
1 / 73

Cryptographic protocols
(MTAT.07.014, 4 AP / 6 ECTS)

Lectures and Mon 12-16 hall 404
Exercises: Thu 8-12 hall 224

homepage:
http://www.cs.ut.ee/~peeter l/teaching/krprot10s

(contains lecture materials)

Grading: Home exercises and exam in January.



Overall topic of this course
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■ Cryptology I was mostly about primitives.

◆ (A)symmetric encryption, signatures, MACs, hash functions, etc.

■ To achieve the security goals of systems, several of them have to be
used together.

■ This gives us protocols.

■ It’s quite easy to use the primitives in the wrong way.

■ This makes the protocols insecure, although the primitives themselves
might have been secure.

◆ Primitive ≡ a lock

◆ Protocol ≡ how you use that lock



Example 0
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■ Alice and Bob want to set up a private channel between themselves.

■ They know each other’s public keys KA and KB .

■ Alice generates a new key KAB of some symmetric encryption system.

■ Alice sends KAB to B, encrypted with KB .

A −→ B : {[KAB]}KB

■ Bob decrypts and learns KAB.

■ Alice and Bob use KAB to encrypt messages between each other.

◆ Assume it also provides integrity.



Immediate questions
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■ Who sent the key to Bob?

◆ Alice did. . .

■ Include Alice’s name in the message:

A −→ B : {[A,KAB]}KB

■ Although that does not prove anything. . .Why?



Immediate questions
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■ When was it sent?

◆ consider replay attacks.

◆ The adversary may somehow know the old session keys.

■ Include a timestamp to the message:

A −→ B : {[A, T,KAB]}KB

■ B must check that T is not far off.

■ How do A and B synchronize their clocks?

■ What if the attacker takes over B’s NTP server?



Instead of a timestamp
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■ Better: include a nonce in the message:

A −→ B : {[A,N,KAB]}KB

◆ Nonce ≡ random bit-string.

■ B must check that it has not received that N before.
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■ Better: include a nonce in the message:

A −→ B : {[A,N,KAB]}KB

◆ Nonce ≡ random bit-string.

■ B must check that it has not received that N before.

■ B has to store all N -s it receives. . .What if his hard drive fails?

■ The attacker may

1. not deliver the message {[A,N,KAB]}KB
;

2. wait until it learns KAB ;

3. deliver {[A,N,KAB]}KB
.



Liveness of A
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■ B needs to know that A sent that message recently.

■ B must answer to A and then A must answer to B.

A−→B : {[A,N,KAB]}KB

B−→A : {[???]}KA

A−→B : {[???]}KB



Liveness of A
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■ 2nd and 3rd message have to mention N .

A−→B : {[A,N,KAB]}KB

B−→A : {[N ]}KA

A−→B : {[N ]}KB

■ A must verify that it sent N recently.

■ B must do the same verification after 3rd message.

■ What replay possibilities are there?



Liveness of A
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■ B needs a nonce, too.

A−→B : {[A,NA,KAB]}KB

B−→A : {[NA, NB]}KA

A−→B : {[NA, NB]}KB



Man-in-the-middle attack
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Assume now that Alice wants to talk to
Charlie

A −→ C : {[A,NA,KAC ]}KC
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Assume now that Alice wants to talk to
Charlie

A −→ C : {[A,NA,KAC ]}KC

But Charlie is bad. . . C(A) −→ B : {[A,NA,KAC ]}KB

Bob responds, thinking that Alice is talking
to him:

B −→ C(A) : {[NA, NB ]}KA

Charlie simply forwards that message: C −→ A : {[NA, NB]}KA

Alice decrypts that pair of nonces for Char-
lie:

A −→ C : {[NA, NB]}KC

and Charlie can respond to Bob: C(A) −→ B : {[NA, NB ]}KB

Now Bob thinks that he shares the key KAC with Alice, but Charlie also
knows that key.



A possible fix
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■ B’s answer must contain his name:

A−→B : {[A,NA,KAB]}KB

B−→A : {[NA, NB, B]}KA

A−→B : {[NA, NB]}KB

■ Is this protocol secure? Maybe. . .

