Secure Multiparty Computation (part 2)

Unconditionally secure MPC

- A week ago we considered secure multiparty computation.
- The security was computational.
- Good thing - with semi-honest adversary, the number of corrupted parties did not matter.
■ Today we take a look what is possible if we want to remain unconditionally secure.

Semi-honest adversary

- Computed function f represented as a circuit consisting of
- binary addition and multiplication gates;
- unary gates for adding or multiplying with a constant.
- Values on wires - elements of \mathbb{Z}_{p}.

■ n players, where at most $t-1$ may be adversarial.

- All values on wires are shared using Shamir's (n, t)-secret sharing scheme.
- The protocol starts by each party sharing his inputs.
- Binary addition and unary operations - each party performs the same operation with his own respective shares only.
■ Binary multiplication - next slides.
- Protocol ends by parties sending the shares of outputs to each other.

Multiplying shared secrets

■ Let n parties hold shares s_{1}, \ldots, s_{n} and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ for two secrets $v, v^{\prime} \in \mathbb{Z}_{p}$.
We want them to learn shares $s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}$ for $v^{\prime \prime}=v \cdot v^{\prime}$, such that these shares are uniformly distributed and independent from anything else.

Multiplying shared secrets

■ Let n parties hold shares s_{1}, \ldots, s_{n} and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ for two secrets $v, v^{\prime} \in \mathbb{Z}_{p}$.
■ We want them to learn shares $s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}$ for $v^{\prime \prime}=v \cdot v^{\prime}$, such that these shares are uniformly distributed and independent from anything else.

- Ideal protocol:
- There is a trusted dealer $D \notin\left\{P_{1}, \ldots, P_{n}\right\}$.
- D is sent the shares $s_{1}, \ldots, s_{n}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}$.
- D recovers v and v^{\prime}, computes $v^{\prime \prime}=v \cdot v^{\prime}$.
- D constructs the shares for $v^{\prime \prime}$, sends them to P_{1}, \ldots, P_{n}.

■ We want the real protocol to cause the same distribution of $s_{1}, \ldots, s_{n}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}$.

- Each party P_{i} will see some more random values, but their distribution must be constructible from $s_{i}, s_{i}^{\prime}, s_{i}^{\prime \prime}$.

Gennaro-Rabin-Rabin multiplication protocol

■ Assume $t-1<n / 2$. (in other words, $t-1 \leq(n-1) / 2$)

- Let f, f^{\prime} be polynomials of degree $\leq t-1$ used to share v, v^{\prime}.

■ $f(0)=v \cdot f^{\prime}(0)=v$. Let $f^{\prime \prime}=f \cdot f^{\prime}$. Then $f^{\prime \prime}(0)=v \cdot v^{\prime \prime}$.
■ The degree of $f^{\prime \prime}$ is $\leq 2(t-1) \leq n-1$.

- The values of $f^{\prime \prime}$ on n points suffice to reconstruct $f^{\prime \prime}$.
- Party P_{i} can compute $f^{\prime \prime}(i)$ as $s_{i} \cdot s_{i}^{\prime}$.
- But we don't want to use $f^{\prime \prime}$ to share $v^{\prime \prime}$.
- There exist (public) r_{1}, \ldots, r_{n}, such that $f^{\prime \prime}(0)=\sum_{i=1}^{n} r_{i}\left(s_{i} \cdot s_{i}^{\prime}\right)$.
- By Lagrange interpolation formula $r_{i}=\prod_{1 \leq j \leq n, j \neq i} j /(j-i)$.

■ At least t of r_{1}, \ldots, r_{n} are non-zero.

- If only $r_{i_{1}}, \ldots, r_{i_{t-1}}$ were non-zero, then

$$
v=(f \cdot \mathbf{1})(0)=\sum_{i=1}^{n} r_{i} f(i) \mathbf{1}(i)=\sum_{j=1}^{t-1} r_{i_{j}} s_{i_{j}}
$$

allowing $P_{i_{1}}, \ldots, P_{i_{t-1}}$ to determine v.

Gennaro-Rabin-Rabin multiplication protocol

■ Each party P_{i} randomly generates a polynomial f_{i} of degree at most $t-1$, such that $f_{i}(0)=s_{i} \cdot s_{i}^{\prime}$.

- Party P_{i} sends to party P_{j} the value $u_{i j}=f_{i}(j)$.
- Party P_{i} receives the values $u_{1 i}, \ldots, u_{n i}$.

■ P_{i} defines $s_{i}^{\prime \prime}=\sum_{j=1}^{n} r_{j} u_{j i}$.

- The shares $s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}$ correspond to the polynomial $\hat{f}=\sum_{j=1}^{n} r_{j} f_{j}$.
- It is a random polynomial because f_{i}-s were randomly generated.
- It is independent from any $f_{i_{1}}, \ldots, f_{i_{t-1}}$, because at least t of the values r_{1}, \ldots, r_{n} are non-zero.
- This polynomial shares the value

$$
\hat{f}(0)=\sum_{j=1}^{n} r_{j} \cdot f_{j}(0)=\sum_{j=1}^{n} r_{j} s_{j} s_{j}^{\prime}=f^{\prime \prime}(0)=v^{\prime \prime}
$$

Over half of the parties must be honest

- Consider a two-party protocol Π for computing the AND of two bits.
- Let $\Pi\left(b_{1}, r_{1}, b_{2}, r_{2}\right)$ be the sequence of messages exchanged for party P_{i} 's bit b_{i} and random coins r_{i}.

$$
\begin{aligned}
\forall r_{1}, r_{2}^{0} \exists r_{2}^{1}: \Pi\left(0, r_{1}, 0, r_{2}^{0}\right) & =\Pi\left(0, r_{1}, 1, r_{2}^{1}\right) \\
\forall r_{1}, r_{2}^{1} \exists r_{2}^{0}: \Pi\left(0, r_{1}, 0, r_{2}^{0}\right) & =\Pi\left(0, r_{1}, 1, r_{2}^{1}\right) \\
\forall r_{1}, r_{2}^{0}, r_{2}^{1}: \Pi\left(1, r_{1}, 0, r_{2}^{0}\right) & \neq \Pi\left(1, r_{1}, 1, r_{2}^{1}\right)
\end{aligned}
$$

- Party P_{2} whose input is $b_{2}=0$ and random coins r_{2}^{0} can find b_{1} as follows:
- Let \mathcal{T} be the exchanged sequence of messages.
- Try to find such $\left(b^{\prime}, r^{\prime}, r_{2}^{1}\right)$, that $\Pi\left(b^{\prime}, r^{\prime}, 1, r_{2}^{1}\right)=\mathcal{T}$.
- If such triple exists then $b_{1}=0$. If not, then $b_{1}=1$.

Exercise. Generalize this result to more than 2 parties.

Exercise

Repeat the previous MPC construction, but using a verifiable secret sharing scheme.

- For example, Feldman's VSS.

Exercise

Repeat the previous MPC construction, but using a verifiable secret sharing scheme.

- For example, Feldman's VSS.

This exercise shows the possiblity of MPC, where

- security is computational;

■ the number of corrupted parties is strictly less than $n / 2$;

- the adversary is malicious;
- there is a broadcast channel;

■ the adversary can shut down the computation.
The security can be made unconditional and shutdown possibilities can be eliminated.

Exercise

Consider Feldman's VSS:

- n parties, the share of i-th party is P_{i}.
- A group G with hard discrete logarithm. An element $g \in G$ of order p.
■ The secret $v=a_{0}$ is shared using a polynomial of degree at most $t-1$.
■ The values $y_{i}=g^{a_{i}}$ for $0 \leq i \leq t-1$ have been published.
Suppose that during the secret reconstruction time, one of the parties P_{z} refuses to produce a valid s_{z}. How can the honest parties find s_{z} ?

Exercise

Consider Feldman's VSS:

- n parties, the share of i-th party is P_{i}.
- A group G with hard discrete logarithm. An element $g \in G$ of order p.
■ The secret $v=a_{0}$ is shared using a polynomial of degree at most $t-1$.
■ The values $y_{i}=g^{a_{i}}$ for $0 \leq i \leq t-1$ have been published.
Suppose that during the secret reconstruction time, one of the parties P_{z} refuses to produce a valid s_{z}. How can the honest parties find s_{z} ?

This method allows us to kick out parties who behave maliciously.

What have we seen so far?

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest $(<n)$, linear-round.
■ n-party, unconditional, semi-honest $(<n / 2)$, linear-round.
■ n-party, computational, malicious $(<n / 2)$, constant-round.

Coming up next: n-party, unconditional, broadcast, malicious($<n / 3$), linear-round.

