Universal Composability alias Reactive Simulatability

On security definitions

- Real vs. ideal functionality...
- The ideal functionality for computing the function f with n inputs and outputs:
 - lacktriangle Parties P_1, \ldots, P_n hand their inputs x_1, \ldots, x_n over to the functionality.
 - lack The ideal functionality computes $(y_1, \dots, y_n) = f(x_1, \dots, x_n)$.
 - \blacksquare ... tossing coins if f is randomized.
 - lacktriangle The ideal functionality sends y_i to P_i .

Ideal functionality $MPC_n^{\rm Ideal}$

- \blacksquare Has n input ports and n output ports.
- Initial state: x_1, \ldots, x_n are undefined.
- On input (input, v) from port in_i ?:
 - lacktriangle If x_i is defined, then do nothing.
 - lacktriangle If x_i is not defined, then set $x_i := v$.
- If x_1, \ldots, x_n are all defined then compute (y_1, \ldots, y_n) .
- For all i, write y_i to port $out_i!$.

Ideal functionality $MPC_n^{\rm Ideal}$

- \blacksquare Has n input ports and n output ports.
- Initial state: x_1, \ldots, x_n are undefined.
- On input (input, v) from port in_i ?:
 - lacktriangle If x_i is defined, then do nothing.
 - lacktriangle If x_i is not defined, then set $x_i := v$.
- If x_1, \ldots, x_n are all defined then compute (y_1, \ldots, y_n) .
- For all i, write y_i to port $out_i!$.

How do we run it (connections, scheduling)? What it means for a party to be corrupted?

Real functionality MPC_n^{Real}

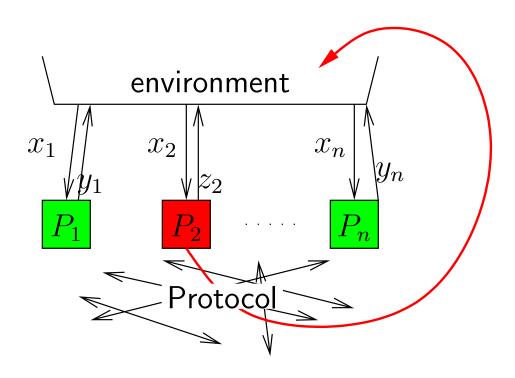
- \blacksquare Conceptually made up of n identical machines P_i .
 - lack Has ports in_i ?, out_i !, network ports...
- Initialization: P_i learns his name i.
- On input (input, v) from port in_i ? put $x_i := v$ and start executing the MPC protocol...
- If the protocol has finished execution then write y_i to $out_i!$.

Real functionality MPC_n^{Real}

- \blacksquare Conceptually made up of n identical machines P_i .
 - lack Has ports in_i ?, out_i !, network ports...
- Initialization: P_i learns his name i.
- On input (input, v) from port in_i ? put $x_i := v$ and start executing the MPC protocol...
- If the protocol has finished execution then write y_i to $out_i!$.
- Cannot speak about the indistinguishability of MPC^{Ideal} and MPC^{Real} because the set of ports is different.
 - We have to simulate something...

Reactive functionalities

- \blacksquare MPC^{Ideal} worked like this:
 - Get the inputs
 - Give the outputs
- \blacksquare MPC^{Ideal} is non-reactive.
- A reactive functionality gets some inputs, produces some outputs, gets some more inputs, produces some more outputs, etc.
 - lacktriangle Example: secure channel from A to B.
- Further inputs may depend on the previous outputs.
 - Or on the messages sent during the processing of previous inputs.



Composability

- We want the real functionality to be usable instead of the ideal one.
- In all possible contexts!
- \blacksquare $\mathcal{F}^{\text{real}}$ may make no behaviour possible that is impossible with $\mathcal{F}^{\text{ideal}}$.
- Recall the last two exercises of the last test in Cryptology I...

Probabilistic I/O automata

A PIOA M has

- \blacksquare The set of possible states Q^M ;
- The initial state $q_0^M \in Q^M$ and final states $Q_F^M \subseteq Q^M$;
- The sets of ports:
 - lacktriangle input ports \mathbf{IPorts}^M ,
 - lacktriangle output ports \mathbf{OPorts}^M
 - lacktriangle clocking ports \mathbf{CPorts}^M ;
- \blacksquare A probabilistic transition function δ^M :
 - lacktriangle domain: $Q^M \times \mathbf{IPorts}^M \times \{0,1\}^*$;
 - lacktriangle range: $Q^M imes (\mathbf{OPorts}^M o (\{0,1\}^*)^*) imes (\mathbf{CPorts}^M \cup \{\bot\})$
 - ...in our examples implemented by a PPT algorithm.
 - $lack Q^M$, Q_F^M and q_0^M may (uniformly) depend on the security parameter.

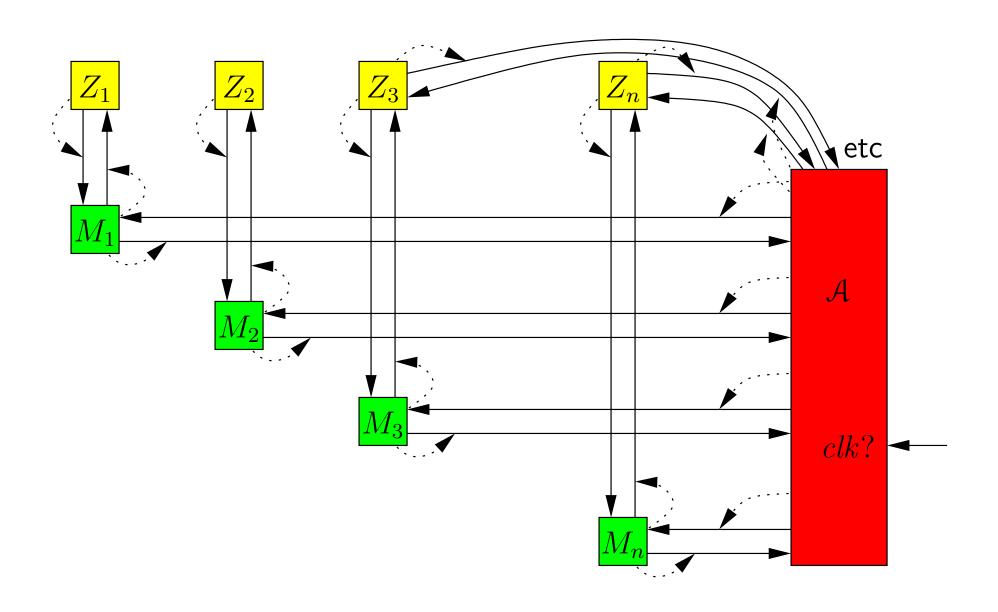
A transition of a PIOA

- The type of δ^M tells us some things about an execution step of a PIOA:
 - Input: one message from one of the input ports.
 - Output: a list of messages for each of the output ports.
 - Also output: a choice of zero or one clocking ports.
- The internal state may change, too.