■ Are all its parts necessary?

◆ Do we need all components of all messages?

◆ Does everything have to be under encryption?

Probably not.



More fundamental questions
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■ What is the security property?

■ What did this A −→ B : M actually mean? Or:

■ What is the execution model?

◆ What data and control structures do the parties use?

◆ How are the messages relayed?

◆ How are the parties scheduled?

◆ Where is the adversary?

■ How are the parties corrupted and the keys leaked?

We do not need answers to all of these questions as long as we are just
showing attacks against protocols.



Formally
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■ Each party is an implementation of some interface. It has methods for

◆ starting a session;

◆ receiving a message and producing and answer;

◆ maybe something more.

■ The adversary has a method “run” that takes all participants as its
arguments.

◆ More generally: there is an environment with a method “run” that
takes both the participants and the adversary as arguments.

◆ The implementation of this environment is fixed. This defines the
scheduling and the relaying of messages.



Setup of parties
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Secrets



Possible commands to parties
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A

P1

P2 P3 P4

P5

Init

Secrets

... = A

Responder = P4

Initiator = P2

Start session 172



Possible commands to parties
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A

P1
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P5
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Secrets

session 53
msg. 3 is T



Possible commands to parties

17 / 73

A
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give me
msg. 4

of session 13

M



Environment defining the secrecy of something
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■ Such analysis may be hard. . .

◆ but we’ll be rewarded with rigorous security proofs.

■ But, intuitively, what are the things that an adversary may do?



The adversary can. . .
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■ Capture messages sent by one party to another.

◆ Learn the intended sender and recipient.

■ Send a message it has constructed to any party.

◆ . . . faking the sender.

■ Generate new keys, nonces, . . .

■ Construct new messages from the ones its has.

◆ Only applying “legitimate” constructors.

◆ Because everything else will be weeded out by other parties. . .

■ Decompose tuples. Decrypt if it knows the key.



The adversary cannot. . .
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The adversary cannot do things like:

■ Learn anything about M from {[M ]}K .

■ Transform {M1}K , . . . , {Mn}K to {M ′}K for M ′ related to
M1, . . . ,Mn, not knowing the key K.

■ . . . or construct any {M}K without knowing K at all.

Hence the encryption must provide message integrity, too.

■ Such encryption is often called perfect.

■ In the next few lectures we make the perfect cryptography assumption
(also called the Dolev-Yao model).



Contents of this course
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■ Analysis of protocols in the perfect cryptography model (≈ 3 weeks)

■ General secure multiparty computation (≈ 3 weeks)

■ Universal composability (≈ 2 weeks)



Modeling computation / communication

23 / 73

■ There are many calculi for modeling parallel / distributed processes

◆ CCS, CSP, join-calculus,. . .

■ π-calculus was preferred by security researchers

◆ Because of the new-operation in it

■ Used for channel creation

■ π-calculus begat spi-calculus and applied pi-calculus

◆ new used also for generating keys, nonces,. . .

calculus ≡ programming language and its semantics



π-calculus
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■ Let us have

◆ a countable set of names: m,n, k, l, a, b, c, . . .

◆ a countable set of variables: x, y, z, w, . . .

■ Messages M,N,K,L, . . . are either names or variables.

■ Processes P,Q,R, . . . are one of

0 (stopped process)

N〈M〉.P (send M over channel N , then do P )

N(x).P (receive message from channel N , store in x, do P )

P |Q (do P and Q in parallel)

!P (intuitively same as P | P | P | · · · )

(νm)P (generate new name m, continue with P )

[M = N ].P (if M equals N then do P )



Examples
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■ c〈m〉.0 sends message m on channel c

■ c(x).d〈x〉.0 receives a message on channel c and forwards it on channel
d

■ (νm)c〈m〉.0 generates a new name and sends it on channel c

■ (νc)((νm)c〈m〉 | c(x).d〈x〉) causes a newly generated name to be sent
on channel d

■ (νc)((νm)c〈m〉 | c(x).d1〈x〉 | c(x).d2〈x〉) causes a newly generated name
to be sent either on channel d1 or channel d2



Free and bound (occurrences of) names and variables

26 / 73

■ An occurrence can be free, a binder or bound to a previous binder.

