Protocol analysis using ProVerif

ProVerif

■ http://www.proverif.ens.fr

- Static analysis for cryptographic protocols under the perfect cryptography assumption
- Can check secrecy and correspondence properties
- Errs only to the safe side
- If a protocol is insecure, then says so
- If a protocol is secure, then sometimes may claim to have found an attack
- Principle: translate the protocol to a set of Horn clauses
- Involves a little bit of abstraction
- There is an attack \Rightarrow this set is satisfiable

Horn clauses

$$
p_{1}\left(t_{11}, \ldots, t_{1 k_{1}}\right) \wedge \cdots \wedge p_{n}\left(t_{n 1}, \ldots, t_{n k_{n}}\right) \Rightarrow q\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)
$$

- p_{1}, \ldots, p_{n}, q - predicate symbols
- from a fixed set; each with fixed arity

■ t_{*}, t_{*}^{\prime} - terms

- countable number of atoms
- constructors from a fixed set

■ terms may contain term variables as subterms

- $\bigwedge_{i} p_{i}(\ldots X \ldots) \Rightarrow q(\ldots X \ldots)$ means
$\forall t \in \operatorname{Term}:\left(\bigwedge_{i} p_{i}(\ldots t \ldots) \Rightarrow q(\ldots t \ldots)\right)$
- Term - the set of all ground terms (without variables)

Examples

- A translation of a protocol always contains a unary predicate a
- a (t) means that the attacker can learn t
- A translation contains rules for composing and decomposing messages:
- $\mathrm{a}(\operatorname{pair}(X, Y)) \Rightarrow \mathrm{a}(X) \quad \mathrm{a}(\operatorname{pair}(X, Y)) \Rightarrow \mathrm{a}(Y)$
- $\mathrm{a}(X) \wedge \mathrm{a}(Y) \Rightarrow \mathrm{a}(\operatorname{pair}(X, Y))$
- $\mathrm{a}(\operatorname{senc}(K, X)) \wedge \mathrm{a}(K) \Rightarrow \mathrm{a}(X)$
- $\mathrm{a}(\operatorname{penc}(p k(K), X)) \wedge \mathrm{a}(K) \Rightarrow \mathrm{a}(X)$
- $\mathrm{a}(K) \wedge \mathrm{a}(X) \Rightarrow \mathrm{a}(\operatorname{sign}(K, X))$
- $\mathrm{a}(\operatorname{sign}(K, X)) \Rightarrow \mathrm{a}(X)$
- $\mathrm{a}(X) \Rightarrow \mathrm{a}(h(X))$

Recall our example

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ The attacker can have the first message by starting a new session

$$
\mathrm{a}(p k(A)) \wedge \mathrm{a}(p k(B)) \Rightarrow \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), n, k)))
$$

Recall our example

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ The attacker can have the first message by starting a new session

$$
\mathrm{a}(p k(A)) \wedge \mathrm{a}(p k(B)) \Rightarrow \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), n, k)))
$$

Something is very wrong here... What n ? What k ?
■ n and k would be different in each session. There must be a parameter "session ID".

The first message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ The attacker can have the first message by starting a new session

$$
\begin{aligned}
\mathrm{a}(p k(A)) \wedge \mathrm{a}(p k(B)) & \wedge \mathrm{a}(I d) \Rightarrow \\
& \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), n[I d], k[I d])))
\end{aligned}
$$

The first message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ The attacker can have the first message by starting a new session

$$
\begin{aligned}
\mathrm{a}(p k(A)) \wedge \mathrm{a}(p k(B)) & \wedge \mathrm{a}(I d) \Rightarrow \\
& \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), n[I d], k[I d])))
\end{aligned}
$$

■ Attacker: "Dear Alice, please start session 5 with Bob"

- $\quad k(5)$ will be exchanged

■ Attacker "Dear Alice, please start session 5 with me"

- Attacker learns $k(5)$

The first message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ Session ID must contain the roles of the parties.

