Secure Multiparty Computation (part 2)

Unconditionally secure MPC

A week ago we considered secure multiparty computation.

- The security was **computational**.
- Good thing with semi-honest adversary, the number of corrupted parties did not matter.
- Today we take a look what is possible if we want to remain unconditionally secure.

Semi-honest adversary

Computed function f represented as a circuit consisting of

- binary addition and multiplication gates;
- unary gates for adding or multiplying with a constant.
- Values on wires elements of \mathbb{Z}_p .
- n players, where at most t-1 may be adversarial.
- All values on wires are shared using Shamir's (n, t)-secret sharing scheme.
- The protocol starts by each party sharing his inputs.
- Binary addition and unary operations each party performs the same operation with his own respective shares only.
- Binary multiplication next slides.
- Protocol ends by parties sending the shares of outputs to each other.

Multiplying shared secrets

- Let n parties hold shares s_1, \ldots, s_n and s'_1, \ldots, s'_n for two secrets $v, v' \in \mathbb{Z}_p$.
- We want them to learn shares s''_1, \ldots, s''_n for $v'' = v \cdot v'$, such that these shares are uniformly distributed and independent from anything else.

Multiplying shared secrets

- Let *n* parties hold shares s_1, \ldots, s_n and s'_1, \ldots, s'_n for two secrets $v, v' \in \mathbb{Z}_p$.
- We want them to learn shares s''_1, \ldots, s''_n for $v'' = v \cdot v'$, such that these shares are uniformly distributed and independent from anything else.
- I Ideal protocol:
 - There is a trusted dealer $D \notin \{P_1, \ldots, P_n\}$.
 - D is sent the shares $s_1, \ldots, s_n, s'_1, \ldots, s'_n$.
 - D recovers v and v', computes $v'' = v \cdot v'$.
 - D constructs the shares for v'', sends them to P_1, \ldots, P_n .
 - We want the real protocol to cause the same distribution of $s_1, \ldots, s_n, s'_1, \ldots, s'_n, s''_1, \ldots, s''_n$.
 - Each party P_i will see some more random values, but their distribution must be constructible from s_i, s'_i, s''_i .

Gennaro-Rabin-Rabin multiplication protocol

- Assume t 1 < n/2. (in other words, $t 1 \le (n 1)/2$)
- Let f, f' be polynomials of degree $\leq t 1$ used to share v, v'. ■ f(0) = v. f'(0) = v. Let $f'' = f \cdot f'$. Then $f''(0) = v \cdot v''$. ■ The degree of f'' is $\leq 2(t - 1) \leq n - 1$.
 - The values of f'' on n points suffice to reconstruct f''.
 - Party P_i can compute f''(i) as $s_i \cdot s'_i$.
 - But we don't want to use f'' to share v''.
 - There exist (public) r_1, \ldots, r_n , such that $f''(0) = \sum_{i=1}^n r_i(s_i \cdot s'_i)$.

• By Lagrange interpolation formula $r_i = \prod_{1 \le j \le n, j \ne i} j/(j-i)$.

- At least t of r_1, \ldots, r_n are non-zero.
 - If only $r_{i_1}, \ldots, r_{i_{t-1}}$ were non-zero, then

$$v = (f \cdot \mathbf{1})(0) = \sum_{i=1}^{n} r_i f(i) \mathbf{1}(i) = \sum_{j=1}^{t-1} r_{i_j} s_{i_j},$$

allowing $P_{i_1}, \ldots, P_{i_{t-1}}$ to determine v.

Gennaro-Rabin-Rabin multiplication protocol

Each party P_i randomly generates a polynomial f_i of degree at most t-1, such that $f_i(0) = s_i \cdot s'_i$.

Party P_i sends to party P_j the value $u_{ij} = f_i(j)$.

• Party P_i receives the values u_{1i}, \ldots, u_{ni} .

$$P_i$$
 defines $s''_i = \sum_{j=1}^n r_j u_{ji}$.

The shares s''_1, \ldots, s''_n correspond to the polynomial $\hat{f} = \sum_{j=1}^n r_j f_j$.

- It is a random polynomial because f_i -s were randomly generated.
- It is independent from any $f_{i_1}, \ldots, f_{i_{t-1}}$, because at least t of the values r_1, \ldots, r_n are non-zero.

This polynomial shares the value

$$\hat{f}(0) = \sum_{j=1}^{n} r_j \cdot f_j(0) = \sum_{j=1}^{n} r_j s_j s'_j = f''(0) = v''$$

Over half of the parties must be honest

■ Consider a two-party protocol Π for computing the AND of two bits.
 ■ Let Π(b₁, r₁, b₂, r₂) be the sequence of messages exchanged for party P_i's bit b_i and random coins r_i.

$$\begin{aligned} \forall r_1, r_2^0 \ \exists r_2^1 : \Pi(0, r_1, 0, r_2^0) &= \Pi(0, r_1, 1, r_2^1) \\ \forall r_1, r_2^1 \ \exists r_2^0 : \Pi(0, r_1, 0, r_2^0) &= \Pi(0, r_1, 1, r_2^1) \\ \forall r_1, r_2^0, r_2^1 : \Pi(1, r_1, 0, r_2^0) &\neq \Pi(1, r_1, 1, r_2^1) \end{aligned}$$

- Party P_2 whose input is $b_2 = 0$ and random coins r_2^0 can find b_1 as follows:
 - Let \mathcal{T} be the exchanged sequence of messages.
 - Try to find such (b', r', r_2^1) , that $\Pi(b', r', 1, r_2^1) = \mathfrak{T}$.
 - If such triple exists then $b_1 = 0$. If not, then $b_1 = 1$.

Exercise. Generalize this result to more than 2 parties.

Repeat the previous MPC construction, but using a verifiable secret sharing scheme.

■ For example, Feldman's VSS.

Repeat the previous MPC construction, but using a verifiable secret sharing scheme.

■ For example, Feldman's VSS.

This exercise shows the possiblity of MPC, where

- security is computational;
- the number of corrupted parties is strictly less than n/2;
- the adversary is malicious;
- there is a broadcast channel;
- the adversary can shut down the computation.

The security can be made unconditional and shutdown possibilities can be eliminated.

Consider Feldman's VSS:

- *n* parties, the share of *i*-th party is P_i .
- A group G with hard discrete logarithm. An element $g \in G$ of order p.
- The secret $v = a_0$ is shared using a polynomial of degree at most t-1.
 - The values $y_i = g^{a_i}$ for $0 \le i \le t 1$ have been published.

Suppose that during the secret reconstruction time, one of the parties P_z refuses to produce a valid s_z . How can the honest parties find s_z ?

Consider Feldman's VSS:

- \blacksquare n parties, the share of *i*-th party is P_i .
- A group G with hard discrete logarithm. An element $g \in G$ of order p.
- The secret $v = a_0$ is shared using a polynomial of degree at most t-1.
 - The values $y_i = g^{a_i}$ for $0 \le i \le t 1$ have been published.

Suppose that during the secret reconstruction time, one of the parties P_z refuses to produce a valid s_z . How can the honest parties find s_z ?

This method allows us to kick out parties who behave maliciously.

What have we seen so far?

- 2-party, computational, semi-honest, constant-round.
 2- or n-party, computational, semi-honest(< n), linear-round.
 n-party, unconditional, semi-honest(< n/2), linear-round.
 - *n*-party, computational, malicious (< n/2), constant-round.

Coming up next: *n*-party, unconditional, broadcast, malicious(< n/3), linear-round.