■ In processes:

0 N〈M〉.P N(x).Px→x P |Q

!P (νm)Pm→m [M = N ].P

■ P and Q are structurally congruent, P ≡ Q, if they differ only by
renaming of bound variables and names:

◆ No captures! c(x).c(y).x〈m〉.y〈n〉 6≡ c(y).c(y).y〈m〉.y〈n〉.

■ But c(x).x〈m〉.c(y).y〈n〉 ≡ c(y).y〈m〉.c(y).y〈n〉.

■ Let P{M1, . . . ,Mn/u1, . . . , un} denote the simulataneous substitution
of variables/names u1, . . . , un with messages M1, . . . ,Mn.

◆ No captures! Rename bound variables in P as needed.



Structural congruence
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■ P ≡ Q, if they differ only by renaming of bound variables and names

■ P |Q ≡ Q | P , (P |Q) |R ≡ P | (Q |R), P | 0 ≡ P

■ !P ≡ P | !P

■ (νm)(νn)P ≡ (νn)(νm)P , (νm)0 ≡ 0

■ P | (νm)Q ≡ (νm)(P |Q) if n not free in P

■ Congruence! If P ≡ Q then R[P ] ≡ R[Q]



Operational semantics
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■ . . . is defined by the step relation →⊆ Proc × Proc.

◆ Proc — the set of all processes.

■ N〈M〉.P |N(x).Q → P |Q{M/x}

■ [M = M ].P → P

■ If P ≡ P ′ → Q′ ≡ Q then P → Q

■ If P → Q then P |R → Q |R and (νm)P → (νm)Q

■ Not a congruence!



Example
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(νc)((νm)c〈m〉 | c(x).d〈x〉)

≡(νc)(νm)(c〈m〉 | c(x).d〈x〉)

→(νc)(νm)(0 | d〈m〉)

≡(νm)(νc)(0 | d〈m〉)

≡(νm)((νc)0 | d〈m〉)

≡(νm)(0 | d〈m〉)

≡(νm)d〈m〉



spi-calculus
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■ . . . enriches the structure of messages

■ . . . introduces operations to analyze (take apart) messages

■ Let Σ be a finite set of term constructors

◆ pairing, encryption, signing, hashing, etc.

■ Let ar : Σ → N give the arity of each constructor.

■ A message is one of

◆ variable

◆ name

◆ f(M1, . . . ,Mar(f)), where f ∈ Σ.



For now, let the constructors be
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■ pk(K) gives the public key corresponding to secret decryption / signing
key K.

■ (M1, . . . ,Mn) is the tuple of the messages M1, . . . ,Mn.

■ {M}K , {[M ]}Kp
, [{M}]Ks

are the symmetric, asymmetric encryption and
signatures.

◆ If we model randomized primitives then there is the third argument,
too — the random coins.

■ h(M) is the digest of M .

A party can apply a constructor if it knows all of its arguments.



Destructors
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■ Besides Σ and ar we are given a set of message destructors. They have

◆ A name g and arity ar(g), e.g. dec /2

◆ Arguments, e.g. xkey,{xM}xkey

◆ One or more possible results, e.g. xM

■ Denote g(M1, . . . ,Mar(g)) → M

◆ No names in M1, . . . ,Mar(g),M .

■ More examples:

◆ πn
i ((x1, . . . , xn)) → xi

◆ vfy(pk(xkey), xM , [{xM}]xkey
) → true

■ true ∈ Σ. ar(true) = 0



Applying destructors
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■ A process can also be

[x := g(M1, . . . ,Mk)].P (binds x in P )

■ The step relation is extended by

[x := g(M1σ, . . . ,Mkσ)].P → P{Mσ/x} where

◆ g(M1, . . . ,Mk) → M

◆ σ is a substitution from variables in M1, . . . ,Mk,M to messages.
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A protocol consists of

■ The initialization of common variables;

◆ Mainly long-term keys

■ The parallel composition of all parties.

The protocol is executed in parallel with the adversary.