Channels and collections

- A set Chans of channel names is given.
- There is a distinguished $clk \in \mathbf{Chans}$, representing global clock.
- For a channel c, its input, output and clocking ports are c?, c! and c!.
- \blacksquare A closed collection C is a set of PIOAs, such that
 - no port is repeated;
 - ♦ For each $c \in \mathbf{Chans} \setminus \{clk\}$ occurring in C: the ports c?, c! and c! are all present.
 - \bullet clk? is present. clk! and clk! are not present.
- A collection C is a set of PIOAs that can be extended to a closed collection.
 - ♦ Let freeports(C) be the set of ports that the machines in C' certainly must have for $C \cup C'$ to be a closed collection.

Example closed collection



Internal state of a closed collection

The state of a closed collection C consists of

- \blacksquare the states of all PIOA-s in C;
 - lacktriangle Initially q_0^M for all $M \in C$.
- \blacksquare the message queues of all channels c in C;
 - I.e. sequences of (still undelivered) messages.
 - lacktriangle Initially the empty queues for all $c \in C$.
- lacktriangle the currently running PIOA M, its input message v and channel c.
 - Initially X, ε and clk, where X is the machine with the port clk?.

Execution step of a closed collection

- Invoke the transition function of M with message v on input port c?.
 - lacktriangle Update the internal state of M.
 - If (v_1, \ldots, v_k) was written to port c'! then append v_1, \ldots, v_k to the end of the message queue of c'.
- If M is X and it reached the final state then stop the execution.
- Otherwise, if M picked a clock port $c'^{\triangleleft}!$ and the queue of c' is not empty, then define the new (M, v, c):
 - lacktriangle c is c';
 - v is the first message in the queue of c', which is removed from the queue;
 - lacktriangleq M is the machine with the port c'?.
- Otherwise set $(M, v, c) := (X, \varepsilon, clk)$.

Trace of the execution

Each execution step adds a tuple consisting of

- the machine that made the step;
- the incoming message and the channel;
- the random coins that were generated and the new state and messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over traces (for a given security parameter).

Trace of the execution

Each execution step adds a tuple consisting of

- the machine that made the step;
- the incoming message and the channel;
- the random coins that were generated and the new state and messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over traces (for a given security parameter).

Given trace tr and a set of machines \mathcal{M} , the restriction of the trace $tr|_{\mathcal{M}}$ consists of only those tuples where the machine belongs to \mathcal{M} .

Combining PIOAs

The combination of PIOAs M_1, \ldots, M_k is a PIOA M with

- lacksquare the state space $Q^M=Q^{M_1} imes\cdots imes Q^{M_k}$;
- \blacksquare initial state $q_0^M = (q_0^{M_1}, \dots, q^{M_k});$
- \blacksquare final states $Q_F^M = \bigcup_i Q^{M_1} \times \cdots \times Q^{M_{i-1}} \times Q_F^{M_i} \times Q^{M_{i+1}} \times \cdots \times Q^{M_k}$;
- lacksquare ports $\mathbf{XPorts}^M = \bigcup_i \mathbf{XPorts}^{M_i}$ with $\mathbf{X} \in \{\mathbf{I}, \mathbf{O}, \mathbf{C}\}$;
- lacktriangle Transition function δ^M , where $\delta^M((q_1,\ldots,q_k),c?,v)$ is evaluated by
 - Let i be such that $c? \in \mathbf{IPorts}^{M_i}$.
 - lacktriangle Evaluate $(q_i', f_i, p) \leftarrow \delta^{M_i}(q_i, c?, v)$.
 - Output $((q_1, ..., q_{i-1}, q'_i, q_{i+1}, ..., q_k), f, p)$, where

$$f(c'!) = \begin{cases} f'(c'!), & \text{if } c'! \in \mathbf{OPorts}^{M_i} \\ \varepsilon, & \text{otherwise.} \end{cases}$$

Exercise. How does the semantics of a closed collection change if we replace certain machines in this collection with their combination?

Security-oriented structures

- A structure consists of
 - lack a collection C;
 - lack a set of ports $S \subseteq \text{freeports}(C)$.
 - C offers the intended service on S.
 - The ports freeports $(C)\setminus S$ are for the adversary.
- A system is a set of structures.
- A configuration consists of a structure (C, S) and two PIOA-s H and A, such that
 - lacktriangle H has no ports in freeports $(C) \backslash S$,
 - lacktriangle $C \cup \{H, A\}$ is a closed collection.
- Let $\mathbf{Confs}(C, \mathsf{S})$ be the set of pairs (H, A), such that (C, S, H, A) is a configuration.

Exercise. What parts of (C, S) determine Confs(C, S)?

Reactive simulatability

- \blacksquare Let (C_1, S) and (C_0, S) be two structures.
- \blacksquare (C_1, S) is at least as secure as (C_0, S) if
 - lack for all H,
 - lacktriangle for all A, such that $(H,A) \in \mathbf{Confs}(C_1,\mathsf{S})$
 - lacktriangle exists S, such that $(H,S) \in \mathbf{Confs}(C_0,\mathsf{S})$

such that $[\![C_1 \cup \{H,A\}]\!]|_H \approx [\![C_0 \cup \{H,S\}]\!]|_H$.

- We also say that (C_0, S) simulates (C_1, S) .
- The simulatability is universal if the order of quantifiers is $\forall A \exists S \forall H$.
- The simulatability is black-box if
 - lacktriangle there exists a PIOA Sim, such that
 - lack for all $(H,A) \in \mathbf{Confs}(C_1,\mathsf{S})$ holds

$$(H, A || Sim) \in \mathbf{Confs}(C_0, S) \text{ and } [\![C_1 \cup \{H, A\}]\!]|_H \approx [\![C_0 \cup \{H, A, Sim\}]\!]|_H.$$

Exercise. Show that universal and black-box simulatability are equivalent (if the port names do not collide).

Simulatability for systems

A system Sys_1 is at least as secure as a system Sys_0 if for all structures $(C_1, S) \in Sys_1$ there exists a structure $(C_0, S) \in Sys_0$, such that (C_1, S) is at least as secure as (C_0, S) .

What is simulatable by what?

- Input $n \in \mathbb{Z}$ from the user, output n to the adversary.
- Input n from the user, output n^2 to the adversary.
- Input n from the user, output |n| to the adversary.
- "Unique identifiers" (randomly generated) from a single party.
- \blacksquare "Unique identifiers" (randomly generated) from k parties.

Example: secure channels for n parties

- Ideal PIOA $\mathfrak I$ has ports in_i ? and $out_i!$ for communicating with the i-th party.
- Input (j, M) on in_i ? causes (i, M) to be written to out_j !.
- Should model API calls, hence it also has the ports out_i !.

