The protocols of Sharemind

Sharemind system

- Three computing parties (called "miners"). One may be corrupt.
- Semi-honest adversary.
- Secure channels between each pair of parties.
- Unconditionally^{*} secure.
 - Security of channels?
 - Source of randomness?
 - Data providers share their inputs for the miners.
- Controller traverses the circuit of f and instructs the miners.

Sharing

- The values are from a finite ring R.
 - In Sharemind platform, $R = \mathbb{Z}_{2^{32}}$.
- The arithmetic circuit for f is made up of operations of R. The values are shared additively:
 - $v \in R$ is shared as $(s_0, s_1, s_2) \in R^3$, where $s_0 + s_1 + s_2 = v$, but any two shares look like uniformly distributed independent random values.
 - *i*-th miner knows s_i .
 - A data provider shares \boldsymbol{v} by
 - randomly generating $s_0, s_1 \in_R R$;
 - defining $s_2 = v s_0 s_1$;
 - sending s_i to miner M_i .

Note that none of the actions of a data provider qualifies as cheating.

Resharing a value

- Let v be shared as s₀ + s₁ + s₂.
 We want to have a different sharing v = t₀ + t₁ + t₂, such that t_i is independent of s_i.
 - Protocol:
 - P_i generates $r_i \in_R R$ and sends it to $P_{(i+1) \mod 3}$;
 - P_i receives $r_{(i-1) \mod 3}$
 - $P_i \text{ sets } t_i = s_i + r_i r_{(i-1) \mod 3}$.
- An important sub-protocol: makes a share of a value independent of other shares and uniformly distributed.

Non-interactive protocols

- To add two shared values or to multiply with a scalar: each miner does the same operation with the shares it holds.
- To open a shared value: each miner sends its share to the controller.

Ideal functionality $\ensuremath{\mathbb{J}}$

Reactive — several rounds between \mathcal{I} and the environment. Keeps of database of values $D : \mathbb{N} \to R \cup \{\bot\}$.

- Elements of \mathbb{N} handles.
- Let ℓ_D be the index of the last filled slot of D, initially 0.
- Environment H gives commands to \mathcal{I} , receives answers: Command store(v), $v \in R$:
 - $D[++\ell_D] := v;$ return ℓ_D .
- Command retrieve(*h*):
 - return D[h].
- Command $\star(h_1, \ldots, h_k)$, where \star is k-ary arithmetic operator:
 - $D[++\ell_D] = \star (D[h_1], \ldots, D[h_k]);$ return ℓ_D .
- J sends all executed commands to the adversary A_{ideal}.
 H and A_{ideal} can talk to each other directly.

Real functionality

- Environment H talks to the controller \mathcal{C} . Controller talks with the miners.
 - \bullet C basically forwards the commands to miners.
- Controller forwards all executed commands to the adversary A_{real}.
 If some M_i is corrupted then continuously sends all of its internal state to A_{real}.
 - Each miner M_i keeps a database $D_i : \mathbb{N} \to R \cup \{\bot\}$.
 - The database stores the shares of the values.
 - H and \mathcal{A}_{real} can talk to each other directly.

Security

Black-box reactive simulatability:

- $\blacksquare \quad \text{There must exist a simulator } Sim, \text{ such that}$
- $\blacksquare \quad \text{For any } H \text{ and } \mathcal{A}_{\text{real}}$
- If we define $\mathcal{A}_{ideal} = Sim \mid \mathcal{A}_{real}$ then
 - H cannot distinguish whether it is running in parallel with

$$lacksymbol{\bullet}$$
 C, M_0, M_1, M_2 , $\mathcal{A}_{\mathsf{real}}$; or

$$\mathcal{J}, \mathcal{A}_{\mathsf{ideal}}.$$

Important: Sim must work during the runtime of the protocol, not afterwards.

Simulating simple commands

- Let M_c be corrupt, $c \in \{0, 1, 2\}$. Receiving store(v) from \mathcal{I} :
 - Forward store(v) to \mathcal{A}_{real} ;
 - Generate $s \in_R R$, send it to \mathcal{A}_{real} as from M_c .
 - $\bullet \quad D_{\rm sim}[++\ell_{D_{\rm sim}}] := s.$
 - Receiving retrieve(v) from \mathfrak{I} :
 - Forward it, don't do anything else.
 - Receiving $h_1 + h_2$ from \mathfrak{I} :
 - Forward $h_1 + h_2$ to $\mathcal{A}_{\mathsf{real}}$.
 - $D_{sim}[++\ell_{D_{sim}}] := D_{sim}[h_1] + D_{sim}[h_2].$
 - (Send $D_{sim}[\ell_{D_{sim}}]$ to \mathcal{A}_{real} as from M_c .)

Du-Atallah multiplication

Let Alice have $a \in R$, Bob have $b \in R$. Alice, Bob and Charlie want to obtain $s_A, s_B, s_C \in R$, such that $s_A + s_B + s_C = a \cdot b$.