Simulatability — turn real adversary into an ideal one. In the Ideal model, the computation proceeds as follows:

- The parties receive the inputs.
- Parties send their inputs to the ideal functionality F.
 - Malicious parties do not have to send it.
- If everybody sent something to F, it will compute the function f and send the outputs to the parties. Otherwise sends \perp to everybody.
- Honest parties output what they got. Malicious parties output whatever they like.
- In the Real model, two middle steps are replaced by the execution of the actual protocol.
- Real must be simulatable by ideal.

- There must exist a simulator rtoi that turns real parties to ideal parties.
- $rtoi(i, P_i^{real})$ must equal P_i^{ideal} .
- For all Q_1, \ldots, Q_n , where $Q_i = P_i^{\text{real}}$ for at least n t different values of i
- For all environments $\mathcal{Z}_{:}$ its views in the following two runs must be indistinguishable:

•
$$\mathcal{Z} | Q_1 | \cdots | Q_n$$

• $\mathcal{Z} | \operatorname{rtoi}(1, Q_1) | \cdots | \operatorname{rtoi}(n, Q_n) | F$

Error-correcting codes

- An (n, t, d)-code over a set X is a mapping $\mathbf{C} : X^t \to X^n$, such that for all $x_1, x_2 \in X^t$, $x_1 \neq x_2$ implies that $\mathbf{C}(x_1)$ and $\mathbf{C}(x_2)$ differ in at least d positions.
- An element $x \in X^t$ is encoded as $y = \mathbf{C}(x) \in X^n$ and transmitted. During transmission, errors may occur in some positions of y.
- A (n, t, d)-code can detect at most d 1 errors.
- A (n, t, d)-code can correct at most (d 1)/2 errors.
- Efficiency is another question, though.

Error-correcting codes

- An (n, t, d)-code over a set X is a mapping $\mathbf{C} : X^t \to X^n$, such that for all $x_1, x_2 \in X^t$, $x_1 \neq x_2$ implies that $\mathbf{C}(x_1)$ and $\mathbf{C}(x_2)$ differ in at least d positions.
- An element $x \in X^t$ is encoded as $y = \mathbf{C}(x) \in X^n$ and transmitted. During transmission, errors may occur in some positions of y.
- A (n, t, d)-code can detect at most d 1 errors.
- A (n, t, d)-code can correct at most (d 1)/2 errors.
- Efficiency is another question, though.
- In a linear code, X is a field and C is a linear mapping between vector spaces X^t and X^n .
- For linear codes, $d \le n t + 1$.

Reed-Solomon codes

- Reed-Solomon codes are linear codes over some finite field 𝔽.
 To encode t elements of 𝔽 as n elements of 𝔽, fix n different elements c₁,..., c_n ∈ 𝔽.
 - Interpret the source word (f_0, \ldots, f_{t-1}) as a polynomial $p(x) = \sum_{i=1}^{t-1} f_i x^i$.
- Encode it as $(p(c_1), \ldots, p(c_n))$.
- For Reed-Solomon codes, d = n t + 1.
- Hence they can correct up to (n-t)/2 errors.

Decoding Reed-Solomon codes

- Suppose that the original codeword was (s_1, \ldots, s_n) , corresponding to the polynomial p.
- But we received $(\tilde{s}_1, \ldots, \tilde{s}_n)$.
 - We assume it has at most (n-t)/2 errors.
 - Find the coefficients for polynomials q_0 and q_1 , such that
 - Degree of q_0 is at most (n + t 2)/2. Degree of q_1 is at most (n t)/2.
 - For all $i \in \{1, ..., n\}$: $q_0(c_i) q_1(c_i) \cdot \tilde{s}_i = 0$.
 - q_0 and q_1 are not both equal to 0.

Then $p = q_0/q_1$.

In general, there are more equations than variables, but \tilde{s}_i are not arbitrary.

Correctness of decoding

Such polynomials q_0 , q_1 exist:

(s₁,...,s_n), (š₁,...,š_n) — original and received codewords. Let E be the set of i, where s_i ≠ š_i. Then |E| ≤ (n - t)/2.
Let k(x) = ∏_{i∈E}(x - c_i). Then deg k ≤ (n - t)/2.
Take q₁ = k and q₀ = p ⋅ k. Then deg q₀ ≤ (n + t - 2)/2.
For all i ∈ {1,...,n} we have

$$q_0(c_i) - q_1(c_i) \cdot \tilde{s}_i = k(c_i)(p(c_i) - \tilde{s}_i) = k(c_i)(s_i - \tilde{s}_i) = \\ \begin{cases} k(c_i)(s_i - s_i) = 0, & i \notin E \\ 0 \cdot (s_i - \tilde{s}_i) = 0, & i \in E \end{cases}$$

Correctness of decoding

If q_0 and q_1 satisfy the equalities and upper bounds on degrees, then $p = q_0/q_1$:

- Let q'(x) = q₀(x) q₁(x)p(x). Degree of q' is at most (n + t - 2)/2.
 For each i ∉ E, q'(c_i) = q₀(c_i) - q₁(c_i)p(c_i) = q₀(c_i) - q₁(c_i)š_i = 0.
 1 ≤ i ≤ n.
 - The number of such *i* is at least n − (n − t)/2 = (n + t)/2.
 Thus the number of roots of q' is larger than its degree. Hence q' = 0.
- $q_0 q_1 \cdot p = 0.$

MPC with no errors

- I The number of corrupted players is at most t 1 < n/3.
- To distribute inputs, each party first commits to his input and then shares the commitment.
- Shamir's scheme is used for both committing and sharing.
 - Hence the commitments are homomorphic.
 - For a value a, let $[a]_i$ denote the commitment of P_i to a. The commitment is distributed, hence $[a]_i = ([a]_i^1, \ldots, [a]_i^n)$, with P_j holding the piece $[a]_i^j$.

Commitments

We need the following functionalities:

- Commit: P_i commits to a value a.
 - $[a]_i$ is a sharing of a using (n, t)-secret sharing.
 - Followed by a proof that the degree of the polynomial is $\leq (t-1)$.
- Open and OpenPrivate: opens a commitment.
 - Everybody broadcasts his share or sends it privately to the party that is supposed to open it.
 - Errors can be corrected.
 - Linear Combination: several commitments of the same party (or different parties) are linearly combined.
 - Everybody performs the same combination on the shares he's holding.

Commitments

Transfer: turns P_i 's commitment $[a]_i$ into P_j 's commitment $[a]_j$. Party P_j learns a.

- OpenPrivate a for P_j .
- P_j Commits a, giving $[a]_j$.
- Find the Linear Combination $[a]_i [a]_j$ and Open it; check that it is 0.

Share: applies Shamir's secret sharing to a committed value $[a]_i$.

- ◆ P_i generates the values a₁,..., a_{t-1} and Commits to them.
 ◆ s_i = a + ∑^{t-1}_{j=1} a_ji^j. These Linear Combinations of [a]_i and [a₁]_i,..., [a_{t-1}]_i are computed, resulting in commitments [s₁]_i,..., [s_n]_i.
- Commitment $[s_j]_i$ is Transferred to $[s_j]_j$.

Commitments

Multiply. Given $[a]_i$ and $[b]_i$, the party P_i causes the computation of $[c]_i$, where $c = a \cdot b$.

• Share $[a]_i$ and $[b]_i$, giving $[s_1^a]_1, \ldots, [s_n^a]_n$ and $[s_1^b]_1, \ldots, [s_n^b]_n$.

• Let the polynomials be f^a and f^b .