Example: secure channels for n parties

- Ideal PIOA $\mathfrak I$ has ports in_i ? and $out_i!$ for communicating with the i-th party.
- Input (j, M) on in_i ? causes (i, M) to be written to out_j !.
- Should model API calls, hence it also has the ports out_i !.
- Real structure uses public-key cryptography to provide confidentiality and authenticity.
 - lacktriangle Message M from i to j encoded as $\mathcal{E}_j(\operatorname{sig}_i(M))$.
- Consists of PIOA-s M_1, \ldots, M_n . M_i has ports in_i ? and out_i !.
- \blacksquare M_i has ports $net_i^{\rightarrow}!$, net_i^{\rightarrow} ! and net_i^{\leftarrow} ? for (insecure) networking.
- Public keys are distributed over authentic channels.
 - $lack M_i$ has ports $aut_{i,j}^{\rightarrow}!$, $aut_{i,j}^{a}!$ and $aut_{j,i}^{a}$? for authentically communicating with party M_j .
 - lacktriangle M_i always writes identical messages to $aut_{i,j}^{\rightarrow}!$ and $aut_{i,j}^{a}!$.

Example: secure channels for n parties

- Ideal PIOA $\mathcal I$ has ports in_i ? and $out_i!$ for communicating with the i-th party.
- Input (j, M) on in_i ? causes (i, M) to be written to out_j !.
- Should model API calls, hence it also has the ports out_i !.
- Real structure uses public-key cryptography to provide confidentiality and authenticity.
 - lacktriangle Message M from i to j encoded as $\mathcal{E}_j(\operatorname{sig}_i(M))$.
- Consists of PIOA-s M_1, \ldots, M_n . M_i has ports in_i ? and out_i !.
- \blacksquare M_i has ports $net_i^{\rightarrow !}$, $net_i^{\rightarrow !}$ and $net_i^{\leftarrow ?}$ for (insecure) networking.
- Public keys are distributed over authentic channels.
 - $lack M_i$ has ports $aut_{i,j}^{\rightarrow}!$, $aut_{i,j}^{a}!$ and $aut_{j,i}^{a}$? for authentically communicating with party M_i .
 - $lacktriangleq M_i$ always writes identical messages to $aut_{i,j}^{\rightarrow}!$ and $aut_{i,j}^{a}!$.
- $\blacksquare S = \{in_1!, \dots, in_n!, in_1^{\triangleleft}!, \dots, in_n^{\triangleleft}!, out_1?, \dots, out_n?\}.$

\mathcal{I} is way too ideal

- Sending a message without initialization.
 - generating keys and distributing the public keys.
- Sending messages without delays. Guaranteed transmission.
- Traffic analysis.
- Concealing the length of messages.
- \blacksquare Transmitting only a number of messages polynomial to η .

\mathcal{I} is way too ideal

- Sending a message without initialization.
 - generating keys and distributing the public keys.
- Sending messages without delays. Guaranteed transmission.
- Traffic analysis.
- Concealing the length of messages.
- \blacksquare Transmitting only a number of messages polynomial to η .

To simplify the presentation, we'll also

Allow reordering and repetition of messages from one party to another.

The state of the PIOA \mathcal{I}

- Boolean $init_i$ "has M_i generated the keys?"
- Boolean $init_{i,j}$ "has M_j received the public keys of M_i ?"
- Sequence of bit-strings $D_{i,j}$ the messages party i has sent to party j.
- lacksquare the total length of messages party i has sent so far.

Initial values — false, ε , or 0.

The state of the PIOA \mathcal{I}

- Boolean $init_i$ "has M_i generated the keys?"
- Boolean $init_{i,j}$ "has M_j received the public keys of M_i ?"
- Sequence of bit-strings $D_{i,j}$ the messages party i has sent to party j.
- \blacksquare ℓ_i the total length of messages party i has sent so far.

Initial values — false, ε , or 0.

To set these values, \mathcal{I} has to communicate with the adversary, too. It has the ports $adv^{\rightarrow}!$, $adv^{\rightarrow}!$ and adv^{\leftarrow} ? for that.

The transition function $\delta^{\mathfrak{I}}$

- On input (init) from in_i ?: Set $init_i$ to true, write (init, i) to adv^{\rightarrow} ! and raise adv^{\rightarrow} !.
- On input (init, i, j) from $adv \leftarrow ?$: Set $init_{i,j}$ to $init_i$.
- On input (send, j, M) from in_i ?: Do nothing if one of the following holds:
 - $|M| + \ell_i > p(\eta)$ for a fixed polynomial p;
 - $lack init_i \wedge init_{j,i} = {\tt false}.$

Otherwise add |M| to ℓ_i and append M to $D_{i,j}$. Write (sent, i, j, |M|) to $adv^{\rightarrow}!$ and raise $adv^{\rightarrow}!$.

- On input (recv, i, j, x) from adv^{\leftarrow} ?: Do nothing if one of the following holds:
 - $lack init_j \wedge init_{i,j} = false;$
 - \bullet $x \leq 0$ or $|D_{i,j}| < x$.

Otherwise write (received, $i, D_{i,j}[x]$) to $out_j!$ and raise $out_j!$.

The state of the PIOA M_i

- The decryption key K_i^d and signing key K_i^s .
- lacktriangle The encryption keys $K_j^{
 m e}$ and verification keys $K_j^{
 m v}$ of all parties j.
- The length ℓ_i of the messages sent so far.

To operate, we have to fix

- IND-CCA-secure public key encryption system;
- EF-CMA-secure signature scheme.

The transition function δ^{M_i}

- On input (init) from in_i ?: Generate keys $(K_i^{\rm e}, K_i^{\rm d})$ and $(K_i^{\rm v}, K_i^{\rm s})$. Ignore further (init)-requests. Write $(K_i^{\rm e}, K_i^{\rm v})$ to ports $aut_{i,j}^{\rightarrow}!$ and $aut_{i,j}^{\rm a}!$.
- lacksquare On input $(k^{\mathrm{e}}, k^{\mathrm{v}})$ from $aut_{j,i}^{\mathrm{a}}$?: Initialize K_{j}^{e} and K_{j}^{v} .
- On input (send, j, M) from in_i ?: If $|M| + \ell_i \leq p(\eta)$ and $K_i^{\mathrm{s}}, K_j^{\mathrm{e}}$ are defined
 - lacktriangle Let $v \leftarrow \mathcal{E}_{K_j^{\mathbf{e}}}(\operatorname{sig}_{K_i^{\mathbf{s}}}(i,j,M))$.
 - lack Add |M| to ℓ_i .
 - lacktriangle Write (sent, j, v) to $net_i^{\rightarrow !}$ and raise $net_i^{\rightarrow !}$.
- On input (recv, j, v) from net_i^{\leftarrow} ?: If the necessary keys are initialized and decryption and verification succeed (giving message M) then write (received, j, M) to $out_i!$ and raise $out_i^{\triangleleft}!$.