■ The adversary can be any process



Our example
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A−→B : {[A,NA,KAB]}KB

B−→A : {[NA, NB, B]}KA

A−→B : {[NA, NB]}KB



Names ∼
= public keys
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A−→B : {[KA, NA,KAB ]}KB

B−→A : {[NA, NB,KB ]}KA

A−→B : {[NA, NB]}KB



Alice’s process (single session)
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A−→B : {[KA, NA,KAB ]}KB

B−→A : {[NA, NB,KB ]}KA

A−→B : {[NA, NB]}KB

PA(SKA,KB) is

(νnA)(νkAB).c〈{[pk(SKA), nA, kAB]}KB
〉.

c(y2).[z2 := dec(SKA, y2)].
[xNA := π3

1(z2)].[xNB := π3
2(z2)].[xKB := π3

3(z2)].
[nA = xNA].[xKB = KB ].c〈{[nA, xNB ]}KB

〉

■ SKA is the decryption key of party A. KB is the public key of B.

■ c is the public channel (Internet)



Bob’s process (single session)

38 / 73

A−→B : {[KA, NA,KAB ]}KB

B−→A : {[NA, NB,KB ]}KA

A−→B : {[NA, NB]}KB

PB(SKB ,KA) is

c(y1).[z1 := dec(SKB , y1)].
[xKA := π3

1(z1)].[xNA := π3
2(z1)].[xKAB := π3

3(z1)].
[xKA = KA].(νnB).c〈{[xNA, nB, pk(SKB)]}KA

〉.

c(y3)[z3 := dec(SKB , y3)].
[xNA2 := π2

1(z3)].[xNB := π2
2(z3)].[xNA2 = xNA].[xNB = nB ]

SKB is the decryption key of party B.



Whole protocol
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(Alice as initiator, Bob as responder)

(νskA)(νskB).
(

!(c(xK).PA(skA, xK)) |
!(c(xK).PB(skB, xK)) |
c〈pk(skA)〉 | c〈pk(skB)〉

)

. . . and this is executed in parallel with the adversary.

Exercise. How to express that both Alice and Bob can serve as both initiator
and responder?



40 / 73

Security properties:

■ Secrecy of something — this thing cannot become the value of some
variable in the adversarial process.

◆ Generally a weaker property than “the adversary cannot distinguish
which one of two fixed values this thing has”.

◆ Justified by the perfection of the cryptographic primitives.

■ Authenticity — a certain situation cannot happen. . .

◆ B thinks it shares KAB with A, but A thinks that KAB is for a
different purpose. . .



Alice thinks. . .
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PA(SKA,KB) is

(νnA)(νkAB).
. o O (start session with KB using (nA, kAB))
c〈{[pk(SKA), nA, kAB]}KB

〉.

c(y2).[z2 := dec(SKA, y2)].
[xNA := π3

1(z2)].[xNB := π3
2(z2)].[xKB := π3

3(z2)].
[nA = xNA].[xKB = KB ].
. o O (end session with KB using (nA, xNB , kAB))
c〈{[nA, xNB ]}KB

〉



Bob thinks. . .
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PB(SKB ,KA) is

c(y1).[z1 := dec(SKB , y1)].
[xKA := π3

1(z1)].[xNA := π3
2(z1)].[xKAB := π3

3(z1)].
[xKA = KA].(νnB).
. o O (start session with KA using (xNA, nB, xKAB))
c〈{[xNA, nB, pk(SKB)]}KA

〉.

c(y3)[z3 := dec(SKB , y3)].
[xNA2 := π2

1(z3)].[xNB := π2
2(z3)].[xNA2 = xNA].[xNB = nB].

. o O (end session with KA using (xNA, nB, xKAB))



Authentication property
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If B ended session with pk(skA) using (n1, n2, k) then A ended session with
pk(skB) using (n1, n2, k).

If A ended session with pk(skB) using (n1, n2, k) then B started session with
pk(skA) using (n1, n2, k).

. . . and for different red thoughts correspond different green thoughts.



Scheduling
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■ Scheduling of protocols — non-deterministic.

■ We get a set of protocol traces, not a probability distribution over them.

■ Justification — both secrecy and authentication properties are specified
by valid protocol traces.