- Let $f^{c}(x) = f^{a}(x) \cdot f^{b}(x) = c + \sum_{j=1}^{2t-2} c_{j} x^{j}$. Party P_{i} Commits to c_{1}, \ldots, c_{2t-2} .
- Compute $[f^c(1)]_i, \ldots, [f^c(n)]_i$ as Linear Combinations of $[c]_i$ and $[c_1]_i, \ldots, [c_{2t-2}]_i$.
- OpenPrivate $[f^c(j)]_i$ to P_j . He checks that $s^a_j \cdot s^b_j = f^c(j)$. If not, broadcast complaint and Open $[s^a_j]_j$, $[s^b_j]_j$.
- If P_j complains then P_i Opens $[f^c(j)]_i$. Either P_i or P_j is disqualified.

Exercise. Show that if P_i cheats then there will be a complaint.

MPC

- For each wire, the value on it is shared and the parties have commitments to those shares.
- Start: each party Commits to his input and then Shares it.
- Addition gates: Linear Combination is used to add the shares of values on incoming wires.
- Multiplication gates: the shares of the values on incoming wires are Multiplied together. These products are Shared and those shares are recombined into the shares of the product, using Linear Combination.
 - i.e. Gennaro-Rabin-Rabin multiplication is performed on committed shares.
 - End: the shares of a value that a party is supposed to learn are **Opened Privately** to this party.

Commit: proving the degree of a polynomial

 P_i wants to commit to a value a using a random polynomial f, where deg $f \le t - 1$ and f(0) = a. A party P_j learns $[a]_i^j = f(j)$. P_i has to convince others that f has a degree at most t - 1.

Commit: proving the degree of a polynomial

- P_i wants to commit to a value a using a random polynomial f, where deg $f \le t - 1$ and f(0) = a. A party P_j learns $[a]_i^j = f(j)$. P_i has to convince others that f has a degree at most t - 1.
- P_i randomly generates a two-variable symmetric polynomial F, such that F(x,0) = f(x) and the degrees of F with respect to x and y are $\leq (t-1)$. I.e.
- randomly generate coefficients $c_{kl} \in \mathbb{F}$, where $1 \le l \le k \le t-1$;
- Let $c_{00} = a$. Let c_{i0} be the coefficient of x^i in f.

• Let
$$c_{lk} = c_{kl}$$
 for $l \ge k$.

• Let
$$F(x,y) = \sum_{k=0}^{t-1} \sum_{l=0}^{t-1} c_{kl} x^k y^l$$
.

 P_i sends to P_j the polynomial F(x, j) (i.e. its coefficients). The share $[a]_i^j$ of P_j is F(0, j) = F(j, 0) = f(j).

Commit: proving the degree of a polynomial

- I P_j and P_k compare the values F(k, j) and F(j, k). If they differ, they broadcast a complaint $\{j, k\}$.
- P_i answers to "complaint{j,k}" by publishing the value F(j,k) (which is the same as F(k,j)).
- If P_j (or P_k) has a different value then he broadcasts "disqualify P_i".
 P_i responds to that by broadcasting F(x, j).
- All parties P_l check that F(l, j) = F(j, l). If not, broadcast "disqualify P_i ". Again P_i responds by broadcasting F(x, l), etc.
- If there are at least t disqualification calls then P_i is disqualified.
- Otherwise the commitment is accepted and parties update their shares with the values that P_i had broadcast.

Exercise. Show that if P_i is honest then the adversary does not learn anything beyond the polynomials F(x, j), where P_j is corrupt. **Exercise.** Show that if the commitment is accepted then the shares $[a]_i^j$ of honest parties are lay on a polynomial of degree $\leq (t-1)$.

Consistency of shares

Let $\mathbf{B} \subseteq \{1, \ldots, n\}$ be the set of indices of honest parties. We must show that there exists a polynomial g of degree at most t-1, such that $g(j) = [a]_j^j = F(0, j)$ for all $j \in \mathbf{B}$. Let $\mathbf{C} \subseteq \mathbf{B}$ be the indices of honest parties that did not accuse the dealer. **Exercise.** How large must C be? **Exercise.** Show that for all $j \in \mathbf{B}$ and $k \in \mathbf{C}$ we have F(j,k) = F(k,j) at the end of the protocol. Let r_k , where $k \in \mathbb{C}$ be the Lagrange interpolation coefficients for polynomials of degree $\leq t - 1$. I.e. $h(0) = \sum_{k \in \mathbf{C}} r_k h(k)$ for all such polynomials h. **Exercise.** Why do such r_k exist? **Exercise.** Show that $g(x) = \sum_{k \in \mathbf{C}} r_k \cdot F(x, k)$ is the polynomial we're looking for.

Consistent broadcast

- There are n parties P_1, \ldots, P_n .
- A party P_i has a message m to broadcast.
- There are secure channels between each pair of parties.
- t of the parties (t < n/3) are malicious.
- All honest parties must eventually agree on a broadcast message and the sender.
 - If P_i is honest then all honest parties must eventually agree that the message m was sent by P_i .
 - If P_i was malicious then all honest parties must eventually agree on the same message and a dishonest sender, or that there was no message.

Protocol for consistent broadcast

- Assume that a party never sends the same message twice.
- If P_i wants to broadcast m, it sends $(INIT, P_i, m)$ to all other parties.
- If a party P_j receives $(INIT, P_i, m)$ from party P_i then it sends $(ECHO, P_i, m)$ to all parties (including himself).
- If a party P_j receives (ECHO, P_i, m) from at least t + 1 different parties, then it sends (ECHO, P_i, m) to all parties himself, too.
- If a party P_j receives (ECHO, P_i, m) from at least 2t + 1 different parties then it *accepts* that P_i broadcast m.

Exercise. Show that if an honest P_i wants to broadcast m, then all honest parties have accepted it after two rounds.

Exercise. Show that if the honest party P_i has not broadcast m then no honest party will accept that P_i has broadcast m.

Exercise. Show that if an honest party accepts that P_i broadcast m, then all other honest parties will accept that at most one round later.

What have we seen so far?

- 2-party, computational, semi-honest, constant-round.
- 1 2- or n-party, computational, semi-honest(< n), linear-round.
- I *n*-party, unconditional, semi-honest(< n/2), linear-round.
- I *n*-party, computational, malicious (< n/2), constant-round.
- *n*-party, unconditional (with $2^{-\eta}$ chance of failing), broadcast, malicious(< n/2), linear-round.
- I *n*-party, unconditional, malicious(< n/3), linear-round.

Not covered yet:

- 2-party, computational, malicious.
 - *n*-party, computational, malicious(< n).

What have we seen so far?

- 2-party, computational, semi-honest, constant-round.
- 2- or *n*-party, computational, semi-honest(< n), linear-round.
 - Linear in ... of the circuit computing f.
 - **Exercise.** Fill the blank.
- *n*-party, unconditional, semi-honest (< n/2), linear-round.
- *n*-party, computational, broadcast, malicious (< n/2), linear-round.

What have we seen so far?

- 2-party, computational, semi-honest, constant-round.
- 2- or *n*-party, computational, semi-honest(< n), linear-round.
 - Linear in ... of the circuit computing f.
 - **Exercise.** Fill the blank.
- I *n*-party, unconditional, semi-honest (< n/2), linear-round.
- *n*-party, computational, broadcast, malicious(< n/2), linear-round.

Exercise. How to implement a broadcast channel using only point-to-point channels in the computational setting, assuming a malicious adversary that has corrupted less than half of the parties?

What have we seen so far?

- 2-party, computational, semi-honest, constant-round.
- 2- or *n*-party, computational, semi-honest (< n), linear-round.
 - Linear in ... of the circuit computing f.
 - **Exercise.** Fill the blank.
- I *n*-party, unconditional, semi-honest(< n/2), linear-round.
- *n*-party, computational, broadcast, malicious(< n/2), linear-round.

Exercise. How to implement a broadcast channel using only point-to-point channels in the computational setting, assuming a malicious adversary that has corrupted less than half of the parties?