Ideal and real at a glance

```
(init) from user:
J:
                                               generate keys, send to adversary
(init) from user i:
                                               and others.
set init_i, notify adversary.
                                               (k^{e}, k^{v}) from aut_{i,i}^{a}?:
(init, i, j) from adversary:
                                               set the public keys of j-th party
set init_{i,j}, if \overline{init_i} set.
                                               (send, j, M) from user:
(send, j, M) from user i:
                                               Send j and c=\mathcal{E}_{K_i^{\mathbf{e}}}(\mathsf{sig}_{K_i^{\mathbf{s}}}(i,j,M))
\overline{\text{store}} \ M in the sequence D_{i,j};
send (send, i, j, |M|) to adversary.
                                               to the adversary
                                               (only if K_i^{
m e} and K_i^{
m s} present)
(only if init_i \wedge init_{i,j})
                                               (j,c) from adversary:
(recv, i, j, x) from adversary:
send (j, D_{i,j}[x]) to user j.
                                               decrypt with K_i^{\mathrm{d}}, check signature
(only if init_i \wedge init_{j,i})
                                               with K_i^{\text{v}}, send plaintext to user if OK
                                               (only if K_i^{\mathrm{v}} and K_i^{\mathrm{d}} present)
```

The simulator

- \blacksquare The simulator translates between the ideal structure \Im and the "real" adversary.
- It has the following ports:
 - \bullet adv^{\rightarrow} ?, adv^{\leftarrow} !, adv^{\leftarrow} ! for communicating with \Im .
 - $lack net_i^{\rightarrow}!$, $net_i^{\rightarrow}!$, $net_i^{\leftarrow}?$, $aut_{i,j}^{\rightarrow}!$, $aut_{i,j}^{a}!$, $aut_{j,i}^{a}?$ for communicating with the "real" adversary.
 - Both ends of the channel $aut_{i,j}^{a}$ are at Sim.
 - But the adversary schedules this channel.

Exercise. Construct the simulator.

Bisimulations

- \blacksquare A state-transition system is a tuple (S, A, B, \rightarrow) , where
 - lacktriangle S and A are the sets of states, input actions and output actions.
 - lacktriangle \to is a partial function from $S \times A$ to $S \times B$.
 - Write $s \stackrel{a/b}{\rightarrow} t$ for $\rightarrow (s, a) = (t, b)$.
- An equivalence relation \mathcal{R} over S is a bisimulation, if for all s, s', a, such that $s \mathcal{R} s'$:
 - If $s \stackrel{a/b}{\to} t$ then exists $t' \in S$, such that $s' \stackrel{a/b}{\to} t'$ and $t \Re t'$.
- Two systems (S, A, B, \rightarrow) and (T, A, B, \Rightarrow) with starting states $s_0 \in S$ and $t_0 \in T$ are bisimilar, if there exists a bisimulation of $(S \dot{\cup} T, A, B, \rightarrow \cup \Rightarrow)$ that relates s_0 and t_0 .

Probabilistic bisimulations

- Let (S, A, B, \rightarrow) be a probabilistic state-transition system. I.e.
 - lacktriangle S, A and B are the sets of states and input/output transitions.
 - \bullet \to is a partial function from $S \times A$ to $\mathfrak{D}(S \times B)$ (probability distributions over S).
- An equivalence relation $\mathcal R$ over S is a probabilistic bisimulation if $s \ \mathcal R \ s'$ implies
 - for each $a \in A$, $s \stackrel{a}{\to} D$ implies that there exists D', such that $s' \stackrel{a}{\to} D'$, and
 - for each $t \in S$ and $b \in B$: $\sum_{t' \in t/\Re} D(t', b) = \sum_{t' \in t/\Re} D'(t', b)$.
- Two probabilistic transition systems (S, A, B, \rightarrow) and (T, A, B, \Rightarrow) with starting states s_0 and t_0 are bisimilar if there exists a probabilistic bisimulation \mathcal{R} of $(S \cup T, A, \rightarrow \cup \Rightarrow)$ that relates s_0 and t_0 .

Probabilistic bisimilarity

Bisimilarity of systems (S, A, B, \rightarrow) and (T, A, B, \Rightarrow) with starting states s_0 , t_0 means that

- The sets S and T can be partitioned into $S_1 \dot{\cup} \cdots \dot{\cup} S_k$ and $T_1 \dot{\cup} \cdots \dot{\cup} T_k$, such that
 - lack ... some of S_i , T_i may be empty;
 - ... define a relation $\mathcal{R} \subseteq S \times T$, such that $s \mathcal{R} t$ iff $s \in S_i, t \in T_i$ for some i.
- For all $s \in S_i$, $t \in T_i$, $a \in A$:
- If $s \stackrel{a}{\to} D$ then $t \stackrel{a}{\Rightarrow} E$. Also, for each j and b: $\sum_{s' \in S_j} D(s', b) = \sum_{t' \in T_j} E(t', b).$
- \blacksquare $s_0 \Re t_0$.

Composition

Let the structures $(C_1, S_1), \ldots, (C_k, S_k)$ be given. We say that (C, S) is the composition of those structures if

- \blacksquare C_1, \ldots, C_k are pairwise disjunct;
- \blacksquare the sets of ports of C_1, \ldots, C_k are pairwise disjunct;
- $\blacksquare \quad C = C_1 \cup \cdots \cup C_k;$
- freeports $(C_i)\backslash S_i \subseteq \text{freeports}(C)\backslash S$ for all i.

Write
$$(C, S) = (C_1, S_1) \times \cdots \times (C_k, S_k)$$
.

Composition

Let the structures $(C_1, S_1), \ldots, (C_k, S_k)$ be given. We say that (C, S) is the composition of those structures if

- \blacksquare C_1,\ldots,C_k are pairwise disjunct;
- \blacksquare the sets of ports of C_1, \ldots, C_k are pairwise disjunct;
- $\blacksquare \quad C = C_1 \cup \cdots \cup C_k;$
- freeports $(C_i)\backslash S_i\subseteq freeports(C)\backslash S$ for all i.

Write
$$(C, S) = (C_1, S_1) \times \cdots \times (C_k, S_k)$$
.

Theorem. Let

- $(C,S) = (C_1,S_1) \times (C_0,S_0)$ and $(C',S) = (C_1,S_1) \times (C'_0,S_0)$;
- $(C_0, S_0) \ge (C'_0, S'_0).$

Then
$$(C, S) \geq (C', S)$$
.

Proof on the blackboard.