■ In our actual arguments we just assume that everything that may go
wrong goes wrong.

◆ Most secure computer — the one that is switched off

◆ Most functional computer — the attacker



Arguing about the protocol
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(A1) B ended session i with KA[i].

(A2) KA[i] = pk(skA).

(1) m3[i], which came from outside, contained the value of NB[i].

(2) nB [i] left the scope of the current session only inside the second
message M2[i].

(3) M2[i] was encrypted with KA[i] = pk(skA). Only someone who knows
skA is able to decrypt it.

(4) skA is used only to get the corresponding public key, and to decrypt.
Hence the adversary cannot know skA.



Arguing about the protocol
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(5) A had a session j where she decrypted M2[i] = y2[j]. Hence

◆ xNA[j] = xNA[i], xNB [j] = nB [i], xKB [j] = pk(skB).

◆ Maybe there were several such sessions j.

(6) xNB [j] left the scope of the session j only inside the third message
M3[j].

◆ KB [j] = xKB [j] = pk(skB), nA[j] = xNA[j] = xNA[i].

◆ A ended session j with KB [j].

■ We still have to show that

◆ kAB[j] = xKAB[i]

◆ There is no i′ 6= i, such that B ended session i′ with pk(skA) using
(xNA[i], nB[i], xKAB[i]).

■ Easy — nB [i
′] 6= nB[i].



Arguing about the protocol
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(7) xKAB [i] is defined together with xNA[i] which equals nA[j].

Can the adversary construct a message of the form

{[pk(skA), xNA[i],K
′]}pk(skB) with K ′ 6= xKAB [j] ?

(8) nA[j] is sent out in messages M1[j] and M3[j]. They are encrypted with
pk(skB).

(9) The adversary does not know skB.

(10) B does not accept the message M3[j] as the first message from A.

(11) If B accepts M1[j] in some session k, then KA[k] = pk(skA). Hence the
adversary cannot decrypt M2[k].

The adversary cannot learn xNA[i].



Arguing about the protocol
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■ The adversary cannot learn xNA[i] = nA[j] and there is only a single
first message containing it constructed by A.

■ This message contains the key kAB[j].

■ Injective agreement would still have hold if A’s belief about ending a
session had not contained xNB .

■ The other property is proved similarly.

■ Secrecy of kAB is shown similarly to the secrecy of nA.



Correspondence properties
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■ Authentication properties can be specified using correspondence
properties.

■ Introduce steps begin(M) and end(M) to the calculus.

■ These statements do nothing but appear in the trace of the protocol.

◆ begin(M).P → P

◆ end(M).P → P

■ A protocol has agreement if every end(M) in a trace is preceeded by
begin(M).

■ A protocol has injective agreement if it satisfies agreement and one can
find a different begin corresponding to each end.
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PA(SKA,KB) is

(νnA)(νkAB).
. o O (start session with KB using (nA, kAB))
c〈{[pk(SKA), nA, kAB]}KB

〉.

c(y2).[z2 := dec(SKA, y2)].
[xNA := π3

1(z2)].[xNB := π3
2(z2)].[xKB := π3

3(z2)].
[nA = xNA].[xKB = KB ].
. o O (end session with KB using (nA, xNB , kAB))
c〈{[nA, xNB ]}KB

〉



51 / 73

PA(SKA,KB) is

(νnA)(νkAB).
c〈{[pk(SKA), nA, kAB]}KB

〉.

c(y2).[z2 := dec(SKA, y2)].
[xNA := π3

1(z2)].[xNB := π3
2(z2)].[xKB := π3

3(z2)].
[nA = xNA].[xKB = KB].
end(“startB”, nA, xNB , kAB).begin(”endB”, nA, xNB, kAB).
c〈{[nA, xNB]}KB

〉
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PB(SKB ,KA) is

c(y1).[z1 := dec(SKB , y1)].
[xKA := π3

1(z1)].[xNA := π3
2(z1)].[xKAB := π3

3(z1)].
[xKA = KA].(νnB).
. o O (start session with KA using (xNA, nB, xKAB))
c〈{[xNA, nB, pk(SKB)]}KA

〉.

c(y3)[z3 := dec(SKB , y3)].
[xNA2 := π2

1(z3)].[xNB := π2
2(z3)].[xNA2 = xNA].[xNB = nB].