Malicious model - security definition

- Simulatability - turn real adversary into an ideal one.
- In the Ideal model, the computation proceeds as follows:
- The parties receive the inputs.
- Parties send their inputs to the ideal functionality F.
- Malicious parties do not have to send it.
- If everybody sent something to F, it will compute the function f and send the outputs to the parties. Otherwise sends \perp to everybody.
- Honest parties output what they got. Malicious parties output whatever they like.
■ In the Real model, two middle steps are replaced by the execution of the actual protocol.
- Real must be simulatable by ideal.

Malicious model - security definition

Malicious model - security definition

Malicious model - security definition

Malicious model - security definition

- There must exist a simulator rtoi that turns real parties to ideal parties.
- rtoi $\left(i, P_{i}^{\text {real }}\right)$ must equal $P_{i}^{\text {ideal }}$.

■ For all Q_{1}, \ldots, Q_{n}, where $Q_{i}=P_{i}^{\text {real }}$ for at least $n-t$ different values of i
■ For all environments Z: its views in the following two runs must be indistinguishable:

- $Z\left|Q_{1}\right| \cdots \mid Q_{n}$
- $z\left|\operatorname{rtoi}\left(1, Q_{1}\right)\right| \cdots\left|\operatorname{rtoi}\left(n, Q_{n}\right)\right| F$

Error-correcting codes

■ An (n, t, d)-code over a set X is a mapping $\mathbf{C}: X^{t} \rightarrow X^{n}$, such that for all $x_{1}, x_{2} \in X^{t}, x_{1} \neq x_{2}$ implies that $\mathbf{C}\left(x_{1}\right)$ and $\mathbf{C}\left(x_{2}\right)$ differ in at least d positions.

- An element $x \in X^{t}$ is encoded as $y=\mathbf{C}(x) \in X^{n}$ and transmitted. During transmission, errors may occur in some positions of y.
- A (n, t, d)-code can detect at most $d-1$ errors.

■ A (n, t, d)-code can correct at most $(d-1) / 2$ errors.

- Efficiency is another question, though.

Error-correcting codes

■ An (n, t, d)-code over a set X is a mapping $\mathbf{C}: X^{t} \rightarrow X^{n}$, such that for all $x_{1}, x_{2} \in X^{t}, x_{1} \neq x_{2}$ implies that $\mathbf{C}\left(x_{1}\right)$ and $\mathbf{C}\left(x_{2}\right)$ differ in at least d positions.

- An element $x \in X^{t}$ is encoded as $y=\mathbf{C}(x) \in X^{n}$ and transmitted. During transmission, errors may occur in some positions of y.
- A (n, t, d)-code can detect at most $d-1$ errors.
- A (n, t, d)-code can correct at most $(d-1) / 2$ errors.
- Efficiency is another question, though.
- In a linear code, X is a field and \mathbf{C} is a linear mapping between vector spaces X^{t} and X^{n}.
- For linear codes, $d \leq n-t+1$.

Reed-Solomon codes

- Reed-Solomon codes are linear codes over some finite field \mathbb{F}.
- To encode t elements of \mathbb{F} as n elements of \mathbb{F}, fix n different elements $c_{1}, \ldots, c_{n} \in \mathbb{F}$.
■ Interpret the source word $\left(f_{0}, \ldots, f_{t-1}\right)$ as a polynomial $p(x)=\sum_{i=1}^{t-1} f_{i} x^{i}$.
■ Encode it as $\left(p\left(c_{1}\right), \ldots, p\left(c_{n}\right)\right)$.
- For Reed-Solomon codes, $d=n-t+1$.
- Hence they can correct up to $(n-t) / 2$ errors.

Decoding Reed-Solomon codes

- Suppose that the original codeword was $\left(s_{1}, \ldots, s_{n}\right)$, corresponding to the polynomial p.
■ But we received $\left(\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right)$.
- We assume it has at most $(n-t) / 2$ errors.
- Find the coefficients for polynomials q_{0} and q_{1}, such that
- Degree of q_{0} is at most $(n+t-2) / 2$. Degree of q_{1} is at most $(n-t) / 2$.
- For all $i \in\{1, \ldots, n\}: q_{0}\left(c_{i}\right)-q_{1}\left(c_{i}\right) \cdot \tilde{s}_{i}=0$.
- q_{0} and q_{1} are not both equal to 0 .

■ Then $p=q_{0} / q_{1}$.

- In general, there are more equations than variables, but \tilde{s}_{i} are not arbitrary.

Correctness of decoding

Such polynomials q_{0}, q_{1} exist:
■ $\left(s_{1}, \ldots, s_{n}\right),\left(\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right)$ - original and received codewords. Let E be the set of i, where $s_{i} \neq \tilde{s}_{i}$. Then $|E| \leq(n-t) / 2$.
■ Let $k(x)=\prod_{i \in E}\left(x-c_{i}\right)$. Then $\operatorname{deg} k \leq(n-t) / 2$.
■ Take $q_{1}=k$ and $q_{0}=p \cdot k$. Then $\operatorname{deg} q_{0} \leq(n+t-2) / 2$.

- For all $i \in\{1, \ldots, n\}$ we have

$$
\begin{aligned}
& q_{0}\left(c_{i}\right)-q_{1}\left(c_{i}\right) \cdot \tilde{s}_{i}=k\left(c_{i}\right)\left(p\left(c_{i}\right)-\tilde{s}_{i}\right)=k\left(c_{i}\right)\left(s_{i}-\tilde{s}_{i}\right)= \\
& \begin{cases}k\left(c_{i}\right)\left(s_{i}-s_{i}\right)=0, & i \notin E \\
0 \cdot\left(s_{i}-\tilde{s}_{i}\right)=0, & i \in E\end{cases}
\end{aligned}
$$

Correctness of decoding

If q_{0} and q_{1} satisfy the equalities and upper bounds on degrees, then $p=q_{0} / q_{1}$:
■ Let $q^{\prime}(x)=q_{0}(x)-q_{1}(x) p(x)$. Degree of q^{\prime} is at most $(n+t-2) / 2$.
■ For each $i \notin E, q^{\prime}\left(c_{i}\right)=q_{0}\left(c_{i}\right)-q_{1}\left(c_{i}\right) p\left(c_{i}\right)=q_{0}\left(c_{i}\right)-q_{1}\left(c_{i}\right) \tilde{s}_{i}=0$.

- $1 \leq i \leq n$.

■ The number of such i is at least $n-(n-t) / 2=(n+t) / 2$.
■ Thus the number of roots of q^{\prime} is larger than its degree. Hence $q^{\prime}=0$.
■ $q_{0}-q_{1} \cdot p=0$.

MPC with no errors

- The number of corrupted players is at most $t-1<n / 3$.
- To distribute inputs, each party first commits to his input and then shares the commitment.
- Shamir's scheme is used for both committing and sharing.
- Hence the commitments are homomorphic.
- For a value a, let $[a]_{i}$ denote the commitment of P_{i} to a. The commitment is distributed, hence $[a]_{i}=\left([a]_{i}^{1}, \ldots,[a]_{i}^{n}\right)$, with P_{j} holding the piece $[a]_{i}^{j}$.

Commitments

We need the following functionalities:

- Commit: P_{i} commits to a value a.
- $[a]_{i}$ is a sharing of a using (n, t)-secret sharing.
- Followed by a proof that the degree of the polynomial is $\leq(t-1)$.
- Open and OpenPrivate: opens a commitment.
- Everybody broadcasts his share or sends it privately to the party that is supposed to open it.
- Errors can be corrected.
- Linear Combination: several commitments of the same party (or different parties) are linearly combined.
- Everybody performs the same combination on the shares he's holding.

Commitments

■ Transfer: turns P_{i} 's commitment $[a]_{i}$ into P_{j} 's commitment $[a]_{j}$. Party P_{j} learns a.

- OpenPrivate a for P_{j}.
- P_{j} Commits a, giving $[a]_{j}$.
- Find the Linear Combination $[a]_{i}-[a]_{j}$ and Open it; check that it is 0 .
- Share: applies Shamir's secret sharing to a committed value $[a]_{i}$.
- P_{i} generates the values a_{1}, \ldots, a_{t-1} and Commits to them.
- $s_{i}=a+\sum_{j=1}^{t-1} a_{j} i^{j}$. These Linear Combinations of $[a]_{i}$ and $\left[a_{1}\right]_{i}, \ldots,\left[a_{t-1}\right]_{i}$ are computed, resulting in commitments $\left[s_{1}\right]_{i}, \ldots,\left[s_{n}\right]_{i}$.
- Commitment $\left[s_{j}\right]_{i}$ is Transfered to $\left[s_{j}\right]_{j}$.

Commitments

■ Multiply. Given $[a]_{i}$ and $[b]_{i}$, the party P_{i} causes the computation of $[c]_{i}$, where $c=a \cdot b$.