Power of composition

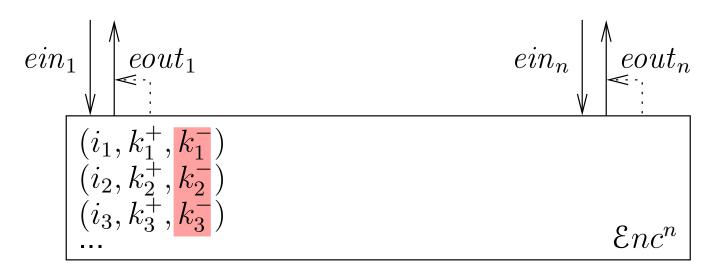
- The composition theorem gives the model its usefulness.
- One can construct a large system as follows:
 - Design it from the functionalities that have already been constructed.
 - add some glue code, if necessary.
 - Prove that it satisfies the needed (security) properties.
 - Assume the ideal implementations of existing functionalities.
 - ♦ Implement the system.
 - Use the real implementations of existing functionalities.
- The proofs of properties will hold for the real system.

Simulation for secure messaging

- 1. Separate encryption; replace it with an ideal encryption machine.
 - Same for signatures.
- 2. Define a probabilistic bisimulation with error sets between the states of $M_1 || \cdots || M_n$ and $\Im || Sim$.
- 3. Show that error sets have negligible probability.
 - The errors correspond to forging a signature or generating the same random value twice.
 - The first case may also be handled by defining a separate signature machine.
 - The second case may also be handled by defining the ideal machines in the appropriate way.

The PIOA $\mathcal{E}nc^n$

- \blacksquare Has ports ein_i ?, $eout_i$!, $eout_i$! for $1 \le i \le n$.
- The machine M_i will get ports $ein_i!$, ein_i !, $eout_i$?.
- On input (gen) from ein_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $eout_i$!, clock.
- On input (enc, k^+, M) from ein_i ?: if k^+ has been stored as a public key, then compute $v \leftarrow \mathcal{E}(k^+, M)$, write v to $eout_i$!, clock.
- On input (dec, k^+, M) from ein_i ?: if (i, k^+, k^-) has been stored, write $\mathfrak{D}(k^-, M)$ to $eout_i$!, clock.

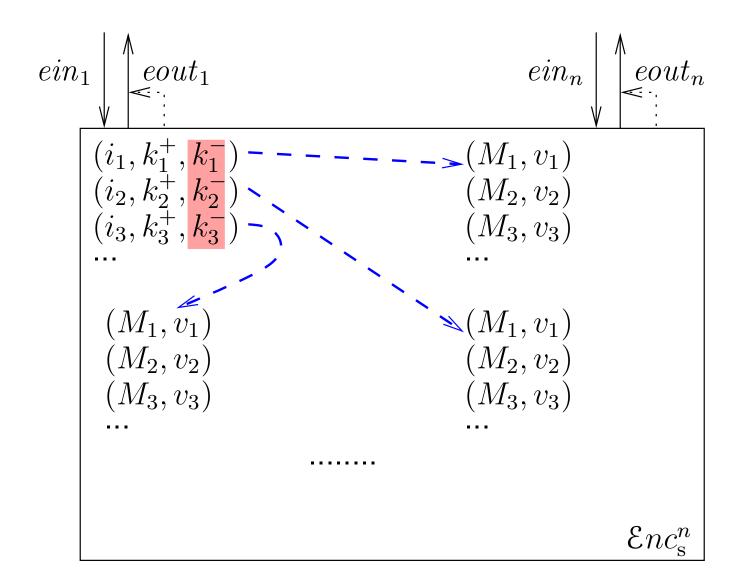


The PIOA $\mathcal{E}nc_{\mathrm{s}}^n$

- \blacksquare Has ports ein_i ?, $eout_i$!, $eout_i$! for $1 \le i \le n$.
- The machine M_i will get ports $ein_i!$, ein_i !, $eout_i$?.
- On input (gen) from ein_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $eout_i$!, clock.
- On input (enc, k^+ , M) from ein_i ?: if k^+ has been stored as a public key, then compute $v \leftarrow \mathcal{E}(k^+, 0^{|M|})$, store (k^+, M, v) , write v to $eout_i$!, clock.
 - lacktriangle Recompute v until it differs from all previous v-s.
- On input (dec, k^+, v) from ein_i ?: if (i, k^+, k^-) has been stored, then
 - if (k^+, M, v) has been stored for some v, then write v to $eout_i!$, clock.
 - lacktriangle otherwise write $\mathfrak{D}(k^-,M)$ to $eout_i!$, clock.

 $\mathcal{E}nc^n \geq \mathcal{E}nc^n_s$ (black-box). **Exercise.** Describe the simulator.

The PIOA $\mathcal{E}nc_{\mathrm{s}}^n$



The PIOA Sig^n

- \blacksquare Has ports sin_i ?, $sout_i$!, $sout_i$! for $1 \le i \le n$.
- The machine M_i will get necessary ports for using Sig^n as by API calls.
- On input (gen) from sin_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $sout_i$!, clock.
- On input (sig, k^+, M) from sin_i ?: if (i, k^+, k^-) has been stored then compute $v \leftarrow sig(k^-, M)$, write v to $sout_i$!, clock.
- On input (ver, k^+, s) from sin_i ?: if k^+ has been stored then write $\text{ver}(k^+, s)$ to $sout_i$!, clock.

The PIOA Sig_s^n

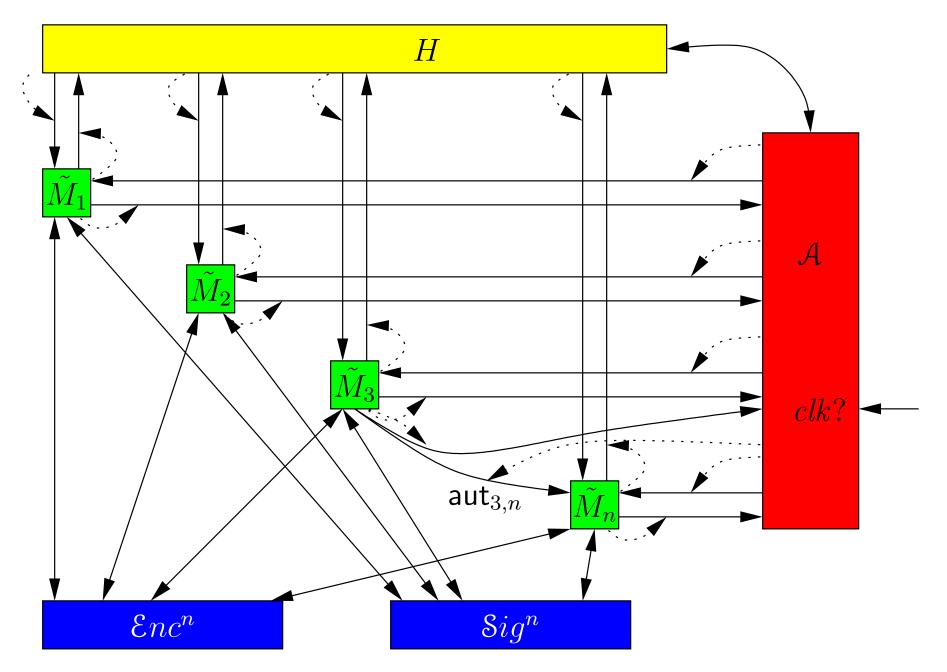
- \blacksquare Has ports sin_i ?, $sout_i$!, $sout_i$! for $1 \le i \le n$.
- The machine M_i will get necessary ports for using Sig^n as by API calls.
- On input (gen) from sin_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $sout_i$!, clock.
- On input (sig, k^+, M) from sin_i ?: if (i, k^+, k^-) has been stored then compute $v \leftarrow \text{sig}(k^-, M)$, store (k^+, M) , write v to $sout_i$!, clock.
- On input (ver, k^+, s) from sin_i ?: if k^+ has been stored then write $\text{ver}(k^+, s) \wedge \text{``}(k^+, M)$ has been stored" to $sout_i$!, clock.