. o O (end session with KA using (xNA, nB, xKAB))
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PB(SKB ,KA) is

c(y1).[z1 := dec(SKB , y1)].
[xKA := π3

1(z1)].[xNA := π3
2(z1)].[xKAB := π3

3(z1)].
[xKA = KA].(νnB).
begin(“startB”, xNA, nB , xKAB).
c〈{[xNA, nB, pk(SKB)]}KA

〉.

c(y3)[z3 := dec(SKB , y3)].
[xNA2 := π2

1(z3)].[xNB := π2
2(z3)].[xNA2 = xNA].[xNB = nB].

end(“endB”, xNA, nB, kAB)
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Key-establishment protocols are just one case where authentication is
necessary.
In pure authentication protocols (entity authentication) two parties have
established a connection. Party A wants to check that the other one is who A
thinks it is.

■ In a connectionless model of communication, entity authentication is
used to check the liveness of the other party.

Mutual authentication — both parties check each other’s liveness.
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Basic tool for one-way entity authentication: challenge-response mechanism.

■ A sends a new nonce to B.

■ B transforms that nonce in a way that only B (or A) could do and
sends back the result.

■ A checks the result.
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Let CertX be the certificate of the verification key pk(KX) of the party X.
Alice checking Bob’s liveness:

A−→B :NA

B−→A :CertB, NA, NB, A, [{NA, NB, A}]pk(KB)

NB is used to not let Alice completely control what is signed by Bob
(otherwise KB cannot be used for anything else).

(ISO Public Key Two-Pass Unilateral Authentication Protocol)
Exercise. Where do begin and end go?
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Mutual authentication — two unilateral authentications:

1. A−→B :NA1

2. B−→A :CertB, NA1, NB, A, [{NA1, NB, A}]pk(KB)

3. A−→B :CertA, NB, NA2, B, [{NB, NA2, B}]pk(KA)

A draft version of ISO Public Key Three-Pass Mutual Authentication Protocol.

■ Simply two instances of the protocol on previous slide.

■ Insecure.
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1. C(A)−→B :NA1

2. B−→C(A) :CertB , NA1, NB, A, [{NA1, NB, A}]pk(KB)

1′. C(B)−→A :NB

2′. A−→C(B) :CertA, NB , NA2, B, [{NB, NA2, B}]pk(KA)

3. C(A)−→B :CertA, NB , NA2, B, [{NB, NA2, B}]pk(KA)

B thinks he has been the responder in a protocol session with A. A does not
think that she has initiated a session with B.
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A variant with no such attacks:

1. A−→B :NA

2. B−→A :CertB , NA, NB, A, [{NA, NB, A}]pk(KB)

3. A−→B :CertA, NB , NA, B, [{NB, NA, B}]pk(KA)

But here B has a lot of control over the message signed by A.
Exercise. What if A and B were not under signature in messages 2 and 3?
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1. A−→C :NA

1′. C(A)−→B :NA

2′. B−→C(A) :CertB , NA, NB, A, [{NA, NB}]pk(KB)

2. C−→A :CertC , NA, NB, A, [{NA, NB}]pk(KC)

3. A−→C :CertA, NB , NA, C, [{NB, NA}]pk(KA)

3′. C(A)−→B :CertA, NB , NA, B, [{NB, NA}]pk(KA)

B thinks he was the responder in a session initiated by A. A does not think
she had initiated a session with B.
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Entity authentication can be done using one-time passwords:
A and B have agreed on a code-book f : {0, 1}n −→ {0, 1}∗.

1. A generates r ∈ {0, 1}n, sends it to B.

2. B responds with f(r).

3. A checks that it indeed received f(r).

Care has to be taken to not repeat the chellenge r.
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Lamport’s one-time password scheme:
Initialization: B chooses a password pw and n ∈ N. Sends (B, hn(pw), n) to
A over an authenticated channel.

■ B puts nB := n.

■ A puts pw ′ := hn(pw).