- Compute c and Commit to it.
- Share $[a]_{i}$ and $[b]_{i}$, giving $\left[s_{1}^{a}\right]_{1}, \ldots,\left[s_{n}^{a}\right]_{n}$ and $\left[s_{1}^{b}\right]_{1}, \ldots,\left[s_{n}^{b}\right]_{n}$.
- Let the polynomials be f^{a} and f^{b}.
- Let $f^{c}(x)=f^{a}(x) \cdot f^{b}(x)=c+\sum_{j=1}^{2 t-2} c_{j} x^{j}$. Party P_{i} Commits to $c_{1}, \ldots, c_{2 t-2}$.
- Compute $\left[f^{c}(1)\right]_{i}, \ldots,\left[f^{c}(n)\right]_{i}$ as Linear Combinations of $[c]_{i}$ and $\left[c_{1}\right]_{i}, \ldots,\left[c_{2 t-2}\right]_{i}$.
- OpenPrivate $\left[f^{c}(j)\right]_{i}$ to P_{j}. He checks that $s_{j}^{a} \cdot s_{j}^{b}=f^{c}(j)$. If not, broadcast complaint and Open $\left[s_{j}^{a}\right]_{j},\left[s_{j}^{b}\right]_{j}$.
- If P_{j} complains then P_{i} Opens $\left[f^{c}(j)\right]_{i}$. Either P_{i} or P_{j} is disqualified.

Exercise. Show that if P_{i} cheats then there will be a complaint.

MPC

- For each wire, the value on it is shared and the parties have commitments to those shares.
■ Start: each party Commits to his input and then Shares it.
- Addition gates: Linear Combination is used to add the shares of values on incoming wires.
- Multiplication gates: the shares of the values on incoming wires are Multiplied together. These products are Shared and those shares are recombined into the shares of the product, using Linear Combination.
- i.e. Gennaro-Rabin-Rabin multiplication is performed on committed shares.
- End: the shares of a value that a party is supposed to learn are Opened Privately to this party.

Commit: proving the degree of a polynomial

- $\quad P_{i}$ wants to commit to a value a using a random polynomial f, where $\operatorname{deg} f \leq t-1$ and $f(0)=a$. A party P_{j} learns $[a]_{i}^{j}=f(j)$.
■ $\quad P_{i}$ has to convince others that f has a degree at most $t-1$.

Commit: proving the degree of a polynomial

- P_{i} wants to commit to a value a using a random polynomial f, where $\operatorname{deg} f \leq t-1$ and $f(0)=a$. A party P_{j} learns $[a]_{i}^{j}=f(j)$.
- $\quad P_{i}$ has to convince others that f has a degree at most $t-1$.

■ $\quad P_{i}$ randomly generates a two-variable symmetric polynomial F, such that $F(x, 0)=f(x)$ and the degrees of F with respect to x and y are $\leq(t-1)$. I.e.

- randomly generate coefficients $c_{k l} \in \mathbb{F}$, where $1 \leq l \leq k \leq t-1$;
- Let $c_{00}=a$. Let $c_{i 0}$ be the coefficient of x^{i} in f.
- Let $c_{l k}=c_{k l}$ for $l \geq k$.
- Let $F(x, y)=\sum_{k=0}^{t-1} \sum_{l=0}^{t-1} c_{k l} x^{k} y^{l}$.

■ $\quad P_{i}$ sends to P_{j} the polynomial $F(x, j)$ (i.e. its coefficients). The share $[a]_{i}^{j}$ of P_{j} is $F(0, j)=F(j, 0)=f(j)$.

Commit: proving the degree of a polynomial

- P_{j} and P_{k} compare the values $F(k, j)$ and $F(j, k)$. If they differ, they broadcast a complaint $\{j, k\}$.
- P_{i} answers to "complaint $\{j, k\}$ " by publishing the value $F(j, k)$ (which is the same as $F(k, j)$).
- If $P_{j}\left(\right.$ or P_{k}) has a different value then he broadcasts "disqualify P_{i} ".
- P_{i} responds to that by broadcasting $F(x, j)$.

■ All parties P_{l} check that $F(l, j)=F(j, l)$. If not, broadcast "disqualify P_{i} ". Again P_{i} responds by broadcasting $F(x, l)$, etc.

- If there are at least t disqualification calls then P_{i} is disqualified.
- Otherwise the commitment is accepted and parties update their shares with the values that P_{i} had broadcast.

Exercise. Show that if P_{i} is honest then the adversary does not learn anything beyond the polynomials $F(x, j)$, where P_{j} is corrupt.
Exercise. Show that if the commitment is accepted then the shares $[a]_{i}^{j}$ of honest parties are lay on a polynomial of degree $\leq(t-1)$.

Consistency of shares

- Let $\mathbf{B} \subseteq\{1, \ldots, n\}$ be the set of indices of honest parties. We must show that there exists a polynomial g of degree at most $t-1$, such that $g(j)=[a]_{i}^{j}=F(0, j)$ for all $j \in \mathbf{B}$.
- Let $\mathbf{C} \subseteq \mathbf{B}$ be the indices of honest parties that did not accuse the dealer. Exercise. How large must C be?
- Exercise. Show that for all $j \in \mathbf{B}$ and $k \in \mathbf{C}$ we have $F(j, k)=F(k, j)$ at the end of the protocol.
- Let r_{k}, where $k \in \mathbf{C}$ be the Lagrange interpolation coefficients for polynomials of degree $\leq t-1$. I.e. $h(0)=\sum_{k \in \mathbf{C}} r_{k} h(k)$ for all such polynomials h. Exercise. Why do such r_{k} exist?
- Exercise. Show that $g(x)=\sum_{k \in \mathbf{C}} r_{k} \cdot F(x, k)$ is the polynomial we're looking for.

Consistent broadcast

- There are n parties P_{1}, \ldots, P_{n}.
- A party P_{i} has a message m to broadcast.
- There are secure channels between each pair of parties.
- t of the parties $(t<n / 3)$ are malicious.
- All honest parties must eventually agree on a broadcast message and the sender.
- If P_{i} is honest then all honest parties must eventually agree that the message m was sent by P_{i}.
- If P_{i} was malicious then all honest parties must eventually agree on the same message and a dishonest sender, or that there was no message.

Protocol for consistent broadcast

■ Assume that a party never sends the same message twice.

- If P_{i} wants to broadcast m, it sends (Init, P_{i}, m) to all other parties.
■ If a party P_{j} receives (Init, P_{i}, m) from party P_{i} then it sends (Echo $, P_{i}, m$) to all parties (including himself).
- If a party P_{j} receives (Echo $, P_{i}, m$) from at least $t+1$ different parties, then it sends (Echo, P_{i}, m) to all parties himself, too.
- If a party P_{j} receives (Echo $, P_{i}, m$) from at least $2 t+1$ different parties then it accepts that P_{i} broadcast m.

Exercise. Show that if an honest P_{i} wants to broadcast m, then all honest parties have accepted it after two rounds.
Exercise. Show that if the honest party P_{i} has not broadcast m then no honest party will accept that P_{i} has broadcast m.
Exercise. Show that if an honest party accepts that P_{i} broadcast m, then all other honest parties will accept that at most one round later.

What have we seen so far?

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest $(<n)$, linear-round.
■ n-party, unconditional, semi-honest $(<n / 2)$, linear-round.

- n-party, computational, malicious $(<n / 2)$, constant-round.

■ n-party, unconditional (with $2^{-\eta}$ chance of failing), broadcast, malicious ($<n / 2$), linear-round.
■ n-party, unconditional, malicious $(<n / 3)$, linear-round.
Not covered yet:

- 2-party, computational, malicious.
- n-party, computational, malicious $(<n)$.

What have we seen so far?

■
2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest $(<n)$, linear-round.

- Linear in ... of the circuit computing f.
- Exercise. Fill the blank.

■ n-party, unconditional, semi-honest $(<n / 2)$, linear-round.
■ n-party, computational, broadcast, malicious $(<n / 2)$, linear-round.

What have we seen so far?

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest $(<n)$, linear-round.

- Linear in ... of the circuit computing f.
- Exercise. Fill the blank.

■ n-party, unconditional, semi-honest $(<n / 2)$, linear-round.

- n-party, computational, broadcast, malicious $(<n / 2)$, linear-round.

Exercise. How to implement a broadcast channel using only point-to-point channels in the computational setting, assuming a malicious adversary that has corrupted less than half of the parties?

What have we seen so far?

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest $(<n)$, linear-round.

- Linear in ... of the circuit computing f.
- Exercise. Fill the blank.

■ n-party, unconditional, semi-honest $(<n / 2)$, linear-round.