Coming up: *n*-party, computational, malicious (< n/2), constant-round.

Beaver-Micali-Rogaway's MPC

- Recall Yao's garbled circuits:
 - P_1 coverts the circuit evaluating f to a garbled circuit.
- ♦ P₁ sends to P₂ the garbled circuit and keys corresponding to his(P₁) input bits.
- P₂ obtains the keys corresponding to his input bits using oblivious transfer.
- P_2 evaluates the circuit and reports back (to P_1) the result.
- In Micali-Rogaway's MPC, the garbled circuit and keys corresponding to all parties' inputs are produced cooperatively.
 - All gates can be garbled in parallel need only constant rounds.
- After that, all parties evaluate that circuit by themselves.

Rabin's and Ben-Or's VSS

(MPC: *n*-party, unconditional (with small chance of failing), broadcast, malicious(< n/2), linear-round)

- An interactive VSS.
 - Sharing and recovery protocols involve more communication between parties.
- Unconditionally secure.

Has a small error probability (of the order $2^{-\eta}$), where η is the security parameter.

• Has a flavor of zero-knowledge proofs.

Rabin's and Ben-Or's VSS

(MPC: *n*-party, unconditional (with small chance of failing), broadcast, malicious(< n/2), linear-round)

- An interactive VSS.
 - Sharing and recovery protocols involve more communication between parties.
- Unconditionally secure.

Has a small error probability (of the order $2^{-\eta}$), where η is the security parameter.

• Has a flavor of zero-knowledge proofs.

■ Let $p \in \mathbb{P} \cap \{n + 1, ..., 2n\}$. Let $p' \ge 2^{\eta}$ be a large prime, such that $p \mid (p' - 1)$.

Check vectors

- A bit like signatures...
- Three parties Dealer, Intermediary, Recipient.
- I D gives to I the $v \in \mathbb{Z}_{p'}$. I may later want to pass v to R.
- *D* is honest.
- \blacksquare R wants to be sure that the value he received is really v.

Check vectors

- A bit like signatures...
- Three parties Dealer, Intermediary, Recipient.
- D gives to I the $v \in \mathbb{Z}_{p'}$. I may later want to pass v to R.
- *D* is honest.
- \blacksquare R wants to be sure that the value he received is really v.
- \blacksquare D generates random values $b \in \mathbb{Z}_{p'}^*$ and $y \in \mathbb{Z}_{p'}$. Let c = v + by.
- \blacksquare D sends (v, y) to I and (b, c) to R.
- Later, I sends (v, y) to R who verifies that c = v + by.

Exercise. Security? Can R learn v too soon? Can I send a wrong value to R? What if there are several R-s (the check vectors are different)?

Honest-dealer VSS

- D generates random $f(x) = v + \sum_{i=1}^{t-1} a_i x^i$ and sends $s_i = f(i)$ to P_i .
- For each s_i and P_j , the dealer sends the check vector (b_{ij}, c_{ij}) to P_j and the corresponding y_{ij} to P_i .
- To recover v, P_i sends (s_i, y_{ij}) to P_j (for all i and j). The parties verify the check vectors. To reconstruct v, they use those shares that passed verification.

Check vectors with malicious dealer

- If D is dishonest then the proof y sent to I might not match the check vector (b, c) sent to R.
 - I, when receiving (v, y), wants to be sure that R will accept his (v, y) afterwards.

Check vectors with malicious dealer

- If D is dishonest then the proof y sent to I might not match the check vector (b, c) sent to R.
 - I, when receiving (v, y), wants to be sure that R will accept his (v, y) afterwards.
 - *D* will generate 2η check vectors $(b_1, c_1), \ldots, (b_{2\eta}, c_{2\eta})$ and send them to *R*. He sends the corresponding values $y_1, \ldots, y_{2\eta}$ to *I*.
 - I randomly chooses η indices i_1, \ldots, i_η and sends them to R.
 - Let $\tilde{i}_1, \ldots, \tilde{i}_\eta$ be the other η indices.
- R sends (b_{i1}, c_{i1}), ..., (b_{iη}, c_{iη}) to I.
 R verifies that c_{ij} = v + b_{ij}y_{ij} for all j. If all checks out, then I thinks that R will accept.
 - Later, I sends $(v, y_{\tilde{i}_1}, \ldots, y_{\tilde{i}_\eta})$ to R. R verifies all remaining check vectors. He accepts if at least one check vector is correctly verified.

Check vectors with malicious dealer

- If D is dishonest then the proof y sent to I might not match the check vector (b, c) sent to R.
 - I, when receiving (v, y), wants to be sure that R will accept his (v, y) afterwards.
 - *D* will generate 2η check vectors $(b_1, c_1), \ldots, (b_{2\eta}, c_{2\eta})$ and send them to *R*. He sends the corresponding values $y_1, \ldots, y_{2\eta}$ to *I*.
 - I randomly chooses η indices i_1, \ldots, i_η and sends them to R.
 - Let $\tilde{i}_1, \ldots, \tilde{i}_\eta$ be the other η indices.
- $\blacksquare R \text{ sends } (b_{i_1}, c_{i_1}), \ldots, (b_{i_{\eta}}, c_{i_{\eta}}) \text{ to } I.$
- R verifies that $c_{i_j} = v + b_{i_j} y_{i_j}$ for all j. If all checks out, then I thinks that R will accept.
- Later, I sends $(v, y_{\tilde{i}_1}, \ldots, y_{\tilde{i}_\eta})$ to R. R verifies all remaining check vectors. He accepts if at least one check vector is correctly verified.
- Exercise. What is the probability that R rejects, although I thought he would accept?
- Exercise. What is the probability that R will accept a value different from v?

Verified-at-the-end VSS

- In Verified-at-the-end VSS, a malicious dealer is caught during the recovery protocol.
- Also, the dealer cannot change his mind after the sharing protocol.The sharing protocol has two phases:
 - Sharing the secret.
 - Verifying the check vectors.

Sharing the secret

- Dealer randomly generates the polynomial $f(x) = v + \sum_{j=1}^{t-1} a_i x^i$ and sends the share $s_i = f(i)$ to each P_i .
- Dealer generates the check vectors $(\mathbf{b}_{ij}, \mathbf{c}_{ij})$ and the proofs \mathbf{y}_{ij} for s_i . Sends the vector to P_j and proof to P_i .
 - Each of \mathbf{b}_{ij} , \mathbf{c}_{ij} , \mathbf{y}_{ij} is actually a 2η -tuple of elements of $\mathbb{Z}_{p'}$.

Verifying the check vectors

- P_i wants to know whether P_j will accept his proof y_{ij}.
 On the broadcast channel P_i asks P_j to publish η components of the check vector (b_{ij}, c_{ij}). Components are chosen by P_i.
 P_j does so (on broadcast channel).
 - The dealer has two options:
 - Broadcast "I approve".
 - Broadcast a new $(\mathbf{b}_{ij}, \mathbf{c}_{ij})$ and send the corresponding new \mathbf{y}_{ij} privately to P_i .
 - Party P_i verifies the (received components of) the check vector.
 - If OK, move on to P_{j+1} .
 - If not OK, ask the dealer to broadcast s_i . Do not move on.
 - The value broadcast by dealer is taken as s_i by all parties.

Exercises

- Show that this part of the protocol does not expose data that is not known to dishonest parties (except for halves of check vectors). At this point, let a coalition be a set of parties $\mathbf{C} \subseteq \{P_1, \ldots, P_n\}$, such that for all $P, P' \in \mathbf{C}$, party P knows that P' will accept his share during recovery. Show that there is a coalition containing all honest parties.
 - A broadcast share is always accepted.