One round:

1. A sends a notice to B.

2. B computes r := hnB−1(pw), decrements nB and sends r to A.

3. A checks that h(r) = pw ′ and puts pw ′ := r.

This works as long as A and B are synchronized. Resynchronization again
requires authentic channels.
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S/KEY one-time password scheme:
Initialization: B chooses a password pw and n ∈ N. Sends (B, hn(pw), n) to
A over an authenticated channel.

■ A puts nA := n.

■ A puts pw ′ := hn(pw).

One round:

1. A sends the notice n := nA to B.

2. B computes r := hn−1(pw) and sends r to A.

3. A checks that h(r) = pw ′, puts pw ′ := r and nA := n− 1.

Insecure. Exercise. Attack it.
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We have seen Diffie-Hellman key exchange:
Let G be a group with hard Diffie-Hellman problem. Let g generate G. Let
m = |G|.

1. A chooses a random a ∈ Zm, sends x = ga to B.

2. B chooses a random b ∈ Zm, sends y = gb to A.

3. A computes K = ya. B computes K = xb.

4. K is used as a common secret. (h(K) may be a symmetric key)

This protocol needs authentication, too.



65 / 73

Station-to-station protocol:

A−→B : gNA

B−→A : gNB ,CertB , {[{g
NB , gNA}]KB

}
gNANB

A−→B :CertA, {[{g
NA, gNB}]KA

}
gNANB

Proposed by Diffie et al.
Aimed to have several security properties:
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■ Mutual entity authentication.

■ Key agreement.

◆ No third party knows the key.

■ Key confirmation.

◆ The other party knows the key.

■ Perfect forward secrecy.
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It does not quite achieve mutual authentication:

1. A−→C(B) : gNA

1′. C−→B : gNA

2′. B−→C : gNB ,CertB, {[{g
NB , gNA}]KB

}
gNANB

2. C(B)−→A : gNB ,CertB, {[{g
NB , gNA}]KB

}
gNANB

3. A−→C(B) :CertA, {[{g
NA, gNB}]KA

}
gNANB

At this point A thinks she was the initiator in a session with B. But B does
not think he was a responder in a session with A.
The secrecy of gNANB is not violated.
Identities of parties inside the signed messages would have helped.
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Neumann-Stubblebine key exchange protocol.
A TTP T generates a new key for A and B.
Let KXT be the (long-term) symmetric key shared by X and T .

1. A−→B :A,NA

2. B−→T :B,NB, {A,NA, TB}KBT

3. T−→A :NB, {B,NA,KAB, TB}KAT
, {A,KAB, TB}KBT

4. A−→B : {A,KAB, TB}KBT
, {NB}KAB

TB is a timestamp.
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A similarity:

1. A−→B :A,NA

2. B−→T :B,NB, {A,NA, TB}KBT

3. T−→A :NB, {B,NA,KAB, TB}KAT
, {A,KAB, TB}KBT

4. A−→B : {A,KAB, TB}KBT
, {NB}KAB
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Attack through a type flaw:

1. C(A)−→B :A,NA

2. B−→C(T ) :B,NB , {A,NA, TB}KBT

4. C(A)−→B : {A,NA, TB}KBT
, {NB}NA

where NA ∈ Keyssym ∩Nonce.

B thinks he has agreed on key KA with A. A has no idea.
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Otway-Rees key exchange protocol:

1. A−→B :N,A,B, {NA, N,A,B}KAT

2. B−→T :N,A,B, {NA, N,A,B}KAT
, {NB, N,A,B}KBT

3. T−→B : {NA,KAB}KAT
, {NB,KAB}KBT

4. B−→A : {NA,KAB}KAT
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Possible type confusion:

1. A−→B :N,A,B, {NA, N,A,B}KAT

2. B−→T :N,A,B, {NA, N,A,B}KAT
, {NB, N,A,B}KBT

3. T−→B : {NA,KAB}KAT
, {NB,KAB}KBT

4. B−→A : {NA,KAB}KAT

The triple (N,A,B) masquerading as a key may be from some old session.
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Further reading:

Chapter 12.1–12.6 and 12.9 of

Menzeses, van Oorschot, Vanstone.
Handbook of Applied Cryptography.

(available on-line)
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