- n-party, computational, broadcast, malicious $(<n / 2)$, linear-round.

Exercise. How to implement a broadcast channel using only point-to-point channels in the computational setting, assuming a malicious adversary that has corrupted less than half of the parties?

Coming up: n-party, computational, malicious $(<n / 2)$, constant-round.

Beaver-Micali-Rogaway’s MPC

- Recall Yao's garbled circuits:
- $\quad P_{1}$ coverts the circuit evaluating f to a garbled circuit.
- $\quad P_{1}$ sends to P_{2} the garbled circuit and keys corresponding to his $\left(P_{1}\right)$ input bits.
- $\quad P_{2}$ obtains the keys corresponding to his input bits using oblivious transfer.
- $\quad P_{2}$ evaluates the circuit and reports back (to P_{1}) the result.

■ In Micali-Rogaway's MPC, the garbled circuit and keys corresponding to all parties' inputs are produced cooperatively.

- All gates can be garbled in parallel - need only constant rounds.
- After that, all parties evaluate that circuit by themselves.

Rabin's and Ben-Or's VSS

(MPC: n-party, unconditional (with small chance of failing), broadcast, malicious($<n / 2$), linear-round)

■ An interactive VSS.

- Sharing and recovery protocols involve more communication between parties.
■ Unconditionally secure.
- Has a small error probability (of the order $2^{-\eta}$), where η is the security parameter.
- Has a flavor of zero-knowledge proofs.

Rabin's and Ben-Or's VSS

(MPC: n-party, unconditional (with small chance of failing), broadcast, malicious($<n / 2$), linear-round)

■ An interactive VSS.

- Sharing and recovery protocols involve more communication between parties.
- Unconditionally secure.
- Has a small error probability (of the order $2^{-\eta}$), where η is the security parameter.
- Has a flavor of zero-knowledge proofs.

■ Let $p \in \mathbb{P} \cap\{n+1, \ldots, 2 n\}$. Let $p^{\prime} \geq 2^{\eta}$ be a large prime, such that $p \mid\left(p^{\prime}-1\right)$.

Check vectors

- A bit like signatures...

■ Three parties - Dealer, Intermediary, Recipient.
■ D gives to I the $v \in \mathbb{Z}_{p^{\prime}} . I$ may later want to pass v to R.
■ D is honest.

- R wants to be sure that the value he received is really v.

Check vectors

- A bit like signatures...

■ Three parties - Dealer, Intermediary, Recipient.
■ D gives to I the $v \in \mathbb{Z}_{p^{\prime}} . I$ may later want to pass v to R.
■ D is honest.

- R wants to be sure that the value he received is really v.

■ D generates random values $b \in \mathbb{Z}_{p^{\prime}}^{*}$ and $y \in \mathbb{Z}_{p^{\prime}}$. Let $c=v+b y$. D sends (v, y) to I and (b, c) to R.

- Later, I sends (v, y) to R who verifies that $c=v+b y$.

Exercise. Security? Can R learn v too soon? Can I send a wrong value to R ? What if there are several R-s (the check vectors are different)?

Honest-dealer VSS

■ D generates random $f(x)=v+\sum_{i=1}^{t-1} a_{i} x^{i}$ and sends $s_{i}=f(i)$ to P_{i}.
■ For each s_{i} and P_{j}, the dealer sends the check vector $\left(b_{i j}, c_{i j}\right)$ to P_{j} and the corresponding $y_{i j}$ to P_{i}.

- To recover v, P_{i} sends $\left(s_{i}, y_{i j}\right)$ to P_{j} (for all i and j). The parties verify the check vectors. To reconstruct v, they use those shares that passed verification.

Check vectors with malicious dealer

- If D is dishonest then the proof y sent to I might not match the check vector (b, c) sent to R.
■ I, when receiving (v, y), wants to be sure that R will accept his (v, y) afterwards.

Check vectors with malicious dealer

- If D is dishonest then the proof y sent to I might not match the check vector (b, c) sent to R.
- I, when receiving (v, y), wants to be sure that R will accept his (v, y) afterwards.
- D will generate 2η check vectors $\left(b_{1}, c_{1}\right), \ldots,\left(b_{2 \eta}, c_{2 \eta}\right)$ and send them to R. He sends the corresponding values $y_{1}, \ldots, y_{2 \eta}$ to I.
■ I randomly chooses η indices i_{1}, \ldots, i_{η} and sends them to R.
- Let $\tilde{i}_{1}, \ldots, \tilde{i}_{\eta}$ be the other η indices.

■ R sends $\left(b_{i_{1}}, c_{i_{1}}\right), \ldots,\left(b_{i_{\eta}}, c_{i_{\eta}}\right)$ to I.
■ R verifies that $c_{i_{j}}=v+b_{i_{j}} y_{i_{j}}$ for all j. If all checks out, then I thinks that R will accept.

- Later, I sends $\left(v, y_{\tilde{i}_{1}}, \ldots, y_{\tilde{i}_{\eta}}\right)$ to R. R verifies all remaining check vectors. He accepts if at least one check vector is correctly verified.

Check vectors with malicious dealer

- If D is dishonest then the proof y sent to I might not match the check vector (b, c) sent to R.
■ I, when receiving (v, y), wants to be sure that R will accept his (v, y) afterwards.
- D will generate 2η check vectors $\left(b_{1}, c_{1}\right), \ldots,\left(b_{2 \eta}, c_{2 \eta}\right)$ and send them to R. He sends the corresponding values $y_{1}, \ldots, y_{2 \eta}$ to I.
■ I randomly chooses η indices i_{1}, \ldots, i_{η} and sends them to R.
- Let $\tilde{i}_{1}, \ldots, \tilde{i}_{\eta}$ be the other η indices.

■ R sends $\left(b_{i_{1}}, c_{i_{1}}\right), \ldots,\left(b_{i_{\eta}}, c_{i_{\eta}}\right)$ to I.
■ R verifies that $c_{i_{j}}=v+b_{i_{j}} y_{i_{j}}$ for all j. If all checks out, then I thinks that R will accept.

- Later, I sends $\left(v, y_{\tilde{i}_{1}}, \ldots, y_{\tilde{i}_{\eta}}\right)$ to R. R verifies all remaining check vectors. He accepts if at least one check vector is correctly verified.
- Exercise. What is the probability that R rejects, although I thought he would accept?
- Exercise. What is the probability that R will accept a value different from v ?

Verified-at-the-end VSS

- In Verified-at-the-end VSS, a malicious dealer is caught during the recovery protocol.
- Also, the dealer cannot change his mind after the sharing protocol.
- The sharing protocol has two phases:
- Sharing the secret.
- Verifying the check vectors.

Sharing the secret

■ Dealer randomly generates the polynomial $f(x)=v+\sum_{j=1}^{t-1} a_{i} x^{i}$ and sends the share $s_{i}=f(i)$ to each P_{i}.

- Dealer generates the check vectors $\left(\mathbf{b}_{i j}, \mathbf{c}_{i j}\right)$ and the proofs $\mathbf{y}_{i j}$ for s_{i}. Sends the vector to P_{j} and proof to P_{i}.
- Each of $\mathbf{b}_{i j}, \mathbf{c}_{i j}, \mathbf{y}_{i j}$ is actually a 2η-tuple of elements of $\mathbb{Z}_{p^{\prime}}$.

Verifying the check vectors

■ P_{i} wants to know whether P_{j} will accept his proof $\mathbf{y}_{i j}$.
■ On the broadcast channel P_{i} asks P_{j} to publish η components of the check vector ($\mathbf{b}_{i j}, \mathbf{c}_{i j}$). Components are chosen by P_{i}.
■ $\quad P_{j}$ does so (on broadcast channel).

- The dealer has two options:
- Broadcast "I approve".
- Broadcast a new $\left(\mathbf{b}_{i j}, \mathbf{c}_{i j}\right)$ and send the corresponding new $\mathbf{y}_{i j}$ privately to P_{i}.
- Party P_{i} verifies the (received components of) the check vector.
- If OK, move on to P_{j+1}.
- If not OK, ask the dealer to broadcast s_{i}. Do not move on.
- The value broadcast by dealer is taken as s_{i} by all parties.

Exercises

- Show that this part of the protocol does not expose data that is not known to dishonest parties (except for halves of check vectors).
■ At this point, let a coalition be a set of parties $\mathbf{C} \subseteq\left\{P_{1}, \ldots, P_{n}\right\}$, such that for all $P, P^{\prime} \in \mathbf{C}$, party P knows that P^{\prime} will accept his share during recovery. Show that there is a coalition containing all honest parties.
- A broadcast share is always accepted.

Recovery protocol

- D broadcasts the (coefficients of the) polynomial f.
- Each P_{i} sends to each P_{j} his share s_{i} and the proof $\mathbf{y}_{i j}$.
- If the share s_{i} was broadcast then P_{i} does nothing.