Theorem. $Sig^n \geq Sig_s^n$.

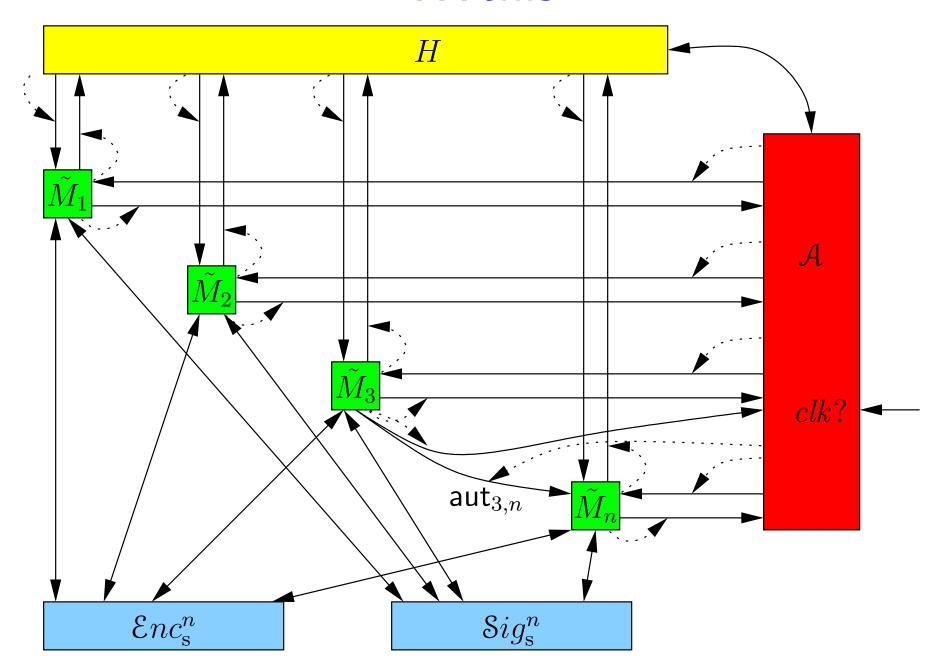
Modified real structure

- Instead of generating the encryption keys, and encrypting and decrypting themselves, machines M_i query the machine $\mathcal{E}nc^n$.
- We can then replace $\mathcal{E}nc^n$ with $\mathcal{E}nc^n_s$. The original structure was at least as secure as the modified structure.
- Same for signatures...
- lacksquare Denote the modified machines by M_i .

This is at least as secure as...



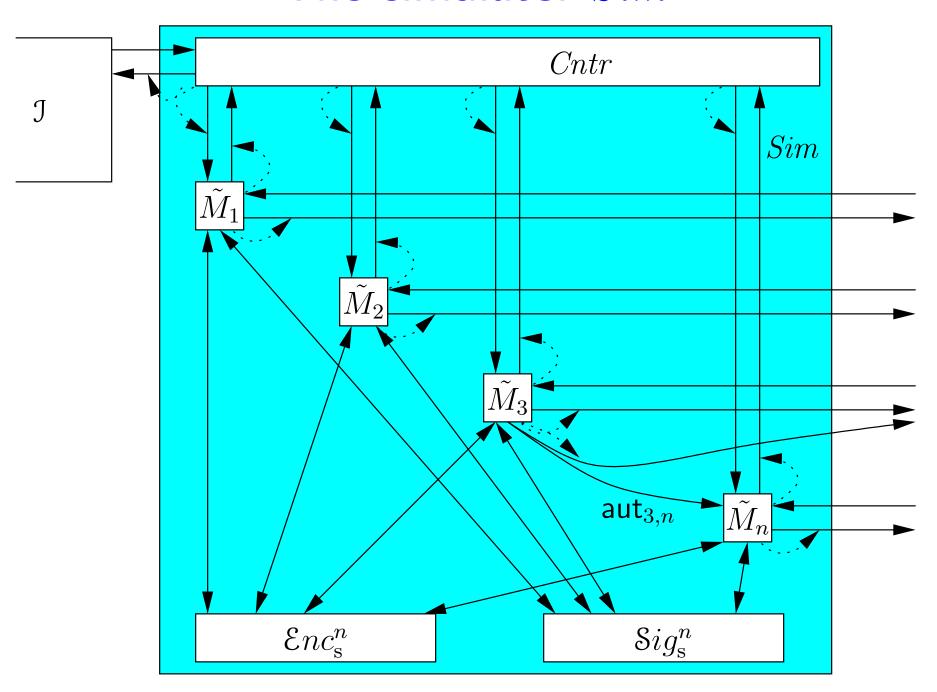
... this



The state of the real structure

- State of \tilde{M}_i the keys K_j^e and K_j^v $(1 \le j \le n)$.
 - lacktriangle If some K is defined at several machines, then they are equal.
- State of $\mathcal{E}nc_{\mathbf{s}}^n$:
 - lacktriangle key triples (i, k^+, k^-) , where k^+ is the same as $K_i^{\rm e}$.
 - lack text triples (k^+, M, v) , where k^+ also occurs in a key triple.
- State of $\$ig_{\mathrm{s}}^n$:
 - lacktriangle key triples (i, k^+, k^-) , where k^+ is the same as K_i^{v} .
 - lacktriangle text pairs (k^+, M) , where k^+ also occurs in a key triple.
- Possibly (during initialization) the keys in the buffers of the channels $aut_{i,j}^{\rm a}$.
- No messages are in the buffers of newly introduced channels ein_i etc.
- The buffers of channels connected to H or A are not part of the state.