Recovery protocol

- D broadcasts the (coefficients of the) polynomial f.
 - Each P_i sends to each P_j his share s_i and the proof \mathbf{y}_{ij} .
 - If the share s_i was broadcast then P_i does nothing.
- Each P_i verifies each received (s_j, \mathbf{y}_{ji}) with respect to the check vector $(\mathbf{b}_{ji}, \mathbf{c}_{ji})$ that he has.
- Each P_i verifies whether $f(j) = s_j$ for each share s_j that he accepted on the previous step.
- If this check succeeds for all accepted s_j , then P_i takes f(0) as the secret v.
- If this check does not succeed for some accepted s_j then P_i broadcasts "dealer is malicious".
- A dealer whose maliciousness gets at least t votes is disqualified.

Exercises

- Show that all honest parties will arrive at the same value of the secret v.
- I Show that an honest dealer is not disqualified.

Unconditionally secure VSS

- Here, during the dealing protocol, the dealer gives zero-knowledge proof that f has degree at most $\leq t 1$.
- In the beginning, D sends out the shares s_i as always.
 - No check vectors are necessary.
- Each P_i will use (n, t)-Verified-at-the-end VSS to share s_i . After that, each honest party P_i will have
 - His share s_i .
 - A polynomial f^i of degree at most t-1, such that $f^i(0) = s_i$.
 - The share β_i^j of s_j at point *i*. If P_j is honest then $\beta_i^j = f^j(i)$.
 - A check vector $(\mathbf{b}_{ki}^{j}, \mathbf{c}_{ki}^{j})$ allowing P_{i} to verify that the share β_{k}^{j} is a correct share of s_{j} for party P_{k} .
 - A proof \mathbf{y}_{ik}^{j} allowing P_i to prove to P_k that his share β_i^{j} is a correct share of s_j for party P_i .
 - Belief that all other parties accept the shares β_i^j that he is holding. (Everybody will accept β_i^j if it has been broadcast.)

The ZK proof

- Dealer picks a random polynomial *f* of degree ≤ t − 1.
 Dealer sends s_i = f(i) to P_i.
- Each P_i will use (n, t)-Verified-at-the-end VSS to share s_i . After that, each honest party P_i will have f^i , β_i^j , $(\mathbf{b}_{ki}^j, \mathbf{c}_{ki}^j)$, \mathbf{y}_{ik}^j .
 - Each P_i also shares $s_i = s_i + s_i$ using the polynomial $f^i = f^i + f^i$.
 - The check vectors $(\mathbf{b}_{ki}^{j}, \mathbf{c}_{ki}^{j})$ and proofs \mathbf{y}_{ik}^{j} are independently created and verified.
- One of the parties P_i (chosen in round-robin manner) asks the dealer to reveal either f or f = f + f.
- Dealer reveals f. Each P_i checks whether $f(i) = s_i$.
 - If unsatisfied, asks the dealer to broadcast s_i and s_i .
 - Dealer complies. Each P_j checks that $f(i) = s_i$.
 - For each *i*, the parties run the recovery protocol of Verified-at-the-end VSS for s_i shared with f^i . Each P_j checks if $s_i = f(i)$. If not, disqualify P_i .

Exercises

- Show that no data unknown to the adversary is broadcast.
- Show that an honest party is not disqualified.
- Show that after $O(\eta)$ rounds, all values s_i that have been broadcast or that are held by still qualified players lay on the same polynomial of degree at most t - 1.

Recovery of \boldsymbol{v}

- The recovery protocols of Verified-at-the-end VSS are run for still hidden shares s_i.
- These shares are used to reconstruct f.

The VSS has the following properties:

- If the dealer is honest then he won't be disqualified.
- After the ZK proof (all rounds of which can be run in parallel), the secret value v has been uniquely determined for all honest parties.
 - It is also determined whether the recovery protocol will produce a v or not.
 - The dealer will not be disqualified during the recovery.

Summary

- I The secret is shared with Shamir's scheme.
- Each share is shared with Shamir's scheme.
- Each share² created by P_i for P_j has check vectors for each P_k .
 - P_j is sure that P_k will accept this check vector.
- A ZK-style proof is given that the shares lay on a polynomial of degree at most $\leq (t-1)$.
 - A random polynomial of degree $\leq (t-1)$ is generated and shared and shared² together with check vectors.
 - Either the random polynomial or (original+random) polynomial is opened.
 - The check vectors are used to catch malicious parties P_i .
 - Comparision of shares and opened polynomial is used to catch malicious D.
 - During the recovery, D does not matter any more.

MPC with Rabin's and Ben-Or's VSS

- For each wire, the value it is carrying is distributed using the VSS. The inputs are shared using the VSS. The outputs are recovered using the VSS.
- Adding two wires (v = v + v):
 - $\bullet \quad s_i = s_i + s_i. \quad f^i = f^i + f^i. \quad \beta_i^j = \beta_i^j + \beta_i^j.$
 - P_i sends to P_k the new check vector $(\mathbf{b}_{jk}^i, \mathbf{c}_{jk}^i)$ and to P_j the corresponding proof \mathbf{y}_{jk}^i . P_j verifies that P_k will accept this proof for β_i^i .
 - **Exercise.** Why not reuse the existing check vectors?
 - Multiplying with a constant (v = cv):

•
$$s_i = cs_i$$
. $f^i = cf^i$. $\beta_i^j = c\beta_i^j$.
• $\mathbf{b}_{ki}^j = c \cdot \mathbf{b}_{ki}^j$. $\mathbf{c}_{ki}^j = c \cdot \mathbf{c}_{ki}^j$. $\mathbf{y}_{ik}^j = \mathbf{y}_{ik}^j$.
Possill that c^j [s] $\beta_i^j + \mathbf{b}_i^j$ [s] \mathbf{y}_{ik}^j .

Recall that $\mathbf{c}_{ik}^{j}[z] = \beta_{i}^{j} + \mathbf{b}_{ik}^{j}[z] \cdot \mathbf{y}_{ik}^{j}[z]$.

Multiplication $(v = v \cdot v)$

- Verified-at-the-end sharings of s_i and s_i are extended to fully verified sharings.
 - All shares² β_i^j and β_i^j are shared using the verified-at-the-end sharing scheme, giving us shares³ γ_k^{ji} and γ_k^{ji} and corresponding check vectors and proofs.
 - ZK-proof is given that all shares β_j^i lay on a polynomial of degree at most t-1.
 - Presumably, this polynomial is f^i .
 - Same for β and f.
- Each party P_i shares $s_i = \mathbf{s}_i \cdot \mathbf{s}_i$ using full VSS.
- Each party P_i proves in ZK that $s_i = s_i \cdot s_i$.
 - Next slides...

v is computed as a suitable linear combination of s_1, \ldots, s_n .

Proving that v = v

- The dealer has shared v and v.
- Use MPC to compute v v.
- Recover the shared value. Check that it is 0.

Proving that $v = v \cdot v$

- Recall that we compute in a field \mathbb{Z}_p , where n (except check vectors).
- I The dealer has shared v, v and v.
- The dealer shares the entire multiplication table of \mathbb{Z}_p .
 - Let $\mathbf{T} = \{(x, y, z) \mid x, y \in \mathbb{Z}_p, z = xy\}.$
 - Let $(x_1, y_1, z_1), \ldots, (x_{p^2}, y_{p^2}, z_{p^2})$ be randomly permuted **T**.
 - Dealer shares all x_i, y_i, z_i using full VSS.

One of the P_i (chosen by round-robin) requests one of:

- Open the entire table. Everybody checks that it was indeed the multiplication table of \mathbb{Z}_p .
- Show the line (v, v, v). The dealer names $i \in \{1, ..., p^2\}$ and proves that $v = x_i$, $v = y_i$, $v = z_i$.