■ Each P_{i} verifies each received $\left(s_{j}, \mathbf{y}_{j i}\right)$ with respect to the check vector $\left(\mathbf{b}_{j i}, \mathbf{c}_{j i}\right)$ that he has.

- Each P_{i} verifies whether $f(j)=s_{j}$ for each share s_{j} that he accepted on the previous step.
- If this check succeeds for all accepted s_{j}, then P_{i} takes $f(0)$ as the secret v.
- If this check does not succeed for some accepted s_{j} then P_{i} broadcasts "dealer is malicious".
- A dealer whose maliciousness gets at least t votes is disqualified.

Exercises

- Show that all honest parties will arrive at the same value of the secret v.
- Show that an honest dealer is not disqualified.

Unconditionally secure VSS

- Here, during the dealing protocol, the dealer gives zero-knowledge proof that f has degree at most $\leq t-1$.
■ In the beginning, D sends out the shares s_{i} as always.
- No check vectors are necessary.

■ Each P_{i} will use (n, t)-Verified-at-the-end VSS to share s_{i}. After that, each honest party P_{i} will have

- His share s_{i}.
- A polynomial f^{i} of degree at most $t-1$, such that $f^{i}(0)=s_{i}$.
- The share β_{i}^{j} of s_{j} at point i. If P_{j} is honest then $\beta_{i}^{j}=f^{j}(i)$.
- A check vector $\left(\mathrm{b}_{k i}^{j}, \mathrm{c}_{k i}^{j}\right)$ allowing P_{i} to verify that the share β_{k}^{j} is a correct share of s_{j} for party P_{k}.
- A proof $\mathrm{y}_{i k}^{j}$ allowing P_{i} to prove to P_{k} that his share β_{i}^{j} is a correct share of s_{j} for party P_{i}.
- Belief that all other parties accept the shares β_{i}^{j} that he is holding. (Everybody will accept β_{i}^{j} if it has been broadcast.)

The ZK proof

■ Dealer picks a random polynomial f of degree $\leq t-1$.
■ Dealer sends $s_{i}=f(i)$ to P_{i}.

- Each P_{i} will use (n, t)-Verified-at-the-end VSS to share s_{i}. After that, each honest party P_{i} will have $f^{i}, \beta_{i}^{j},\left(\mathbf{b}_{k i}^{j}, \mathbf{c}_{k i}^{j}\right), \mathbf{y}_{i k}^{j}$.
■ Each P_{i} also shares $s_{i}=s_{i}+s_{i}$ using the polynomial $f^{i}=f^{i}+f^{i}$.
- The check vectors $\left(\mathrm{b}_{k i}^{j}, \mathrm{c}_{k i}^{j}\right)$ and proofs $\mathrm{y}_{i k}^{j}$ are independently created and verified.
- One of the parties P_{i} (chosen in round-robin manner) asks the dealer to reveal either f or $f=f+f$.
- Dealer reveals f. Each P_{i} checks whether $f(i)=s_{i}$.
- If unsatisfied, asks the dealer to broadcast s_{i} and s_{i}.
- Dealer complies. Each P_{j} checks that $f(i)=s_{i}$.
- For each i, the parties run the recovery protocol of Verified-at-the-end VSS for s_{i} shared with f^{i}. Each P_{j} checks if $s_{i}=f(i)$. If not, disqualify P_{i}.

Exercises

- Show that no data unknown to the adversary is broadcast.
- Show that an honest party is not disqualified.
- Show that after $O(\eta)$ rounds, all values s_{i} that have been broadcast or that are held by still qualified players lay on the same polynomial of degree at most $t-1$.

Recovery of v

- The recovery protocols of Verified-at-the-end VSS are run for still hidden shares s_{i}.
- These shares are used to reconstruct f.

The VSS has the following properties:

- If the dealer is honest then he won't be disqualified.
- After the ZK proof (all rounds of which can be run in parallel), the secret value v has been uniquely determined for all honest parties.
- It is also determined whether the recovery protocol will produce a v or not.
- The dealer will not be disqualified during the recovery.

Summary

- The secret is shared with Shamir's scheme.

■ Each share is shared with Shamir's scheme.
■ Each share ${ }^{2}$ created by P_{i} for P_{j} has check vectors for each P_{k}.

- P_{j} is sure that P_{k} will accept this check vector.

■ A ZK-style proof is given that the shares lay on a polynomial of degree at most $\leq(t-1)$.

- A random polynomial of degree $\leq(t-1)$ is generated and shared and shared ${ }^{2}$ together with check vectors.
- Either the random polynomial or (original+random) polynomial is opened.
- The check vectors are used to catch malicious parties P_{i}.
- Comparision of shares and opened polynomial is used to catch malicious D.

■ During the recovery, D does not matter any more.

MPC with Rabin's and Ben-Or's VSS

■ For each wire, the value it is carrying is distributed using the VSS.
■ The inputs are shared using the VSS. The outputs are recovered using the VSS.

- Adding two wires $(v=v+v)$:
- $s_{i}=s_{i}+s_{i} . f^{i}=f^{i}+f^{i} . \beta_{i}^{j}=\beta_{i}^{j}+\beta_{i}^{j}$.
- $\quad P_{i}$ sends to P_{k} the new check vector $\left(\mathrm{b}_{j k}^{i}, \mathrm{c}_{j k}^{i}\right)$ and to P_{j} the corresponding proof $\mathrm{y}_{j k}^{i}$. P_{j} verifies that P_{k} will accept this proof for β_{j}^{i}.
- Exercise. Why not reuse the existing check vectors?

■ Multiplying with a constant $(v=c v)$:

- $s_{i}=c s_{i} . f^{i}=c f^{i} . \beta_{i}^{j}=c \beta_{i}^{j}$.
- $\mathbf{b}_{k i}^{j}=c \cdot \mathbf{b}_{k i}^{j} \cdot \mathbf{c}_{k i}^{j}=c \cdot \mathbf{c}_{k i}^{j} \cdot \mathbf{y}_{i k}^{j}=\mathbf{y}_{i k}^{j}$.
- Recall that $\mathbf{c}_{i k}^{j}[z]=\beta_{i}^{j}+\mathbf{b}_{i k}^{j}[z] \cdot \mathbf{y}_{i k}^{j}[z]$.

Multiplication ($v=v \cdot v$)

- Verified-at-the-end sharings of s_{i} and s_{i} are extended to fully verified sharings.
- All shares ${ }^{2} \beta_{i}^{j}$ and β_{i}^{j} are shared using the verified-at-the-end sharing scheme, giving us shares ${ }^{3} \gamma_{k}^{j i}$ and $\gamma_{k}^{j i}$ and corresponding check vectors and proofs.
- ZK-proof is given that all shares β_{j}^{i} lay on a polynomial of degree at most $t-1$.
- Presumably, this polynomial is f^{i}.
- Same for β and f.

■ Each party P_{i} shares $s_{i}=s_{i} \cdot s_{i}$ using full VSS.

- Each party P_{i} proves in ZK that $s_{i}=s_{i} \cdot s_{i}$.
- Next slides...
v is computed as a suitable linear combination of s_{1}, \ldots, s_{n}.

Proving that $v=v$

- The dealer has shared v and v. Use MPC to compute $v-v$. Recover the shared value. Check that it is 0 .

Proving that $v=v \cdot v$

- Recall that we compute in a field \mathbb{Z}_{p}, where $n<p \leq 2 n$ (except check vectors).
- The dealer has shared v, v and v.
- The dealer shares the entire multiplication table of \mathbb{Z}_{p}.
- Let $\mathbf{T}=\left\{(x, y, z) \mid x, y \in \mathbb{Z}_{p}, z=x y\right\}$.
- Let $\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{p^{2}}, y_{p^{2}}, z_{p^{2}}\right)$ be randomly permuted \mathbf{T}.
- Dealer shares all x_{i}, y_{i}, z_{i} using full VSS.
- One of the P_{i} (chosen by round-robin) requests one of:
- Open the entire table. Everybody checks that it was indeed the multiplication table of \mathbb{Z}_{p}.
- Show the line (v, v, v). The dealer names $i \in\left\{1, \ldots, p^{2}\right\}$ and proves that $v=x_{i}, v=y_{i}, v=z_{i}$.

Components of Rabin's and Ben-Or's MPC

Homomorphic encryption systems

■ Let $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an IND-CPA-secure public-key encryption system. Let the plaintext space R be a ring.
$(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is homomorphic, if there exist efficient algorithms

- to compute $\mathcal{E}_{k}(a+b)$ from $\mathcal{E}_{k}(a)$ and $\mathcal{E}_{k}(b)$;
- to compute $\mathcal{E}_{k}(c a)$ from $\mathcal{E}_{k}(a)$ and $c \in R$.