The simulator Sim



The simulator Sim

- Consists of the real structure and one extra machine Cntr. Its state contains message sequences D'_{ij} for all $1 \le i, j \le n$.
- The ports in_i ?, out_i !, out_i ! of M_i are renamed to cin_i ?, $cout_i$!, $cout_i$!.
- Machine Cntr has ports $cin_i!$, $cin_i^{\triangleleft}!$, $cout_i?$, $adv^{\leftarrow}!$, $adv^{\leftarrow}!$, $adv^{\rightarrow}?$.
- \blacksquare On input (init, i) from adv^{\rightarrow} ? write (init) to $cin_i!$ and clock it.
- On input (k^e, k^v) from $aut_{j,i}^a$?: the machine M_i additionally writes (recvkeys, j) to $cout_i$! and clocks it.
- Receiving (recvkeys, j) from $cout_i$?, machine Cntr writes (init, j,i) to $adv^{\leftarrow}!$ and clocks it.
- Receiving (send, i, j, l) from adv^{\rightarrow} ?, the machine Cntr generates a new message M of length l, appends it to $D'_{i,j}$, writes (send, j, M) to $cin_i!$, clocks it.
- Receiving (received, i, M) from $cout_j$?, the machine Cntr finds x, such that $D'_{i,j}[x] = M$, writes (recv, i, j, x) to adv^{\leftarrow} !, clocks it.

The state of $\Im ||Sim|$

- The state of real structure. Additionally
- For each i, j, the sequences $D'_{i,j}$ of messages that the machine Cntr has generated.
- Initialization bits $init_i$, $init_{i,j}$.
- The sequences of messages $D_{i,j}$ that party i has sent to party j. (stored in \mathfrak{I})

The state of $\Im ||Sim|$

- The state of real structure. Additionally
- For each i, j, the sequences $D'_{i,j}$ of messages that the machine Cntr has generated.
- Initialization bits $init_i$, $init_{i,j}$.
- The sequences of messages $D_{i,j}$ that party i has sent to party j. (stored in \mathfrak{I})

Lemma. If $\Im || Sim$ is not currently running, then

- $|D_{ij}| = |D'_{i,j}|$ and the lengths of the messages in the sequences $D_{i,j}$ and $D'_{i,j}$ are pairwise equal.
- If $init_i$ then M_i has requested the generation of keys. If $init_{i,j}$ then \tilde{M}_j has received the keys of \tilde{M}_i . The opposite also holds.
- The signed messages in Sig_s^n are exactly of the form (i, j, M) where M is in the sequence $D'_{i,j}$. The encrypted messages in $\mathcal{E}nc_s^n$ are exactly those signed messages.

Bisimilarity for secure channels

Relating the states of real and (ideal||simulator) structures:

- \blacksquare The states of \tilde{M}_i , $\mathcal{E}nc_{\mathrm{s}}^n$, $\mathcal{S}ig_{\mathrm{s}}^n$ must be equal.
- The rest of the state of $\Im || Sim|$ must satisfy the lemma we had above.

The relationship must hold only if either H or A is currently running.

■ Now consider all possible inputs that the real structure or (ideal||simulator) may receive. Show that they react to it in the identical manner.

Extension: static corruptions

- Allow the adversary to corrupt the parties before the start of the run (before party has received the (init)-command).
- In the real functionality: machine M_i may accept a command (corrupt) from the port net_i^{\leftarrow} ?.
- It forwards all messages it receives directly to the adversary (over the channel net_i^{\rightarrow}) and receives from the adversary the messages it has to write to other ports.

Exercise. How should we change the ideal functionality? The simulator? **Exercise.** Why is it hard to model dynamic corruptions?

Home exercise

Present a simulatable functionality for secure channels (not allowing corruptions) that preserves the order of messages and does not allow their duplication.

Please use the defined secure messaging functionality as a building block (use the composition).

Deadline: Mid-January.

An UC voting functionality

Let there be m voters and n talliers. Let the possible votes be in $\{0,\ldots,L-1\}$.

All voters will give their votes. All authorities agree on the result. The adversary will not learn individual votes.

- At the voting phase, the voters write their encrypted votes to a bulletin board.
 - Use threshold homomorphic encryption.
 - Talliers have the shares of the secret key.
- Everybody can see the encrypted votes and combine them to the encryption of the tally.
- After the voting period, the talliers publish the plaintext shares of the tally.
- Everybody can combine those shares and learn the voting result.

The ideal functionality

- The ideal functionality $\mathcal{I}_{\text{VOTE}}$ has the standard ports... in_i^V ?, out_i^V !, out_i^V !, in_i^T ?, out_i^T !, out_i^T !, $adv \overset{\leftarrow}{\sim}$!, $adv \overset{\rightarrow}{\sim}$!.
- \blacksquare First expect (init, sid)-command from the adversary.

The ideal functionality

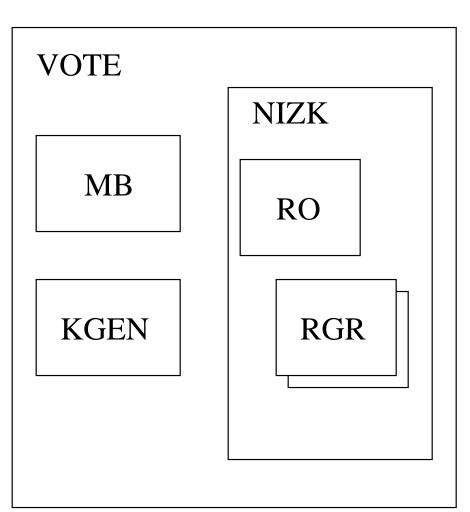
- The ideal functionality $\mathcal{I}_{\text{VOTE}}$ has the standard ports... $in_i^V?$, $out_i^V!$, $out_i^{V\triangleleft}!$, $in_i^T?$, $out_i^T!$, $out_i^{T\triangleleft}!$, $adv^{\leftarrow}?$, $adv^{\rightarrow}!$, $adv^{\rightarrow}!$.
- First expect (init, sid)-command from the adversary.
- On input (vote, sid, v) from V_i store (vote, sid, V_i , v, 0), send (vote, sid, V_i) to the adversary, ignore further votes from V_i in session sid.
- On input (accept, sid, V_i) from the adversary, change the flag from 0 to 1 in (vote, sid, V_i , v, $_{-}$).

The ideal functionality

- The ideal functionality $\mathcal{I}_{\text{VOTE}}$ has the standard ports... $in_i^V?$, $out_i^V!$, $out_i^{V\triangleleft}!$, $in_i^T?$, $out_i^T!$, $out_i^{T\triangleleft}!$, $adv^{\leftarrow}?$, $adv^{\rightarrow}!$, $adv^{\rightarrow}!$.
- \blacksquare First expect (init, sid)-command from the adversary.
- On input (vote, sid, v) from V_i store (vote, sid, V_i , v, 0), send (vote, sid, V_i) to the adversary, ignore further votes from V_i in session sid.
- On input (accept, sid, V_i) from the adversary, change the flag from 0 to 1 in (vote, sid, V_i , v, $_-$).
- On input (result, sid) from the adversary, add up the votes in session sid with flag 1, store (result, sid, r) and send it to the adversary.
- On input (giveresult, sid, i) from the adversary send (result, sid, r) to voter V_i or tallier T_{i-m} .