Components of Rabin's and Ben-Or's MPC

Homomorphic encryption systems

- Let $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an IND-CPA-secure public-key encryption system. Let the plaintext space R be a ring.
- $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is homomorphic, if there exist efficient algorithms
 - to compute $\mathcal{E}_k(a+b)$ from $\mathcal{E}_k(a)$ and $\mathcal{E}_k(b)$;
 - to compute $\mathcal{E}_k(ca)$ from $\mathcal{E}_k(a)$ and $c \in R$.

Paillier's cryptosystem

Let p and q be large primes. Let N = pq. Then $\mathbb{Z}_{N^2}^* \cong G \times H$ where

•
$$G$$
 is a cyclic group of order N .

 $\bullet \quad H \cong \mathbb{Z}_N^*.$

Then Ḡ = Z_{N²}^{*}/H is also cyclic of order n. Let ā ∈ Ḡ be the coset of a ∈ Z_{N²}^{*}.
1 + N generates Ḡ and (1 + N)ⁱ ≡ 1 + iN (mod N²).
Let λ = lcm(p − 1, q − 1). Then b^λ = 1 for any b ∈ Z_N^{*}.
For any a ∈ Z_{N²}^{*}, there are i ∈ Z_N and h ∈ H, such that a ≡ (1 + N)ⁱh (mod N²).
a^λ = (1 + N)^{iλ} ⋅ h^λ ≡ (1 + N)^{iλ} ≡ 1 + (iλ mod N)N (mod N²).
Let L(x) = (x − 1)/N. Then log_{1+N} ā = L(a^λ)/λ (in Ḡ).
If g ∈ Z_{N²}^{*} then let j = log_{1+N} ḡ.

• Then $\log_{\bar{g}} \bar{a} = (\log_{\overline{1+N}} \bar{a}) \cdot j^{-1} \mod N$.

Paillier's cryptosystem

Generate p, q, public key is N, g, where g ∈_R Z^{*}_{N²}.
 Private key: λ = lcm(p − 1, q − 1), j = log_{1+N} ḡ.
 To encrypt m ∈ Z_N pick a random r ∈ Z^{*}_{N²} and set

$$c = \mathcal{E}(m; r) = g^m r^N \bmod N^2$$

Decryption: $m = L(c^{\lambda} \mod N^2) \cdot j^{-1} \mod N$.

MPC from threshold homomorphic cryptosystem

Assume that the keys have been distributed:

- everybody knows pk;
- each party P_i knows his secret key share sk_i .
- At least t parties out of n must help to decrypt.
- The function f is represented by a circuit of addition, scalar multiplication, and multiplication gates.
 - A value v on a wire is represented by $\mathcal{E}_{pk}(m)$.
 - All parties know $\mathcal{E}_{pk}(m)$.
 - Sharing of an input: encrypt it and broadcast the result.
 - Opening an output: at least t parties help to decrypt the value on output wire.
- Addition and scalar multiplication every party performs the operation with the encrypted value(s) by itself.

Multiplying *a* and *b*

- Let $\mathcal{E}_{pk}(a)$ and $\mathcal{E}_{pk}(b)$ be known to everybody.
- Each party P_i chooses a random $d_i \in \mathbb{Z}_N$.
- P_i broadcasts $\mathcal{E}_{pk}(d_i)$ and $\mathcal{E}_{pk}(d_ib)$.
- Everybody computes $\mathcal{E}_{pk}(a + \sum_{i=1}^{n} d_i)$.
- This ciphertext is decrypted, everybody learns $a + \sum_{i=1}^{n} d_i$.
- Everybody computes $\mathcal{E}_{pk}((a + \sum_{i=1}^{n} d_i) \cdot b \sum_{i=1}^{n} d_i b)$.

This protocol can be made secure against malicious adversaries.

Threshold RSA

- n parties, at least t needed to decrypt.
- Primes p, q, public modulus N = pq, public exponent e, secret exponent $d = e^{-1} \mod \phi(N)$.
 - A dealer chooses all of those values.
 - Let e be a prime that is larger than n.
- The dealer shares d using Shamir's t-out-of-n secret sharing, working in $\mathbb{Z}_{\phi(N)}$. It sends the *i*-th share s_i to the party P_i .
 - For any set $\mathbf{C} \subseteq \{1, \ldots, n\}$, where $|\mathbf{C}| = t$, there exist coefficients $\tilde{r}_i^{\mathbf{C}}$, such that $d = \sum_{i \in \mathbf{C}} \tilde{r}_i^{\mathbf{C}} s_i$.
 - not sure about this...
 - But finding such $\tilde{r}_i^{\mathbf{C}}$ requires the knowledge of $\phi(N)$.
 - There are public coefficients $r_i^{\mathbf{C}}$, such that $n! \cdot d = \sum_{i \in \mathbf{C}} r_i^{\mathbf{C}} s_i$.

Public coefficients

The points (i, s_i) , $i \in \mathbb{C}$ can be interpolated in \mathbb{Z} :

$$f(k) = \sum_{i \in \mathbf{C}} s_i \prod_{j \in \mathbf{C}, j \neq i} \frac{k - j}{i - j} .$$

Hence $n! \cdot f(0) = \sum_{i \in \mathbf{C}} r_i^{\mathbf{C}} s_i$ where

$$r_i^{\mathbf{C}} = n! \cdot \frac{\prod_{j \in \mathbf{C} \setminus \{i\}} (-j)}{\prod_{j \in \mathbf{C} \setminus \{i\}} (i-j)}$$

The numbers $r_i^{\mathbf{C}}$ are integers because denominator divides n!. The same equality $n! \cdot f(0) = \sum_{i \in \mathbf{C}} r_i^{\mathbf{C}} s_i$ holds in $\mathbb{Z}_{\phi(N)}$.

Decryption

- Publicly decrypting $m^e = c \in \mathbb{Z}_N$: each party P_i publishes $m_i = c^{s_i} \mod N$.
- Given a set of plaintext shares m_i , where $i \in \mathbf{C}$, compute c' by

$$c' = \prod_{i \in \mathbf{C}} m_i^{r_i^{\mathbf{C}}}$$

- $c' = m^{n!}$. As $n! \perp e$, there exist (public) coefficients $a, b \in \mathbb{Z}$, such that ae + b(n!) = 1.
 - Compute $m = c^a + {c'}^b$.
 - Threshold Paillier is doable in the same way.

Threshold Paillier

Generate N as for RSA. Let λ be shared among parties.

• Also let
$$p \equiv q \equiv 3 \pmod{4}$$
.

• $\lambda = 2\mu$ where μ is odd. Let d be such that

•
$$d \equiv 0 \pmod{\mu};$$

• $d \equiv j^{-1} \pmod{N}.$

then (write $g = (1 + N)^j h$ for some $h \in H$)

$$c^{2d} = (1+N)^{2jmd} (h^m r^N)^{2d} = (1+N)^{2jmd \mod N} = (1+N)^{2m} = 1 + 2mN \pmod{N^2}$$

and m can be found from it using only public knowledge.

Distributed generation of RSA keys

Boneh-Franklin scheme: two parties Alice and Bob, and a helper, Henry.

• Alice randomly picks p_a, q_a , Bob randomly picks p_b, q_b .

Using secure computation (next slides)

• Define
$$p = p_a + p_b$$
, $q = q_a + q_b$.

- p and q are not uniformly distributed, but still have large entropy.
- Do trial division for p and q with small primes.
- Compute N = pq and broadcast it.
- Test that N is a product of two primes.
- Generate public exponent and shares of private exponent.

Testing that N is product of two primes

Let N = pq where $p \equiv q \equiv 3 \pmod{4}$.