Paillier's cryptosystem

■ Let p and q be large primes. Let $N=p q$. Then $\mathbb{Z}_{N^{2}}^{*} \cong G \times H$ where

- G is a cyclic group of order N.
- $H \cong \mathbb{Z}_{N}^{*}$.

■ Then $\bar{G}=\mathbb{Z}_{N^{2}}^{*} / H$ is also cyclic of order n. Let $\bar{a} \in \bar{G}$ be the coset of $a \in \mathbb{Z}_{N^{2}}^{*}$.
$\overline{1+N}$ generates \bar{G} and $(1+N)^{i} \equiv 1+i N\left(\bmod N^{2}\right)$.
■ Let $\lambda=\operatorname{lcm}(p-1, q-1)$. Then $b^{\lambda}=1$ for any $b \in \mathbb{Z}_{N}^{*}$. For any $a \in \mathbb{Z}_{N^{2}}^{*}$, there are $i \in \mathbb{Z}_{N}$ and $h \in H$, such that $a \equiv(1+N)^{i} h\left(\bmod N^{2}\right)$.
$a^{\lambda}=(1+N)^{i \lambda} \cdot h^{\lambda} \equiv(1+N)^{i \lambda} \equiv 1+(i \lambda \bmod N) N\left(\bmod N^{2}\right)$.
■ Let $L(x)=(x-1) / N$. Then $\log _{\overline{1+N}} \bar{a}=L\left(a^{\lambda}\right) / \lambda($ in $\bar{G})$.
■ If $g \in \mathbb{Z}_{N^{2}}^{*}$ then let $j=\log _{\overline{1+N}} \bar{g}$.

- Then $\log _{\bar{g}} \bar{a}=\left(\log _{\overline{1+N}} \bar{a}\right) \cdot j^{-1} \bmod N$.

Paillier's cryptosystem

■ Generate p, q, public key is N, g, where $g \in_{R} \mathbb{Z}_{N^{2}}^{*}$. Private key: $\lambda=\operatorname{lcm}(p-1, q-1), j=\log _{\overline{1+N}} \bar{g}$.

- To encrypt $m \in \mathbb{Z}_{N}$ pick a random $r \in \mathbb{Z}_{N^{2}}^{*}$ and set

$$
c=\mathcal{E}(m ; r)=g^{m} r^{N} \bmod N^{2} .
$$

■ Decryption: $m=L\left(c^{\lambda} \bmod N^{2}\right) \cdot j^{-1} \bmod N$.

MPC from threshold homomorphic cryptosystem

■ Assume that the keys have been distributed:

- everybody knows $p k$;
- each party P_{i} knows his secret key share $s k_{i}$.
- At least t parties out of n must help to decrypt.
- The function f is represented by a circuit of addition, scalar multiplication, and multiplication gates.
- A value v on a wire is represented by $\mathcal{E}_{p k}(m)$.
- All parties know $\mathcal{E}_{p k}(m)$.
- Sharing of an input: encrypt it and broadcast the result.
- Opening an output: at least t parties help to decrypt the value on output wire.
- Addition and scalar multiplication - every party performs the operation with the encrypted value(s) by itself.

Multiplying a and b

- Let $\mathcal{E}_{p k}(a)$ and $\mathcal{E}_{p k}(b)$ be known to everybody.

■ Each party P_{i} chooses a random $d_{i} \in \mathbb{Z}_{N}$.

- P_{i} broadcasts $\mathcal{E}_{p k}\left(d_{i}\right)$ and $\mathcal{E}_{p k}\left(d_{i} b\right)$.

■ Everybody computes $\mathcal{E}_{p k}\left(a+\sum_{i=1}^{n} d_{i}\right)$.

- This ciphertext is decrypted, everybody learns $a+\sum_{i=1}^{n} d_{i}$.

■ Everybody computes $\mathcal{E}_{p k}\left(\left(a+\sum_{i=1}^{n} d_{i}\right) \cdot b-\sum_{i=1}^{n} d_{i} b\right)$.

- This protocol can be made secure against malicious adversaries.

Threshold RSA

- n parties, at least t needed to decrypt.
- Primes p, q, public modulus $N=p q$, public exponent e, secret exponent $d=e^{-1} \bmod \phi(N)$.
- A dealer chooses all of those values.
- Let e be a prime that is larger than n.

■ The dealer shares d using Shamir's t-out-of- n secret sharing, working in $\mathbb{Z}_{\phi(N)}$. It sends the i-th share s_{i} to the party P_{i}.

- For any set $\mathrm{C} \subseteq\{1, \ldots, n\}$, where $|\mathrm{C}|=t$, there exist coefficients $\tilde{r}_{i}^{\mathrm{C}}$, such that $d=\sum_{i \in \mathbf{C}} \tilde{r}_{i}^{\mathrm{C}} s_{i}$.
- not sure about this...
- But finding such $\tilde{r}_{i}^{\mathrm{C}}$ requires the knowledge of $\phi(N)$.
- There are public coefficients $r_{i}^{\mathbf{C}}$, such that $n!\cdot d=\sum_{i \in \mathbf{C}} r_{i}^{\mathbf{C}} s_{i}$.

Public coefficients

The points $\left(i, s_{i}\right), i \in \mathbf{C}$ can be interpolated in \mathbb{Z} :

$$
f(k)=\sum_{i \in \mathbf{C}} s_{i} \prod_{j \in \mathbf{C}, j \neq i} \frac{k-j}{i-j}
$$

Hence $n!\cdot f(0)=\sum_{i \in \mathbf{C}} r_{i}^{\mathbf{C}} s_{i}$ where

$$
r_{i}^{\mathbf{C}}=n!\cdot \frac{\prod_{j \in \mathbf{C} \backslash\{i\}}(-j)}{\prod_{j \in \mathbf{C} \backslash\{i\}}(i-j)}
$$

The numbers $r_{i}^{\text {C }}$ are integers because denominator divides n !.
The same equality $n!\cdot f(0)=\sum_{i \in \mathbf{C}} r_{i}^{\mathbf{C}} s_{i}$ holds in $\mathbb{Z}_{\phi(N)}$.

Decryption

■ Publicly decrypting $m^{e}=c \in \mathbb{Z}_{N}$: each party P_{i} publishes $m_{i}=c^{s_{i}} \bmod N$.

- Given a set of plaintext shares m_{i}, where $i \in \mathbf{C}$, compute c^{\prime} by

$$
c^{\prime}=\prod_{i \in \mathbf{C}} m_{i}^{r_{i}^{\mathrm{C}}} .
$$

■ $c^{\prime}=m^{n!}$. As $n!\perp e$, there exist (public) coefficients $a, b \in \mathbb{Z}$, such that $a e+b(n!)=1$.
■ Compute $m=c^{a}+c^{\prime b}$.

- Threshold Paillier is doable in the same way.

Threshold Paillier

- Generate N as for RSA. Let λ be shared among parties.
- Also let $p \equiv q \equiv 3(\bmod 4)$.

■ $\lambda=2 \mu$ where μ is odd. Let d be such that

- $d \equiv 0(\bmod \mu)$;
- $d \equiv j^{-1}(\bmod N)$.
then (write $g=(1+N)^{j} h$ for some $h \in H$)

$$
\begin{aligned}
& c^{2 d}=(1+N)^{2 j m d}\left(h^{m} r^{N}\right)^{2 d}=(1+N)^{2 j m d \bmod N}= \\
&(1+N)^{2 m}=1+2 m N \quad\left(\bmod N^{2}\right)
\end{aligned}
$$

and m can be found from it using only public knowledge.

Distributed generation of RSA keys

- Boneh-Franklin scheme: two parties Alice and Bob, and a helper, Henry.
■ Alice randomly picks p_{a}, q_{a}, Bob randomly picks p_{b}, q_{b}.
- Using secure computation (next slides)
- Define $p=p_{a}+p_{b}, q=q_{a}+q_{b}$.
- $\quad p$ and q are not uniformly distributed, but still have large entropy.
- Do trial division for p and q with small primes.
- Compute $N=p q$ and broadcast it.
- Test that N is a product of two primes.
- Generate public exponent and shares of private exponent.

Testing that N is product of two primes

■ Let $N=p q$ where $p \equiv q \equiv 3(\bmod 4)$.

- $p=p_{a}+p_{b}, q=q_{a}+q_{b}$, Alice knows p_{a} and q_{a}, Bob knows p_{b} and q_{b}.
- $p_{a} \equiv q_{a} \equiv 3(\bmod 4), p_{b} \equiv q_{b} \equiv 0(\bmod 4)$.
- Alice and Bob agree on a random $g \in \mathbb{Z}_{N}^{*}$, such that $\left(\frac{g}{N}\right)=1$.