• Party X only learns s_X and nothing else.

Alice generates α₁ ∈_R R. Sends α₁ to Charlie and a + α₁ to Bob.
 Bob generates α₂ ∈_R R. Sends α₂ to Charlie and b + α₂ to Alice.
 The shares are defined as

$$s_A = -\alpha_1(b + \alpha_2)$$

$$s_B = b(a + \alpha_1)$$

$$s_C = \alpha_1 \alpha_2 .$$

(**Exercise.** Verify that their sum is $a \cdot b$) Security: each of the parties only sends out uniformly randomly distributed values.

Sharemind multiplication

Let $v = s_0 + s_1 + s_2$ and $v' = s'_0 + s'_1 + s'_2$.

 $vv' = s_0s'_0 + s_0s'_1 + s_0s'_2 + s_1s'_0 + s_1s'_1 + s_1s'_2 + s_2s'_0 + s_2s'_1 + s_2s'_2$

- M_i can compute $s_i s'_i$ itself.
- To compute $s_i s'_j$ we use Du-Atallah multiplication with M_i as Alice, M_j as Bob and M_{3-i-j} as Charlie.
- Each party M_i obtains six new shares from six instances of the Du-Atallah protocol.
- These six shares, as well as $s_i s'_i$ are added together. The result is party M_i 's share of vv'.
- Finally, do resharing.
- Simulation:
 - Send a bunch of random values to the adversary.
 - Pick $D_{sim}[++\ell_{D_{sim}}] \in_R R$.

Share conversion

- Let $u \in \mathbb{Z}_2$ be shared as $u = u_0 \oplus u_1 \oplus u_2$.
- We want to get shares s₀, s₁, s₂, such that $u = s_0 + s_1 + s_2$ in R.
 Note that $u = u_0 + u_1 + u_2 2u_0u_1 2u_0u_2 2u_1u_2 + 4u_0u_1u_2$ in R.
 - Compute this expression in distributed fashion:
 - u_i will contribute to the share s_i of M_i ;
 - use Du-Atallah multiplication to get shares of $2u_iu_j$;
 - find shares of $4u_0u_1u_2$:
 - let M_2 share $2u_2$ with the resharing protocol;
 - multiply $2u_0u_1$ and $2u_2$ with the multiplication protocol
 - Add the shares from the computation of all monomials;
 - Reshare.

Bit extraction

- We have shares of the 32-bit value u.
- Let u(k) be the k-th least significant bit of u. $u = \sum_{i=0}^{31} u(k) 2^k$.
 - We want to have shares of $u(0), \ldots, u(31)$ over $\mathbb{Z}_{2^{32}}$.

Bit extraction

We have shares of the 32-bit value u.
Let u(k) be the k-th least significant bit of u. u = ∑_{i=0}³¹ u(k)2^k.
We want to have shares of u(0), ..., u(31) over Z_{2³²}.
Let M_i generate 32 random bits r⁰_i, ..., r³¹_i.
We thus have shared 32 random bits r⁰, ..., r³¹ over Z₂.
Convert shares of r^j to shares of r(j) = r^j over Z_{2³²}.
Linearly combine shares of r(0), ..., r(31) to get shares of r.
Compute a = u - r (linear combination). Publish a.

• a is distributed uniformly randomly; independently of u.

Share the bits of a:

$$\bullet \quad a(j)_0 = a(j);$$

•
$$a(j)_1 = a(j)_2 = 0.$$

We have shares of bits of a and r, want to get shares of bits of a + r.

Shares of bits of u = a + r

Define
$$d(0) = a(0) + r(0)$$
, $d(i) = 2^{i}a(i) + 2^{i}r(i) + c(i)$ if $i > 0$.
• $c(i)$ is the carry bit (see blackboard).
• $c(i) = 2^{i} \sum_{j=0}^{i-1} 2^{j} \cdot (a(j) + r(j) - u(j))$.
• $u(i)$ depends on $d(i)$ as follows:
• We have $d(i) \in \{0, 2^{i}, 2^{i+1}, 2^{i+1} + 2^{i}\}$.
• $u(i) = (d(i) \mod 2^{i+1})/2^{i}$.
• Let $p(0), \ldots, p(31)$ be shared random bits.
• Let $f(i) = (d(i) + 2^{i}p(i)) \mod 2^{i+1}$.
• $modulo$ is computed by each party.
• $f(i) \in \{0, 2^{i}, 2^{i+1}, 2^{i+1} + 2^{i}, 2^{i+2}\}$
• Publish $f(i)$. If $f(i) \mod 2^{i+1} = 2^{i}$ then $u(i) = 1 - p(i)$ else $u(i) = p(i)$.

greater than

- Consider two values v, v'.
- We want to compute whether v < v'. Want to get the result as a shared bit.
- If $v, v' \in \mathbb{Z}_{2^{31}}$ then we can compute v v' and then check the sign bit.
 - sign bit \equiv most significant bit
 - Sign bit is given by bit extraction.