$$
\begin{aligned}
& \mathrm{a}(p k(A)) \wedge \mathrm{a}(p k(B)) \wedge \mathrm{a}(I d) \Rightarrow \\
& \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A) \\
& \quad n[p k(A), p k(B), I d], k[p k(A), p k(B), I d])))
\end{aligned}
$$

The second message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

- When Bob gets the first message, he responds with the second

$$
\begin{aligned}
& \mathrm{a}(I d) \wedge \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), N, K))) \Rightarrow \\
& \quad \mathrm{a}\left(\operatorname{penc}\left(p k(A), \operatorname{triple}\left(N, n^{\prime}[p k(A), p k(B), I d], p k(B)\right)\right)\right)
\end{aligned}
$$

The third message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

- When Alice gets the second message, she responds with the third

$$
\begin{aligned}
& \mathrm{a}\left(\operatorname{penc}\left(p k(A), \text { triple }\left(n[p k(A), p k(B), I d], N^{\prime}, p k(B)\right)\right)\right) \Rightarrow \\
& \mathrm{a}\left(\operatorname{penc}\left(p k(B), \operatorname{pair}\left(n[p k(A), p k(B), I d], N^{\prime}\right)\right)\right)
\end{aligned}
$$

The fourth message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

When Bob gets the third message, he responds with the fourth. . . But only if he has participated in the session from the beginning

The fourth message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ When Bob gets the third message, he responds with the fourth...

- But only if he has participated in the session from the beginning
- When Bob has received the first and third messages, he can respond with the fourth.

$$
\begin{aligned}
& \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), N, K))) \wedge \\
& \qquad \begin{array}{l}
\mathrm{a}\left(\operatorname{penc}\left(p k(B), \operatorname{pair}\left(N, n^{\prime}[p k(A), p k(B), I d]\right)\right)\right) \Rightarrow \\
\mathrm{a}(\operatorname{senc}(K, m))
\end{array}
\end{aligned}
$$

The fourth message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

■ When Bob gets the third message, he responds with the fourth...

- But only if he has participated in the session from the beginning
- When Bob has received the first and third messages, he can respond with the fourth.

$$
\begin{aligned}
& \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), N, K))) \wedge \\
& \qquad \begin{array}{l}
\mathrm{a}\left(\operatorname{penc}\left(p k(B), \operatorname{pair}\left(N, n^{\prime}[p k(A), p k(B), I d]\right)\right)\right) \Rightarrow \\
\mathrm{a}(\operatorname{senc}(K, m))
\end{array}
\end{aligned}
$$

What is wrong here?

The fourth message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

Only Bob will send M, and only to Alice.

$$
\begin{aligned}
& \mathrm{a}(\operatorname{penc}(p k(s B), \operatorname{triple}(p k(s A), N, K))) \wedge \\
& \quad \mathrm{a}\left(\operatorname{penc}\left(\operatorname{pk}(s B), \operatorname{pair}\left(N, n^{\prime}[p k(s A), p k(s B), I d]\right)\right)\right) \Rightarrow \\
& \mathrm{a}(\operatorname{senc}(K, m))
\end{aligned}
$$

Solving the system

- Is a (m) derivable?

■ You may ask a Prolog system. And it will answer. . .

Solving the system

- Is a (m) derivable?

■ You may ask a Prolog system. And it will answer...
...infinite loop.

- To get a (m), we could use some a $(f(m))$
- To get a $(f(m))$, we could use some $\mathrm{a}(f(f(m)))$
- To get...
- The unification strategy of ProVerif is more geared towards such protocol representations.

Try to run ProVerif

Demo

Try to run ProVerif

Demo
Try to reconstruct the attack

What went wrong

- Alice sent the first message to Bob
- Bob received it twice, responding to it both times
- Fair enough

What went wrong

- Alice sent the first message to Bob
- Bob received it twice, responding to it both times
- Fair enough
- But the adversary repeated the session identifier
- Not good
- To avoid that, newly generated values must contain all received messages so far.