■ Alice computes $v_{a}=g^{\left(N-p_{a}-q_{a}+1\right) / 4}$. Bob computes $v_{b}=g^{\left(p_{b}+q_{b}\right) / 4}$.

- Alice and Bob compare v_{a} and v_{b}. If $v_{a} \equiv \pm v_{b}(\bmod N)$ then "success" else "fail".
- Note that the test checks whether $g^{(N-p-q+1) / 4} \equiv \pm 1(\bmod N)$.

Theorem. The preceeding algorithm is "almost Monte-Carlo": for all but negligible fraction of non-RSA-moduli N, the probability of getting "fail" is at least $1 / 2$. But if N is an RSA-modulus, then the test always outputs "success".

If p and q are prime

■ Then $g^{(N-p-q+1) / 4}=g^{\varphi(N) / 4}=g^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$
■ $g^{\frac{p-1}{2} \cdot \frac{q-1}{2}}=\left(g^{\frac{p-1}{2}}\right)^{\frac{q-1}{2}} \equiv\left(\frac{g}{p}\right)^{\frac{q-1}{2}}=\left(\frac{g}{p}\right)(\bmod p)$

- Because $\frac{q-1}{2}$ is odd and $\left(\frac{g}{p}\right) \in\{-1,1\}$.

■ Similarly, $g^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \equiv\left(\frac{g}{q}\right)(\bmod q)$.

- $\left(\frac{g}{p}\right)=\left(\frac{g}{q}\right)$ because $\left(\frac{g}{n}\right)=1$.
- Hence $g^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \bmod n$ equals $\left(\frac{g}{p}\right)$ and $\left(\frac{g}{q}\right)$.

If p or q is composite

■ Let $e=(N-p-q+1) / 4$ and

$$
\begin{aligned}
& G=\left\{g \in \mathbb{Z}_{n} \left\lvert\,\left(\frac{g}{n}\right)=1\right.\right\} \\
& H=\left\{g \in G \mid g^{e} \equiv \pm 1 \quad(\bmod N)\right\}
\end{aligned}
$$

Both G and H are subgroups of \mathbb{Z}_{N}^{*} and $H \leq G$.
■ We show that almost always there is a $g \in G \backslash H$, i.e. $|H|<|G|$. As $|H|||G|$, the group G has a least twice as many elements as H.
■ Let $N=r_{1}^{d_{1}} \cdots r_{s}^{d_{s}}$ be a non-trivial factorization of N with $s \geq 1$ and $\sum d_{i} \geq 3$.
■ Note that e is odd.

If $s \geq 3$

■ $N=r_{1}^{d_{1}} \cdot r_{2}^{d_{2}} \cdot r_{3}^{d_{3}} \cdots$ where r_{1}, r_{2} and r_{3} are different.

- Let a be a quadratic non-residue modulo r_{3}.

■ Let $g \in \mathbb{Z}_{N}^{*}$ satisfy

- $\quad g \equiv 1\left(\bmod r_{1}\right)$
- $g \equiv-1\left(\bmod r_{2}\right)$
- $g \equiv 1\left(\bmod r_{3}\right)$ if $\left(\frac{-1}{r_{2}}\right)=1$
- $g \equiv a\left(\bmod r_{3}\right)$ if $\left(\frac{-1}{r_{2}}\right)=-1$
- $g \equiv 1\left(\bmod r_{i}\right)$ for $i \geq 4$.
- Then $\left(\frac{g}{N}\right)=1$

■ $g^{e} \equiv 1\left(\bmod r_{1}\right)$ and $g^{e} \equiv-1\left(\bmod r_{2}\right)$. Hence $g^{e} \not \equiv \pm 1$ $(\bmod N)$.

If $\operatorname{gcd}(p, q)>1$

Let $r \in \mathbb{P}$ be such that $r \mid p$ and $r \mid q$. Then $r^{2} \mid N$ and $r \mid \varphi(N)$.

- \mathbb{Z}_{N}^{*} contains an element g of order r.
$\left(\frac{g}{N}\right)=\left(\frac{g}{n}\right)^{r}=\left(\frac{g^{r}}{N}\right)=\left(\frac{1}{N}\right)=1$, i.e. $g \in G$.
■ $r|p, r| q, r \mid N$. Hence $r \not \backslash N-p-q+1=4 e$.
■ $g^{4 e} \not \equiv 1(\bmod N) . g^{e} \not \equiv \pm 1(\bmod N) . g \notin H$.

The remaining case

$p=r_{1}^{d_{1}}, q=r_{2}^{d_{2}}, r_{1} \neq r_{2}, r_{1}, r_{2} \in \mathbb{P}, d_{1}+d_{2} \geq 3$. W.I.o.g. $d_{1} \geq 2$.

- \mathbb{Z}_{p}^{*} is cyclic. $\left|\mathbb{Z}_{p}^{*}\right|=r_{1}^{d_{1}-1}\left(r_{1}-1\right)$.

■ Let $g^{\prime} \in \mathbb{Z}_{p}^{*}$ have order $r_{1}^{d_{1}-1}$.
■ Let $g \in \mathbb{Z}_{N}^{*}, g \equiv g^{\prime}(\bmod p), g \equiv 1(\bmod q)$.
The order of g is $r_{1}^{d_{1}-1}$.
$\left(\frac{g}{N}\right)=\left(\frac{g}{n}\right)^{r_{1}^{d_{1}-1}}=\left(\frac{g_{1}^{r_{1}^{d_{1}-1}}}{N}\right)=\left(\frac{1}{N}\right)=1$, i.e. $g \in G$.
If $q \not \equiv 1\left(\bmod r_{1}^{d_{1}-1}\right)$ then:
$r_{1}^{d_{1}-1} \not \backslash N-p-q+1=4 e$
$g^{4 e} \not \equiv 1(\bmod N) . g^{e} \not \equiv \pm 1(\bmod N) . g \notin H$.

If $q \equiv 1\left(\bmod r_{1}^{d_{1}-1}\right)$ then

- The group H might actually be equal to G. Probabilities (note that p and q are independent quantities):
- $\operatorname{Pr}\left[q \equiv 1\left(\bmod r_{1}^{d_{1}-1}\right)\right] \leq 1 / r_{1}^{d_{1}-1} \leq 1 / \sqrt{p} \leq 2^{-n / 2}$ where n is the bit-length of p and q.
$\operatorname{Pr}[p$ is a prime power $] \leq n / 2^{n / 2}$.
The probability of both happening is less than $n / 2^{n}$.

Multiplying p and q

- Let $P>N$ be some prime. We work in \mathbb{Z}_{P}.

Fix $x_{a}, x_{b}, x_{h} \in \mathbb{Z}_{P}^{*}$ as distinct non-zero elements.
■ Alice generates $c_{a} \neq 0, d_{a} \neq 0, p_{b, a}, q_{b, a}, r_{1}, r_{2} \in \mathbb{Z}_{P}$.

- Alice computes $p_{a, i}=c_{a} x_{i}+p_{a}, q_{a, i}=d_{a} x_{i}+q_{a}, r_{i}=r_{1} x_{i}+r_{2} x_{i}^{2}$, $N_{a}=\left(p_{a, a}+p_{b, a}\right)\left(q_{a, a}+q_{b, a}\right)+r_{a}$.
■ Alice sends $p_{a, b}, q_{a, b}, p_{b, a}, q_{b, a}, r_{b}$ to B and $p_{a, h}, q_{a, h}, r_{h}, N_{a}$ to H .
■ Bob computes $c_{b}=\left(p_{b, a}-p_{b}\right) / x_{a}, d_{b}=\left(q_{b, a}-q_{b}\right) / x_{b}$, $p_{b, i}=c_{b} x_{i}+p_{b}, q_{b, i}=d_{b} x_{i}+q_{b}, N_{b}=\left(p_{a, b}+p_{b, b}\right)\left(q_{a, b}+q_{b, b}\right)+r_{b}$.
■ Bob sends $p_{b, h}, q_{b, h}, N_{b}$ to Henry.
■ Henry computes $N_{h}=\left(p_{a, h}+p_{b, h}\right)\left(q_{a, h}+q_{b, h}\right)+r_{h}$.
- Henry finds a quadratic polynomial α passing through (x_{a}, N_{a}), $\left(x_{b}, N_{b}\right),\left(x_{h}, N_{h}\right)$.
■ $\alpha(0)=N$. Henry broadcasts it.

Trial division

- Consider a number $q=q_{a}+q_{b}$. Let p be a small prime. Alice and Bob want to know whether $q \equiv 0(\bmod p)$.
- Equivalently: whether $q_{a} \equiv-q_{b}(\bmod p)$.

