D^0_{\eta}$ , then the argument to  $\mathcal{A}$  is distributed according to  $F^0_{\eta}$ ;
  - if x is distributed according to  $D^1_{\eta}$ , then the argument to  $\mathcal{A}$  is distributed according to  $F^1_{\eta}$ ;

hence the advantage of  ${\mathcal B}$  is equal to the advantage of  ${\mathcal A}.$ 

## Multiple sampling

- Let  $D^0 = \{D^0_{\eta}\}_{\eta \in \mathbb{N}}$  and  $D^1 = \{D^1_{\eta}\}_{\eta \in \mathbb{N}}$  be two families of probability distributions.
- Let p be a positive polynomial.

Let  $\vec{D}_{\eta}^{b}$  be a probability distribution over tuples

$$(x_1, x_2, \dots, x_{p(\eta)}) \in (\{0, 1\}^*)^{p(\eta)}$$

such that

- each  $x_i$  is distributed according to  $D_{\eta}^b$ ;
- each  $x_i$  is is independent of all other x-s.

### Multiple sampling

- Let  $D^0 = \{D^0_{\eta}\}_{\eta \in \mathbb{N}}$  and  $D^1 = \{D^1_{\eta}\}_{\eta \in \mathbb{N}}$  be two families of probability distributions.
- Let p be a positive polynomial.

Let  $\vec{D}_{\eta}^{b}$  be a probability distribution over tuples

$$(x_1, x_2, \dots, x_{p(\eta)}) \in (\{0, 1\}^*)^{p(\eta)}$$

such that

- each  $x_i$  is distributed according to  $D_{\eta}^b$ ;
- each  $x_i$  is is independent of all other x-s.

To sample  $\vec{D}_{\eta}^{b}$ , sample  $D_{\eta}^{b} = p(\eta)$  times and construct the tuple of sampled values.

**Theorem.** If  $\vec{D}^0 \approx \vec{D}^1$  then  $D^0 \approx D^1$ .

**Theorem.** If  $\vec{D}^0 \approx \vec{D}^1$  then  $D^0 \approx D^1$ . If  $\bullet \bullet \approx \bullet \bullet$  then  $\bullet \approx \bullet$ .

Contrapositive: if  $\bullet \not\approx \bullet$  then  $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ 

**Theorem.** If  $\vec{D}^0 \approx \vec{D}^1$  then  $D^0 \approx D^1$ . If  $\bullet \bullet \bullet \approx \bullet \bullet$  then  $\bullet \approx \bullet$ .

Contrapositive: if  $\bullet \not\approx \bullet$  then  $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If  $\bullet \not\approx \bullet$  then there exists a PPT distinguisher  $\mathcal{A}$ :

 $\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow D_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow D_{\eta}^{1}] \ge 1/q(\eta)$ 

for some polynomial q and infinitely many  $\eta$ .

**Theorem.** If  $\vec{D}^0 \approx \vec{D}^1$  then  $D^0 \approx D^1$ . If  $\bullet \bullet \bullet \approx \bullet \bullet$  then  $\bullet \approx \bullet$ .

Contrapositive: if  $\bullet \not\approx \bullet$  then  $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If  $\bullet \not\approx \bullet$  then there exists a PPT distinguisher  $\mathcal{A}$ :

 $\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow D_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow D_{\eta}^{1}] \ge 1/q(\eta)$ 

for some polynomial q and infinitely many  $\eta$ .

Let  $\mathcal{B}(\eta, (x_1, \dots, x_{p(\eta)})) = \mathcal{A}(\eta, x_1)$ . Then  $\mathcal{B}$  distinguishes ••• and •••.

**Theorem.** If  $\vec{D}^0 \approx \vec{D}^1$  then  $D^0 \approx D^1$ . If  $\bullet \bullet \bullet \approx \bullet \bullet$  then  $\bullet \approx \bullet$ .

Contrapositive: if  $\bullet \not\approx \bullet$  then  $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If  $\bullet \not\approx \bullet$  then there exists a PPT distinguisher  $\mathcal{A}$ :

 $\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow D_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow D_{\eta}^{1}] \ge 1/q(\eta)$ 

for some polynomial q and infinitely many  $\eta$ .

Let  $\mathcal{B}(\eta, (x_1, \dots, x_{p(\eta)})) = \mathcal{A}(\eta, x_1)$ . Then  $\mathcal{B}$  distinguishes ••• and •••.

I.e. we can distinguish ••• from ••• by just considering the first elements of the tuples.

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

Our lemmas said ( $\bullet \approx \bullet \land \bullet \approx \bullet$ )  $\Rightarrow \bullet \approx \bullet$  and  $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$ .

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

Our lemmas said ( $\bullet \approx \bullet \land \bullet \approx \bullet$ )  $\Rightarrow \bullet \approx \bullet$  and  $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$ .

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

Our lemmas said ( $\bullet \approx \bullet \land \bullet \approx \bullet$ )  $\Rightarrow \bullet \approx \bullet$  and  $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$ .