• $p = p_a + p_b$, $q = q_a + q_b$, Alice knows p_a and q_a , Bob knows p_b and q_b .

•
$$p_a \equiv q_a \equiv 3 \pmod{4}$$
, $p_b \equiv q_b \equiv 0 \pmod{4}$.

- Alice and Bob agree on a random g ∈ Z^{*}_N, such that (^g/_N) = 1.
 Alice computes v_a = g^{(N-p_a-q_a+1)/4}. Bob computes v_b = g^{(p_b+q_b)/4}.
 Alice and Bob compare v_a and v_b. If v_a ≡ ±v_b (mod N) then "success" else "fail".
 - Note that the test checks whether $g^{(N-p-q+1)/4} \equiv \pm 1 \pmod{N}$.

Theorem. The preceeding algorithm is "almost Monte-Carlo": for all but negligible fraction of non-RSA-moduli N, the probability of getting "fail" is at least 1/2. But if N is an RSA-modulus, then the test always outputs "success".

If p and q are prime

Then
$$g^{(N-p-q+1)/4} = g^{\varphi(N)/4} = g^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

$$g^{\frac{p-1}{2} \cdot \frac{q-1}{2}} = (g^{\frac{p-1}{2}})^{\frac{q-1}{2}} \equiv (\frac{g}{p})^{\frac{q-1}{2}} = (\frac{g}{p}) \pmod{p}$$

$$\bullet \quad \text{Because } \frac{q-1}{2} \text{ is odd and } (\frac{g}{p}) \in \{-1, 1\}.$$

$$\texttt{Similarly, } g^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \equiv (\frac{g}{q}) \pmod{q}.$$

$$(\frac{g}{p}) = (\frac{g}{q}) \text{ because } (\frac{g}{n}) = 1.$$

$$\texttt{Hence } g^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \mod{n} \text{ equals } (\frac{g}{p}) \text{ and } (\frac{g}{q}).$$

If p or q is composite

Let e = (N - p - q + 1)/4 and

$$G = \{g \in \mathbb{Z}_n \mid \left(\frac{g}{n}\right) = 1\}$$
$$H = \{g \in G \mid g^e \equiv \pm 1 \pmod{N}\}$$

Both G and H are subgroups of \mathbb{Z}_N^* and $H \leq G$.

- We show that almost always there is a g ∈ G\H, i.e. |H| < |G|. As |H| | |G|, the group G has a least twice as many elements as H.
 Let N = r₁^{d₁} · · · r_s^{d_s} be a non-trivial factorization of N with s ≥ 1 and ∑ d_i ≥ 3.
- Note that *e* is odd.

If $s \geq 3$

N =
$$r_1^{d_1} \cdot r_2^{d_2} \cdot r_3^{d_3} \cdots$$
 where r_1 , r_2 and r_3 are different.
Let a be a quadratic non-residue modulo r_3 .
Let $g \in \mathbb{Z}_N^*$ satisfy
 $g \equiv 1 \pmod{r_1}$
 $g \equiv 1 \pmod{r_2}$
 $g \equiv 1 \pmod{r_2}$
 $g \equiv 1 \pmod{r_3}$ if $\left(\frac{-1}{r_2}\right) = 1$
 $g \equiv a \pmod{r_3}$ if $\left(\frac{-1}{r_2}\right) = -1$
 $g \equiv 1 \pmod{r_3}$ if $\left(\frac{-1}{r_2}\right) = -1$
 $g \equiv 1 \pmod{r_1}$ for $i \geq 4$.
Then $\left(\frac{g}{N}\right) = 1$
 $g^e \equiv 1 \pmod{r_1}$ and $g^e \equiv -1 \pmod{r_2}$. Hence $g^e \not\equiv \pm 1 \pmod{N}$.

If gcd(p,q) > 1

Let $r \in \mathbb{P}$ be such that $r \mid p$ and $r \mid q$. Then $r^2 \mid N$ and $r \mid \varphi(N)$. \mathbb{Z}_N^* contains an element g of order r. $\left(\frac{g}{N}\right) = \left(\frac{g}{n}\right)^r = \left(\frac{g^r}{N}\right) = \left(\frac{1}{N}\right) = 1$, i.e. $g \in G$. $r \mid p, r \mid q, r \mid N$. Hence $r \not \mid N - p - q + 1 = 4e$. $g^{4e} \not\equiv 1 \pmod{N}$. $g^e \not\equiv \pm 1 \pmod{N}$. $g \notin H$.

The remaining case

$$p = r_1^{d_1}, q = r_2^{d_2}, r_1 \neq r_2, r_1, r_2 \in \mathbb{P}, d_1 + d_2 \geq 3.$$
 W.l.o.g. $d_1 \geq 2.$
 $\mathbb{Z}_p^* \text{ is cyclic. } |\mathbb{Z}_p^*| = r_1^{d_1-1}(r_1-1).$

Let $g' \in \mathbb{Z}_p^*$ have order $r_1^{d_1-1}$.

Let $g \in \mathbb{Z}_N^*, g \equiv g' \pmod{p}, g \equiv 1 \pmod{q}.$

The order of g is $r_1^{d_1-1}$.

 $\left(\frac{g}{N}\right) = \left(\frac{g}{n}\right)^{r_1^{d_1-1}} = \left(\frac{g^{r_1^{d_1-1}}}{N}\right) = \left(\frac{1}{N}\right) = 1, \text{ i.e. } g \in G.$

If $q \not\equiv 1 \pmod{r_1^{d_1-1}}$ then:

 $r_1^{d_1-1} \not\mid N - p - q + 1 = 4e$
 $g^{4e} \not\equiv 1 \pmod{N}. g^e \not\equiv \pm 1 \pmod{N}. g \notin H.$

If $q \equiv 1 \pmod{r_1^{d_1-1}}$ then

The group H might actually be equal to G. Probabilities (note that p and q are independent quantities):

- $\Pr[q \equiv 1 \pmod{r_1^{d_1-1}}] \le 1/r_1^{d_1-1} \le 1/\sqrt{p} \le 2^{-n/2}$ where n is the bit-length of p and q.
- $\Pr[p \text{ is a prime power}] \leq n/2^{n/2}$.

The probability of both happening is less than $n/2^n$.

Multiplying p and q

Let P > N be some prime. We work in \mathbb{Z}_P . Fix $x_a, x_b, x_h \in \mathbb{Z}_P^*$ as distinct non-zero elements. Alice generates $c_a \neq 0, d_a \neq 0, p_{b,a}, q_{b,a}, r_1, r_2 \in \mathbb{Z}_P$. Alice computes $p_{a,i} = c_a x_i + p_a$, $q_{a,i} = d_a x_i + q_a$, $r_i = r_1 x_i + r_2 x_i^2$, $N_a = (p_{a,a} + p_{b,a})(q_{a,a} + q_{b,a}) + r_a.$ Alice sends $p_{a,b}, q_{a,b}, p_{b,a}, q_{b,a}, r_b$ to B and $p_{a,h}, q_{a,h}, r_h, N_a$ to H. Bob computes $c_b = (p_{b,a} - p_b)/x_a$, $d_b = (q_{b,a} - q_b)/x_b$, $p_{b,i} = c_b x_i + p_b, \ q_{b,i} = d_b x_i + q_b, \ N_b = (p_{a,b} + p_{b,b})(q_{a,b} + q_{b,b}) + r_b.$ Bob sends $p_{b,h}, q_{b,h}, N_b$ to Henry. Henry computes $N_h = (p_{a,h} + p_{b,h})(q_{a,h} + q_{b,h}) + r_h$. Henry finds a quadratic polynomial α passing through (x_a, N_a) , $(x_b, N_b), (x_h, N_h).$ • $\alpha(0) = N$. Henry broadcasts it.