■ Alice picks $(c, d) \in \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}$. Sends (c, d) to Bob and $\left(c q_{a}+d\right) \bmod p$ to Henry.
■ Bob sends $\left(-c q_{b}+d\right) \bmod p$ to Henry.
■ Henry outputs whether the values received from Alice and Bob were the same or not.

Shares of private exponent

- If public exponent $e=3$ then d equals
- $(\varphi(N)+1) / 3=\left(N-\left(p_{a}+p_{b}\right)-\left(q_{a}+q_{b}\right)+2\right) / 3$ if $\varphi(N) \equiv 2(\bmod 3) ;$
- $(2 \varphi(N)+1) / 3=2\left(N-\left(p_{a}+p_{b}\right)-\left(q_{a}+q_{b}\right)\right) / 3+1$ if $\varphi(N) \equiv 1(\bmod 3)$.
- (if $\varphi(N) \equiv 0(\bmod 3)$ then e cannot be 3$)$

■ Alice broadcasts $\left(p_{a}+q_{a}\right) \bmod 3$. Bob broadcasts $\left(p_{b}+q_{b}\right) \bmod 3$. Now everybody knows $\varphi(N) \bmod 3$.

- Everybody also learned ≤ 2 bits of information about p and q.
- That's too little to worry about.
- Alice and Bob distribute the expression for d.
- Alice gets d_{a}, Bob gets d_{b}, such that $d_{a}+d_{b}=d$.

Arbitrary public exponent $e \perp \varphi(N)$

■ Let $\varphi_{a}=N-p_{a}-p_{b}+1, \varphi_{b}=-p_{b}-q_{b}$. Then $\varphi(N)=\varphi_{a}+\varphi_{b}$.

- Alice picks $r_{a} \in \mathbb{Z}_{e}$. Bob picks $r_{b} \in \mathbb{Z}_{e}$.
- With help of Henry compute $\Psi=\left(r_{a}+r_{b}\right)\left(\varphi_{a}+\varphi_{b}\right) \bmod e$. If $\Psi \not \perp e$ then start over.
■ Alice computes $\zeta_{a}=r_{a} \Psi^{-1} \bmod e$. Bob computes $\zeta_{b}=r_{b} \Psi^{-1} \bmod e$.
- $\zeta=\zeta_{a}+\zeta_{b}=\left(r_{a}+r_{b}\right) \Psi^{-1} \equiv \varphi(N)^{-1} \bmod e$.

Arbitrary public exponent $e \perp \varphi(N)$

- Let $P>2 N^{2} e$ be an odd integer.
- With help of Henry compute
$A+B=-\left(\zeta_{a}+\zeta_{b}\right)\left(\varphi_{a}+\varphi_{b}\right)+1 \bmod P$. Alice knows A, Bob knows B, A alone or B alone is random.
■ If $0 \leq A, B<P$ then $(A+B) \bmod P \in[0, P / N)$. With probability $\geq 1-\frac{1}{N}$ we have $A+B \geq P$.
■ If Alice does $A \leftarrow A-P$ then $A+B=-\left(\zeta_{a}+\zeta_{b}\right)\left(\varphi_{a}+\varphi_{b}\right)+1$ holds in integers.
■ $A+B=-\left(\zeta_{a}+\zeta_{b}\right)\left(\varphi_{a}+\varphi_{b}\right)+1 \equiv-\left(\varphi_{a}+\varphi_{b}\right)^{-1}\left(\varphi_{a}+\varphi_{b}\right)+1=0$ $(\bmod e)$.
- We can pick $d=(A+B) / e$. Alice sets $d_{a}=\lfloor A / e\rfloor$. Bob sets $d_{b}=\lceil B / e\rceil$.

More than two parties

- Primality testing, multiplication, inverting e generalize.
- Trial division:
- Let $q=q_{1}+\cdots+q_{k}$ be the candidate prime. Let p be a small prime.
- Generate shares of $r=\left(r_{1}+\cdots+r_{k}\right) \bmod p$. Compute and publish $q r \bmod p$.
- If $q r \bmod p \neq 0$ then p does not divide q.
- If $q r \bmod p=0$ then p divides q or $r \in \mathbb{Z}_{p}$ is zero.
- Do several trials to make the second case unlikely.
- $q r \bmod p$ does not give any information about a good q.
- This gives k-out-of- k sharing of d. Can be converted to t-out-of- k sharing.

Proactive secret sharing

- Let D be a secret that is distributed with Shamir's secret sharing scheme, using the polynomial f_{\circ} of degree $\leq t-1$.
- Recomputing shares: change the polynomial to f_{\bullet} with $f_{\circ}(0)=f_{\bullet}(0)$ in a random manner.
- Passive adversary:
- each party P_{i} generates a random polynomial h_{i} with zero free term; sends $h_{i}(j)$ to P_{j}.
- parties add the values they got to their current shares.
- Thus $f_{\bullet}=f_{0}+h_{1}+\cdots+h_{n}$.

■ Active adversaries: use VSS. Only use h-s from honest parties.

- A party relieved from adversarial control needs to be repaired.
- To repair P_{r}, construct a polynomial $f_{\bullet}+h$ where h is a random polynomial with $h(r)=0$.
- Send to P_{r} the shares corresponding to that polynomial.

Applications of homomorphic encryption

■ e-voting

- oblivious transfer
- auctions
- things for privacy-preserving data mining
- Exercise. Alice has a vector $\left(a_{1}, \ldots, a_{n}\right)$. Bob has a vector $\left(b_{1}, \ldots, b_{n}\right)$. How do they compute the scalar product of those vectors without revealing them?

OT with homomorphic encryption

- Bob has a database $\left(b_{1}, \ldots, b_{m}\right)$. Alice has an index $i \in\{1, \ldots, m\}$.

■ Let the set of plaintexts be a group G of order $q \in \mathbb{P}$.

- I.e. use EIGamal. Let g be the generator, let $b_{1}, \ldots, b_{m} \in G$.
- Alice generates keys. Sends public key, $c=\mathcal{E}\left(g^{i} ; \mathcal{R}\right)$ to Bob.

■ Bob computes $c_{j}=\left(c / \mathcal{E}\left(g^{j} ; \mathcal{R}\right)\right)^{r_{j}} \cdot \mathcal{E}\left(b_{j} ; \mathcal{R}\right)$ for each $j \in\{1, \ldots, m\}$ and r_{1}, \ldots, r_{m} are randomly chosen from \mathbb{Z}_{q}. Sends them all to Alice.
■ Alice recovers $b_{j}=\mathcal{D}\left(c_{j}\right)$.

Auctions

■ Consider sealed-bid auctions. Let $B_{1}<B_{2}<\cdots<B_{k}$ be the possible bids.

- Let auction authority's public key be known.

■ To bid $B_{b_{i}}$, the i-th bidder P_{i} sets the bid vector

$$
\mathbf{b}_{i}=(\underbrace{0, \ldots, 0}_{b_{i}-1}, Y, \underbrace{0, \ldots, 0}_{k-b_{i}})
$$

where $Y \neq 0$ is a fixed element.

- $\quad P_{i}$ encrypts \mathbf{b}_{i} componentwise, publishes it, and proves in ZK that it has the correct form.
- Define

$$
\mathbf{b}_{i}^{\prime}=(\underbrace{Y, \ldots, Y}_{b_{i}}, \underbrace{0, \ldots, 0}_{k-b_{i}}), \mathbf{b}_{i}^{\prime \prime}=(\underbrace{Y, \ldots, Y}_{b_{i}-1}, \underbrace{0, \ldots, 0}_{k-b_{i}+1}),
$$

■ Everybody can compute encryptions of $\mathbf{b}_{i}^{\prime}, \mathbf{b}_{i}^{\prime \prime}$ from encryption of \mathbf{b}_{i}.

Auctions

■ Find $\sum_{i} \mathbf{b}_{i}^{\prime}+\mathbf{b}_{i}^{\prime \prime}$. How does its structure reflect the structure of bids?

- Disregard several parties bidding the same value.
- Everybody can compute that sum in encrypted form.
- If we want to find the M-th highest bidder, we subtract $(2 M-1) Y(1,1, \ldots, 1)$ from that sum. Let \mathbf{c} be the resulting vector.
■ Let $\mathbf{b}_{i}^{\prime \prime \prime}=(\underbrace{0, \ldots, 0}_{b_{i}}, \underbrace{Y, \ldots, Y}_{k-b_{i}})$.
■ Party P_{i} gets the rerandomized encryption of $\mathbf{c}+2 M \mathbf{b}_{i}^{\prime \prime \prime}$.
- It has a 0 component only if P_{i} was among winners. The position of 0 shows the winning price.