#### $\bullet \bullet \bullet \approx \bullet \bullet \bullet$

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

Our lemmas said ( $\bullet \approx \bullet \land \bullet \approx \bullet$ )  $\Rightarrow \bullet \approx \bullet$  and  $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$ .

### $\bullet \bullet \bullet pprox \bullet \bullet \bullet pprox \bullet \bullet \bullet \bullet$

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

Our lemmas said ( $\bullet \approx \bullet \land \bullet \approx \bullet$ )  $\Rightarrow \bullet \approx \bullet$  and  $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$ .

### $\bullet \bullet \bullet pprox \bullet \bullet \bullet pprox \bullet \bullet \bullet pprox \bullet \bullet \bullet \circ$

(Interesting) theorem. If  $D^0 \approx D^1$  and there exist polynomial-time algorithms  $\mathcal{D}^0$  and  $\mathcal{D}^1$ , such that the output distribution of  $\mathcal{D}^b(\eta)$  is equal to  $D^b_{\eta}$ , then  $\vec{D}^0 \approx \vec{D}^1$ .

Assume for now that the polynomial p is a constant. I.e. the length of the vector  $\vec{x}$  does not depend on the security parameter  $\eta$ . Let p be the common value of  $p(\eta)$  for all  $\eta$ .

Theorem statement: if  $\bullet \approx \bullet$  then  $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ . (let p = 3)

Our lemmas said ( $\bullet \approx \bullet \land \bullet \approx \bullet$ )  $\Rightarrow \bullet \approx \bullet$  and  $\bullet \approx \bullet \Rightarrow \bullet \bullet \approx \bullet$ .

•••  $\approx$  •••  $\approx$  •••  $\approx$  •••. By transitivity, •••  $\approx$  •••.

(Actually, we're done with this case)

### **Constructing the distinguisher**

Contrapositive: if  $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$  then  $\bullet \not\approx \bullet$ .

### **Constructing the distinguisher**

Contrapositive: if •••  $\not\approx$  ••• then •  $\not\approx$  •. If •••  $\not\approx$  ••• then there exists a PPT distinguisher  $\mathcal{A}$ :

 $\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{D}_{\eta}^{1}] \ge 1/q(\eta)$ 

for some polynomial q and infinitely many  $\eta$ .

### **Hybrid distributions**

If  $\bullet \bullet \neq \bullet \bullet$  then



### **Hybrid distributions**

If  $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$  then

$$(\bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \not\approx \bullet \bullet \bullet)$$

Let  $\vec{E}_{\eta}^{k}$ , where  $0 \leq k \leq p$ , be a probability distribution over tuples  $(x_{1}, \ldots, x_{p})$ , where

each x<sub>i</sub> is independent of all other x-s;
 x<sub>1</sub>,..., x<sub>k</sub> are distributed according to D<sup>0</sup><sub>η</sub>;
 x<sub>k+1</sub>,..., x<sub>p</sub> are distributed according to D<sup>1</sup><sub>n</sub>.

Thus  $\vec{E}_{\eta}^{0} = \vec{D}_{\eta}^{1}$  and  $\vec{E}_{\eta}^{p} = \vec{D}_{\eta}^{0}$ . Define  $P_{\eta}^{k} = \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \mid \vec{x} \leftarrow \vec{E}_{\eta}^{k}]$ . Then for infinitely many  $\eta$ :

$$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^{P} (P_{\eta}^i - P_{\eta}^{i-1})$$
.

And for some  $j_{\eta}$ ,  $P_{\eta}^{j_{\eta}} - P_{\eta}^{j_{\eta}-1} \ge 1/(p \cdot q(\eta))$ .

### ${\cal A}$ distinguishes hybrids

There exists j, such that  $j = j_{\eta}$  for infinitely many  $\eta$ . Thus

 $\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}] \ge 1/(p \cdot q(\eta))$ 

for infinitely many  $\eta$ . We have  $\vec{E}^{j-1} \not\approx \vec{E}^j$ .

### ${\cal A}$ distinguishes hybrids

There exists j, such that  $j = j_{\eta}$  for infinitely many  $\eta$ . Thus

 $\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}] \ge 1/(p \cdot q(\eta))$ 

for infinitely many  $\eta$ . We have  $\vec{E}^{j-1} \not\approx \vec{E}^j$ .

If we can distinguish



from



using  $\mathcal{A}$ , then how do we distinguish • and •?

### **Distinguisher for** $D^0$ and $D^1$

On input  $(\eta, x)$ :

- 1. Let  $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta).$
- 2. Let  $x_j := x$
- 3. Let  $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$
- 4. Let  $\vec{x} = (x_1, \dots, x_p)$ .
- 5. Call  $b^* := \mathcal{A}(\eta, \vec{x})$  and return  $b^*$ .

The advantage of this distinguisher is at least  $1/(p \cdot q(\eta))$ .

