The protocols of Sharemind

Sharemind system

■ Three computing parties (called "miners"). One may be corrupt.
■ Semi-honest adversary.

- Secure channels between each pair of parties.
- Unconditionally* secure.
- Security of channels?
- Source of randomness?

■ Data providers share their inputs for the miners.
■ Controller traverses the circuit of f and instructs the miners.

Sharing

- The values are from a finite ring R.
- In Sharemind platform, $R=\mathbb{Z}_{2^{32}}$.
- The arithmetic circuit for f is made up of operations of R.
- The values are shared additively:
- $v \in R$ is shared as $\left(s_{0}, s_{1}, s_{2}\right) \in R^{3}$, where $s_{0}+s_{1}+s_{2}=v$, but any two shares look like uniformly distributed independent random values.
- i-th miner knows s_{i}.
- A data provider shares v by
- randomly generating $s_{0}, s_{1} \in_{R} R$;
- defining $s_{2}=v-s_{0}-s_{1}$;
- sending s_{i} to miner M_{i}.
- Note that none of the actions of a data provider qualifies as cheating.

Resharing a value

■ Let v be shared as $s_{0}+s_{1}+s_{2}$.
■ We want to have a different sharing $v=t_{0}+t_{1}+t_{2}$, such that t_{i} is independent of s_{i}.
■ Protocol:

- $\quad P_{i}$ generates $r_{i} \in_{R} R$ and sends it to $P_{(i+1) \bmod 3}$;
- P_{i} receives $r_{(i-1) \bmod 3}$
- $\quad P_{i}$ sets $t_{i}=s_{i}+r_{i}-r_{(i-1) \bmod 3}$.
- An important sub-protocol: makes a share of a value independent of other shares and uniformly distributed.

Non-interactive protocols

- To add two shared values or to multiply with a scalar: each miner does the same operation with the shares it holds.
- To open a shared value: each miner sends its share to the controller.

Ideal functionality \mathcal{J}

- Reactive - several rounds between \mathcal{J} and the environment.
- Keeps of database of values $D: \mathbb{N} \rightarrow R \cup\{\perp\}$.
- Elements of \mathbb{N} - handles.
- Let ℓ_{D} be the index of the last filled slot of D, initially 0 .

■ Environment H gives commands to \mathcal{J}, receives answers:

- Command $\operatorname{store}(v), v \in R$:
- $D\left[++\ell_{D}\right]:=v$; return ℓ_{D}.
- Command retrieve (h):
- return $D[h]$.

■ Command $\star\left(h_{1}, \ldots, h_{k}\right)$, where \star is k-ary arithmetic operator:

- $D\left[++\ell_{D}\right]=\star\left(D\left[h_{1}\right], \ldots, D\left[h_{k}\right]\right)$; return ℓ_{D}.
- J sends all executed commands to the adversary $\mathcal{A}_{\text {ideal }}$.
- H and $\mathcal{A}_{\text {ideal }}$ can talk to each other directly.

Real functionality

■ Environment H talks to the controller \mathcal{C}. Controller talks with the miners.

- \mathcal{C} basically forwards the commands to miners.

■ Controller forwards all executed commands to the adversary $\mathcal{A}_{\text {real }}$.

- If some M_{i} is corrupted then continuously sends all of its internal state to $\mathcal{A}_{\text {real }}$.
- Each miner M_{i} keeps a database $D_{i}: \mathbb{N} \rightarrow R \cup\{\perp\}$.
- The database stores the shares of the values.
- H and $\mathcal{A}_{\text {real }}$ can talk to each other directly.

Security

Black-box reactive simulatability:
■ There must exist a simulator Sim, such that
■ For any H and $\mathcal{A}_{\text {real }}$

- If we define $\mathcal{A}_{\text {ideal }}=\operatorname{Sim} \mid \mathcal{A}_{\text {real }}$ then

■ H cannot distinguish whether it is running in parallel with

- $\mathcal{C}, M_{0}, M_{1}, M_{2}, \mathcal{A}_{\text {real }}$; or
- J, $\mathcal{A}_{\text {ideal }}$.

Important: Sim must work during the runtime of the protocol, not afterwards.

Simulating simple commands

■ Let M_{c} be corrupt, $c \in\{0,1,2\}$.

- Receiving store (v) from \mathfrak{J} :
- Forward $\operatorname{store}(v)$ to $\mathcal{A}_{\text {real }}$;
- Generate $s \in_{R} R$, send it to $\mathcal{A}_{\text {real }}$ as from M_{c}.
- $D_{\text {sim }}\left[++\ell_{D_{\text {sim }}}\right]:=s$.
- Receiving retrieve (v) from \mathfrak{J} :
- Forward it, don't do anything else.
- Receiving $h_{1}+h_{2}$ from J:
- Forward $h_{1}+h_{2}$ to $\mathcal{A}_{\text {real }}$.
- $D_{\text {sim }}\left[++\ell_{D_{\text {sim }}}\right]:=D_{\text {sim }}\left[h_{1}\right]+D_{\text {sim }}\left[h_{2}\right]$.
- (Send $D_{\text {sim }}\left[\ell_{D_{\text {sim }}}\right]$ to $\mathcal{A}_{\text {real }}$ as from M_{c}.)

Du-Atallah multiplication

- Let Alice have $a \in R$, Bob have $b \in R$.
- Alice, Bob and Charlie want to obtain $s_{A}, s_{B}, s_{C} \in R$, such that $s_{A}+s_{B}+s_{C}=a \cdot b$.
- Party X only learns s_{X} and nothing else.
- Alice generates $\alpha_{1} \in_{R} R$. Sends α_{1} to Charlie and $a+\alpha_{1}$ to Bob.