Trial division

- Consider a number $q = q_a + q_b$. Let p be a small prime. Alice and Bob want to know whether $q \equiv 0 \pmod{p}$.
- Equivalently: whether $q_a \equiv -q_b \pmod{p}$.
- Alice picks $(c,d) \in \mathbb{Z}_p^* \times \mathbb{Z}_p$. Sends (c,d) to Bob and $(cq_a + d) \mod p$ to Henry.
- Bob sends $(-cq_b + d) \mod p$ to Henry.
- Henry outputs whether the values received from Alice and Bob were the same or not.

Shares of private exponent

If public exponent e = 3 then d equals

- $(\varphi(N) + 1)/3 = (N (p_a + p_b) (q_a + q_b) + 2)/3$ if $\varphi(N) \equiv 2 \pmod{3};$
- $(2\varphi(N) + 1)/3 = 2(N (p_a + p_b) (q_a + q_b))/3 + 1$ if $\varphi(N) \equiv 1 \pmod{3}$.
- (if $\varphi(N) \equiv 0 \pmod{3}$ then *e* cannot be 3)
- Alice broadcasts $(p_a + q_a) \mod 3$. Bob broadcasts $(p_b + q_b) \mod 3$. Now everybody knows $\varphi(N) \mod 3$.
 - Everybody also learned ≤ 2 bits of information about p and q.
 - That's too little to worry about.
- Alice and Bob distribute the expression for d.
 - Alice gets d_a , Bob gets d_b , such that $d_a + d_b = d$.

Arbitrary public exponent $e \perp \varphi(N)$

- Let $\varphi_a = N p_a p_b + 1$, $\varphi_b = -p_b q_b$. Then $\varphi(N) = \varphi_a + \varphi_b$. Alice picks $r_a \in \mathbb{Z}_e$. Bob picks $r_b \in \mathbb{Z}_e$.
- With help of Henry compute $\Psi = (r_a + r_b)(\varphi_a + \varphi_b) \mod e$. If $\Psi \not\perp e$ then start over.
- Alice computes $\zeta_a = r_a \Psi^{-1} \mod e$. Bob computes $\zeta_b = r_b \Psi^{-1} \mod e$.

•
$$\zeta = \zeta_a + \zeta_b = (r_a + r_b)\Psi^{-1} \equiv \varphi(N)^{-1} \mod e.$$

Arbitrary public exponent $e \perp \varphi(N)$

Let $P > 2N^2e$ be an odd integer. With help of Henry compute $A + B = -(\zeta_a + \zeta_b)(\varphi_a + \varphi_b) + 1 \mod P$. Alice knows A, Bob knows B, A alone or B alone is random. If $0 \le A, B < P$ then $(A + B) \mod P \in [0, P/N)$. With probability $\geq 1 - \frac{1}{N}$ we have $A + B \geq P$. If Alice does $A \leftarrow A - P$ then $A + B = -(\zeta_a + \zeta_b)(\varphi_a + \varphi_b) + 1$ holds in integers. $A + B = -(\zeta_a + \zeta_b)(\varphi_a + \varphi_b) + 1 \equiv -(\varphi_a + \varphi_b)^{-1}(\varphi_a + \varphi_b) + 1 = 0$ (mod e).We can pick d = (A + B)/e. Alice sets $d_a = |A/e|$. Bob sets $d_b = \lceil B/e \rceil.$

More than two parties

- Primality testing, multiplication, inverting e generalize. Trial division:
 - Let $q = q_1 + \cdots + q_k$ be the candidate prime. Let p be a small prime.
 - Generate shares of $r = (r_1 + \cdots + r_k) \mod p$. Compute and publish $qr \mod p$.
 - If $qr \mod p \neq 0$ then p does not divide q.
 - If $qr \mod p = 0$ then p divides q or $r \in \mathbb{Z}_p$ is zero.
 - Do several trials to make the second case unlikely.
 - $qr \mod p$ does not give any information about a good q.
- I This gives k-out-of-k sharing of d. Can be converted to t-out-of-k sharing.

Proactive secret sharing

- Let D be a secret that is distributed with Shamir's secret sharing scheme, using the polynomial f_{\circ} of degree $\leq t - 1$. Recomputing shares: change the polynomial to f_{\bullet} with $f_{\circ}(0) = f_{\bullet}(0)$ in a random manner. Passive adversary:
 - each party P_i generates a random polynomial h_i with zero free term; sends $h_i(j)$ to P_j .
 - parties add the values they got to their current shares.
 - Thus $f_{\bullet} = f_{\circ} + h_1 + \dots + h_n$.
 - Active adversaries: use VSS. Only use h-s from honest parties.
 - A party relieved from adversarial control needs to be repaired.
 - To repair P_r , construct a polynomial $f_{\bullet} + h$ where h is a random polynomial with h(r) = 0.
 - Send to P_r the shares corresponding to that polynomial.

Applications of homomorphic encryption

- e-voting
- oblivious transfer
- auctions
- things for privacy-preserving data mining
 - Exercise. Alice has a vector (a₁,..., a_n). Bob has a vector (b₁,..., b_n). How do they compute the scalar product of those vectors without revealing them?

OT with homomorphic encryption

- Bob has a database (b₁,..., b_m). Alice has an index i ∈ {1,...,m}.
 Let the set of plaintexts be a group G of order q ∈ P.
 - I.e. use ElGamal. Let g be the generator, let $b_1, \ldots, b_m \in G$.
- Alice generates keys. Sends public key, c = E(gⁱ; R) to Bob.
 Bob computes c_j = (c/E(g^j; R))^{r_j} · E(b_j; R) for each j ∈ {1,...,m} and r₁,...,r_m are randomly chosen from Z_q. Sends them all to Alice.
- Alice recovers $b_j = \mathcal{D}(c_j)$.

Auctions

- Consider sealed-bid auctions. Let $B_1 < B_2 < \cdots < B_k$ be the possible bids.
 - Let auction authority's public key be known.
 - To bid B_{b_i} , the *i*-th bidder P_i sets the bid vector

$$\mathbf{b}_i = (\underbrace{0, \dots, 0}_{b_i - 1}, Y, \underbrace{0, \dots, 0}_{k - b_i})$$

where $Y \neq 0$ is a fixed element.

- P_i encrypts \mathbf{b}_i componentwise, publishes it, and proves in ZK that it has the correct form.
- Define

$$\mathbf{b}'_i = (\underbrace{Y, \dots, Y}_{b_i}, \underbrace{0, \dots, 0}_{k-b_i}), \mathbf{b}''_i = (\underbrace{Y, \dots, Y}_{b_i-1}, \underbrace{0, \dots, 0}_{k-b_i+1}),$$

Everybody can compute encryptions of $\mathbf{b}'_i, \mathbf{b}''_i$ from encryption of \mathbf{b}_i .

Auctions

Find $\sum_i \mathbf{b}'_i + \mathbf{b}''_i$. How does its structure reflect the structure of bids?

- Disregard several parties bidding the same value.
- Everybody can compute that sum in encrypted form. If we want to find the M-th highest bidder, we subtract $(2M-1)Y(1,1,\ldots,1)$ from that sum. Let c be the resulting vector.

• Let
$$\mathbf{b}_i^{\prime\prime\prime\prime} = (\underbrace{0, \dots, 0}_{b_i}, \underbrace{Y, \dots, Y}_{k-b_i}).$$

- Party P_i gets the rerandomized encryption of $\mathbf{c} + 2M\mathbf{b}_i'''$.
 - It has a 0 component only if P_i was among winners. The position of 0 shows the winning price.