### **Distinguisher for** $D^0$ and $D^1$

On input  $(\eta, x)$ :

- 1. Let  $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta).$
- 2. Let  $x_j := x$
- 3. Let  $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$
- 4. Let  $\vec{x} = (x_1, \dots, x_p)$ .
- 5. Call  $b^* := \mathcal{A}(\eta, \vec{x})$  and return  $b^*$ .

The advantage of this distinguisher is at least  $1/(p \cdot q(\eta))$ .

Unfortunately, the above construction was not constructive.

### **Being constructive**

For infinitely many  $\eta$  we had

$$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1})$$
.

Hence the average value of  $P_{\eta}^{j} - P_{\eta}^{j-1}$  is  $\geq 1/(p \cdot q(\eta))$ .

### **Being constructive**

For infinitely many  $\eta$  we had

$$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1})$$
.

Hence the average value of  $P_{\eta}^{j} - P_{\eta}^{j-1}$  is  $\geq 1/(p \cdot q(\eta))$ .

Consider the following distinguisher  $\mathcal{B}(\eta,x)$ :

1. Let 
$$j \in_R \{1, ..., p\}$$
.  
2. Let  $x_1 := \mathcal{D}^0(\eta), ..., x_{j-1} := \mathcal{D}^0(\eta)$ .  
3. Let  $x_j := x$   
4. Let  $x_{j+1} := \mathcal{D}^1(\eta), ..., x_p := \mathcal{D}^1(\eta)$   
5. Let  $\vec{x} = (x_1, ..., x_p)$ .  
6. Call  $b^* := \mathcal{A}(\eta, \vec{x})$  and return  $b^*$ .

### What $\mathcal{B}$ does

If (for example) p = 5, then  $\mathcal{B}$  tries to distinguish

| •••• | and | ••••  | with | probability $1/5$ |
|------|-----|-------|------|-------------------|
| •••• | and | ••••• | with | probability $1/5$ |
| •••• | and | ••••  | with | probability $1/5$ |
| •••• | and | ••••  | with | probability $1/5$ |
| •••• | and | ••••• | with | probability $1/5$ |

The advantage of  $\mathcal{B}$  is 1/p times the sum of  $\mathcal{A}$ 's advantages of distinguishing these pairs of distributions.

The advantage of  ${\mathcal B}$  is

$$\frac{1}{p}\sum_{j=1}^{p}P_{\eta}^{j} - P_{\eta}^{j-1} = \frac{1}{p}(P_{\eta}^{p} - P_{\eta}^{0}) \ge \frac{1}{p \cdot q(\eta)}$$

### If p depends on $\eta$

 $\begin{array}{ll} \mathcal{B}(\eta, x) \text{ is:} \\ 1. & \text{Let } j \in_R \{1, \dots, p(\eta)\}. \\ 2. & \text{Let } x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta). \\ 3. & \text{Let } x_j := x \\ 4. & \text{Let } x_{j+1} := \mathcal{D}^1(\eta), \dots, x_{p(\eta)} := \mathcal{D}^1(\eta) \\ 5. & \text{Let } \vec{x} = (x_1, \dots, x_{p(\eta)}). \\ 6. & \text{Call } b^* := \mathcal{A}(\eta, \vec{x}) \text{ and return } b^*. \end{array}$ 

The advantage of  $\mathcal B$  is at least  $1/(p(\eta) \cdot q(\eta))$ .

### Left-or-right security

- Consider again symmetric encryption  $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ .
- Let k be generated by  $\mathcal{K}(\eta)$ .
- Let  $\mathcal{O}_b$  be the following oracle:
  - On input  $(m_0, m_1)$  where  $|m_0| = |m_1|$ , it returns an encryption of  $m_b$  with the key k.
- Let  $b \in_R \{0, 1\}$  be uniformly generated.
- Let  $\mathcal{A}$  have access to the oracle  $\mathcal{O}_b$ .
  - $\mathcal{A}$  can make as many oracle queries as it wants to.
- Encryption system has left-or-right security against chosen-plaintext attacks if no PPT  $\mathcal{A}$  can guess b with probability more that  $1/2 + f(\eta)$ , where f is negligible.

**Exercise.** Show that an encryption system has left-or-right security against CPA iff it has find-then-guess security against CPA.

### **Real-or-constant security**

- Let  $\mathcal{O}_0$  be the following oracle:
  - On input m, it returns an encryption of m with the key k.
- Let  $\mathcal{O}_1$  be the following oracle:

• On input m, it returns an encryption of  $\mathbf{0}^{|m|}$  with the key k.

- Let  $b \in_R \{0, 1\}$  be uniformly generated.
- Let  $\mathcal{A}$  have access to the oracle  $\mathcal{O}_b$ .
- Encryption system has real-or-constant security against chosen-plaintext attacks if no PPT  $\mathcal{A}$  can guess b with probability more that  $1/2 + f(\eta)$ , where f is negligible.

**Exercise.** Show that an encryption system has left-or-right security against CPA iff it has real-or-constant security against CPA.