■ Bob generates $\alpha_{2} \in_{R} R$. Sends α_{2} to Charlie and $b+\alpha_{2}$ to Alice.
■ The shares are defined as

$$
\begin{aligned}
& s_{A}=-\alpha_{1}\left(b+\alpha_{2}\right) \\
& s_{B}=b\left(a+\alpha_{1}\right) \\
& s_{C}=\alpha_{1} \alpha_{2}
\end{aligned}
$$

(Exercise. Verify that their sum is $a \cdot b$)
■ Security: each of the parties only sends out uniformly randomly distributed values.

Sharemind multiplication

■ Let $v=s_{0}+s_{1}+s_{2}$ and $v^{\prime}=s_{0}^{\prime}+s_{1}^{\prime}+s_{2}^{\prime}$.
$v v^{\prime}=s_{0} s_{0}^{\prime}+s_{0} s_{1}^{\prime}+s_{0} s_{2}^{\prime}+s_{1} s_{0}^{\prime}+s_{1} s_{1}^{\prime}+s_{1} s_{2}^{\prime}+s_{2} s_{0}^{\prime}+s_{2} s_{1}^{\prime}+s_{2} s_{2}^{\prime}$

- M_{i} can compute $s_{i} s_{i}^{\prime}$ itself.
- To compute $s_{i} s_{j}^{\prime}$ we use Du-Atallah multiplication with M_{i} as Alice, M_{j} as Bob and M_{3-i-j} as Charlie.
- Each party M_{i} obtains six new shares from six instances of the Du-Atallah protocol.
■ These six shares, as well as $s_{i} s_{i}^{\prime}$ are added together. The result is party M_{i} 's share of $v v^{\prime}$.
- Finally, do resharing.
- Simulation:
- Send a bunch of random values to the adversary.
- Pick $D_{\text {sim }}\left[++\ell_{D_{\text {sim }}}\right] \in_{R} R$.

Share conversion

■ Let $u \in \mathbb{Z}_{2}$ be shared as $u=u_{0} \oplus u_{1} \oplus u_{2}$.
■ We want to get shares s_{0}, s_{1}, s_{2}, such that $u=s_{0}+s_{1}+s_{2}$ in R.
■ Note that $u=u_{0}+u_{1}+u_{2}-2 u_{0} u_{1}-2 u_{0} u_{2}-2 u_{1} u_{2}+4 u_{0} u_{1} u_{2}$ in R.

- Compute this expression in distributed fashion:
- u_{i} will contribute to the share s_{i} of M_{i};
- use Du-Atallah multiplication to get shares of $2 u_{i} u_{j}$;
- find shares of $4 u_{0} u_{1} u_{2}$:
- let M_{2} share $2 u_{2}$ with the resharing protocol;
- multiply $2 u_{0} u_{1}$ and $2 u_{2}$ with the multiplication protocol
- Add the shares from the computation of all monomials;
- Reshare.

Bit extraction

■ We have shares of the 32-bit value u.
Let $u(k)$ be the k-th least significant bit of $u . u=\sum_{i=0}^{31} u(k) 2^{k}$.
We want to have shares of $u(0), \ldots, u(31)$ over $\mathbb{Z}_{2^{32}}$.

Bit extraction

■ We have shares of the 32 -bit value u.
■ Let $u(k)$ be the k-th least significant bit of u. $u=\sum_{i=0}^{31} u(k) 2^{k}$.
■ We want to have shares of $u(0), \ldots, u(31)$ over $\mathbb{Z}_{2^{32}}$.
■ Let M_{i} generate 32 random bits $r_{i}^{0}, \ldots, r_{i}^{31}$.
■ We thus have shared 32 random bits r^{0}, \ldots, r^{31} over \mathbb{Z}_{2}.

- Convert shares of r^{j} to shares of $r(j)=r^{j}$ over \mathbb{Z}_{232}.

■ Linearly combine shares of $r(0), \ldots, r(31)$ to get shares of r.

- Compute $a=u-r$ (linear combination). Publish a.
- a is distributed uniformly randomly; independently of u.
- Share the bits of a :
- $a(j)_{0}=a(j)$;
- $a(j)_{1}=a(j)_{2}=0$.

■ We have shares of bits of a and r, want to get shares of bits of $a+r$.

Shares of bits of $u=a+r$

■ Define $d(0)=a(0)+r(0), d(i)=2^{i} a(i)+2^{i} r(i)+c(i)$ if $i>0$.

- $c(i)$ is the carry bit (see blackboard).

■ $c(i)=2^{i} \sum_{j=0}^{i-1} 2^{j} \cdot(a(j)+r(j)-u(j))$.

- $u(i)$ depends on $d(i)$ as follows:
- We have $d(i) \in\left\{0,2^{i}, 2^{i+1}, 2^{i+1}+2^{i}\right\}$.
- $u(i)=\left(d(i) \bmod 2^{i+1}\right) / 2^{i}$.

■ Let $p(0), \ldots, p(31)$ be shared random bits.
■ Let $f(i)=\left(d(i)+2^{i} p(i)\right) \bmod 2^{i+1}$.

- modulo is computed by each party.
- $f(i) \in\left\{0,2^{i}, 2^{i+1}, 2^{i+1}+2^{i}, 2^{i+2}\right\}$

■ Publish $f(i)$. If $f(i) \bmod 2^{i+1}=2^{i}$ then $u(i)=1-p(i)$ else $u(i)=p(i)$.

greater than

- Consider two values v, v^{\prime}.

■ We want to compute whether $v<v^{\prime}$. Want to get the result as a shared bit.
■ If $v, v^{\prime} \in \mathbb{Z}_{2^{31}}$ then we can compute $v-v^{\prime}$ and then check the sign bit.

- sign bit \equiv most significant bit
- Sign bit is given by bit extraction.