The second message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

- When Bob gets the first message, he responds with the second

$$
\begin{aligned}
& \mathrm{a}(I d) \wedge \mathrm{a}(\operatorname{penc}(p k(B), \operatorname{triple}(p k(A), N, K))) \Rightarrow \\
& \mathrm{a}(\operatorname{penc}(p k(A), \operatorname{triple}(N, \\
& n^{\prime}[p k(A), p k(B), \operatorname{Id}, \operatorname{penc}(p k(B), \operatorname{triple}(p k(A), N, K))], \\
& p k(B))))
\end{aligned}
$$

The fourth message

$$
\begin{aligned}
& A \longrightarrow B:\left\{\left[K_{A}, N_{A}, K_{A B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\left\{\left[N_{A}, N_{B}, K_{B}\right]\right\}_{K_{A}} \\
& A \longrightarrow B:\left\{\left[N_{A}, N_{B}\right]\right\}_{K_{B}} \\
& B \longrightarrow A:\{M\}_{K_{A B}}
\end{aligned}
$$

$\mathrm{a}(\operatorname{penc}(p k(s B), \operatorname{triple}(p k(s A), N, K))) \wedge \mathrm{a}(\operatorname{penc}(p k(s B)$,
$\left.\left.\operatorname{pair}\left(N, n^{\prime}[p k(s A), p k(s B), I d, \operatorname{penc}(p k(s B), \operatorname{triple}(p k(s A), N, K))]\right)\right)\right) \Rightarrow$
$\mathrm{a}(\operatorname{senc}(K, m))$

Try to run ProVerif

Demo

Try to run ProVerif

Demo
- A similar-looking attack...

Try to run ProVerif

- Demo
- A similar-looking attack...
- We actually have a type flaw! Let us correct it.

Try to run ProVerif

- Demo

■ A similar-looking attack...

- We actually have a type flaw! Let us correct it. OK

Correspondence assertions

- Two more predicates, b and e, for begin and end.
- After a party has executed begin (M), its following messages are translated with $b(M)$ as a premise.
- ... contains session IDs and received messages.
- Emitting end (M) is adversary's goal, hence it is the conclusion of a rule.
- $\mathrm{a}\left(m_{1}\right) \wedge \cdots \mathrm{a}\left(m_{k}\right) \Rightarrow e(m)$

■ If $b(X)$ is necessary for $e(X)$, then we have (non-injective) agreement.

ISO 3-pass mutual authentication

Draft:

$$
\begin{aligned}
& \text { 1. } A \longrightarrow B: N_{A 1} \\
& \text { 2. } B \longrightarrow A:\left[\left\{N_{A 1}, N_{B}, K_{A}\right\}\right\}_{K_{B}} \\
& \text { 3. } A \longrightarrow B:\left[\left\{N_{B}, N_{A 2}, K_{B}\right\}\right]_{K_{A}}
\end{aligned}
$$

Final:

$$
\begin{aligned}
& \text { 1. } A \longrightarrow B: N_{A} \\
& \text { 2. } B \longrightarrow A:\left[\left\{N_{A}, N_{B}, K_{A}\right\}\right]_{K_{B}} \\
& \text { 3. } A \longrightarrow B:\left\{\left\{N_{B}, N_{A}, K_{B}\right\}\right]_{K_{A}}
\end{aligned}
$$

- From signature find the message.
- Public key \equiv principal's name.
- end $\left(K_{A}, K_{B}\right)$ executed by B in the very end.
- begin $\left(K_{A}, K_{B}\right)$ executed by A before 3 rd message.

Injective agreement

- Add the session identifier to the argument of e.
- Add the session identifiers and received messages to the argument of b.

■ If $b((X, I I))$ is necessary for $e((X, I))$, and I appears in $I I$, then we have injective agreement.

- Example:

$$
\begin{aligned}
& \text { 1. } A \longrightarrow B:(A, B) \\
& \text { 2. } B \longrightarrow A:[\{N\}]_{K_{B}}
\end{aligned}
$$

has agreement, which is not injective. Indeed, A 's signature verification fails, if B has never signed anything.