Building blocks

- Message board
 - Synchronous communication
- Homomorphic threshold encryption
 - ◆ MPC (for key generation)
- NIZK proofs
 - ◆ Random oracle
 - Generation of random elements of a group



Message board

Ideal functionality \mathcal{I}_{MB} for parties P_1, \ldots, P_n is the following:

- On input (bcast, sid, v) from P_i , store (bcast, i, sid, v). Accept no further (bcast, sid, . . .)-queries from P_i . Send (bcast, sid, i, v) to the adversary.
- On input (pass, sid, i) from the adversary, if (bcast, i, sid, v) has been stored, store (post, sid, i, v).
- On input (tally, sid) from the adversary, accept no more (bcast, sid, ...) and (pass, sid, ...)-requests.
- On input (request, sid) from P_j , if (tally, sid) has been received before, send all stored (post, sid, . . .)-tuples to P_j (as a single message).

Realization requires reliable channels or smth.

ZK proofs

The ideal functionality \mathcal{I}_{ZK} for parties P_1, \ldots, P_n and witnessing relation \mathcal{R} is the following

- On input (prove, sid, P_j , x, w) from a party P_i :
 - lacktriangle Check that $(x, w) \in \mathcal{R}$;
 - lacktriangle Store (P_i, P_j, sid, x) ;
 - lacktriangle Send (prove, P_i, P_j, sid, x) to the adversary.
 - lacktriangle Accept no more (prove, sid, \ldots) queries from P_i .
- On input (proofok, P_i , P_j , sid, x) from the adversary send (proof, sid, P_i , x) to P_j .

NIZK proofs

The ideal functionality $\mathfrak{I}_{\text{NIZK}}$ for parties P_1, \ldots, P_n and witnessing relation \mathfrak{R} is the following

- On input (prove, sid, x, w) from a party P_i :
 - lacktriangle Check that $(x, w) \in \mathcal{R}$;
 - lacktriangle Send (proof, sid, x) to the adversary.
 - lacktriangle Accept no more (prove, sid, \ldots) queries from P_i .
 - Wait for a query of the form (proof, sid, x, π) from the adversary.
 - A <u>restriction</u> on the adversary.
 - Can be justified for the ideal functionalities.
 - This topic warrants a deeper research.
 - Store (sid, x, π) .
 - Send (proof, sid, x, π) to P_i .

NIZK proofs

- \blacksquare On input (prove, sid, x, w, π) from the adversary:
 - lacktriangle Check that $(x, w) \in \mathcal{R}$;
 - lack Store (sid, x, π) .
- On input (verify, sid, x, π) from P_j check whether (sid, x, π) is stored. If it is then
 - lacktriangle Return (verifyok, sid, x).

If it is not then

- ullet Send (witness?, sid, x) to the adversary.
- Wait for a query of the form (prove, sid, x, w, π) from the adversary.
- lacktriangle Handle (prove, sid, x, w, π) as before.
- If $(x, w) \in \mathcal{R}$ then return (verifyok, sid, x) to P_j .

Random oracles

The random oracle functionality \mathcal{I}_{RO} for n parties is the following:

- \blacksquare On input x by any party or the adversary
 - lacktriangle If (x,r) is already stored for some r, return r.
 - Otherwise generate $r \in_R \{0,1\}^{p(\eta)}$, store (x,r) and return r.

 \mathcal{I}_{RO} works as a subroutine.

Generating a random element of a group

Let G be a fixed group (depends on η only), with a prime cardinality and hard DDH problem. The functionality \mathcal{I}_{RGR} is the following:

- On input (init) by the adversary generates a random element of G and returns it to the adversary.
- \blacksquare On input (init, i) marks that it may answer to party P_i .
- On input (get) from a party returns the generated element, if allowed.

Realization:

- \blacksquare The machines M_i are initialized by the adversary.
- lacktriangle M_i generates a random element $g_i \in G$, secret shares it;
- The shared values are multiplied and the result is opened.
- \blacksquare A (get) by a party allows it to learn the computed value.
- Uses secure channels functionality.

Exercise. How to simulate?

Protocol realizing NIZK

- Idea: on input (prove, sid, x, w) from party P_i the machine M_i commits to w and outputs x, C(w), and a NIZK proof that C(w) is hiding a witness for x.
- Initialization: parties get two random elements $g, h \in G$ using two copies of \mathcal{I}_{RGR} .
 - lacktriangle Ignore user's query if (get) to \mathcal{I}_{RGR} -s gets no response.
- Let us use the following commitment scheme (G is a group with cardinality #G and hard DDH problem):
 - ◆ To commit to $m \in G$, generate a random $r \in \{0, ... \#G 1\}$. The commitment is $(g^r, m \cdot h^r)$.
 - lacktriangle The opening of the previous commitment is r.

Exercise. How to verify? What is this commitment scheme? What can be said about its security?

Protocol realizing NIZK

- There exists a ZK protocol for proving that a commitment c hides a witness w, such that $(x, w) \in \mathcal{R}$.
- For honest verifiers, this protocol has three rounds commitment (or witness), challenge and response.
 - lacktriangle It depends on \mathcal{R} (and the commitment scheme).
 - Let A(x, C(w), w, r) generate the witness and Z(x, C(w), w, r, a, c) compute the response.
 - Challenge is a random string. Let $\mathcal{V}(x,C(w),a,c,z)$ be the verification algorithm at the end.
- The whole proof π for (x, sid) consists of
 - lacktriangle C(w), a random string \bar{r} ;
 - \bullet $a \leftarrow A(x, C(w), w, r);$
 - $lack z \leftarrow Z(x, C(w), w, r, a, H(x, a, sid, \bar{r}))$
- \blacksquare (proof, sid, x, π) is sent back to the user.

Protocol realizing NIZK

- On input (verify, sid, x, π) from the user, machine M_j verifies that proof:
 - Computes $c = H(x, a, sid, \bar{r})$ (by invoking \mathcal{I}_{RO}) and verifies $\mathcal{V}(x, C, a, c, z)$.

If correct, responds with (verifyok, sid, x).

Simulation

The simulator communicates with

- the ideal functionality: possible commands are
 - lack (proof, i, sid, x);
 - $lack (witness?, sid, x, \pi).$
- the real adversary: possible commands are
 - lacktriangle (init) and (init, i) for two copies of \mathfrak{I}_{RGR} ;
 - lacktriangle queries to the random oracle \mathcal{I}_{RO} .
 - Answer the queries to \mathcal{I}_{RO} in the normal way.

Simulator: initialization

On the very first invocation:

■ Generate random elements $g, h \in G$.

On (init) and (init, i) from the adversary for functionalities \mathcal{I}_{RGR} :

Record that these commands have been received.

Simulating (proof, i, sid, x)

- lacktriangle The query (prove, sid, x, w) was made by party P_i to $\mathfrak{I}_{ ext{NIZK}}$.
- Where do we get w?

Simulating (proof, i, sid, x)

- The query (prove, sid, x, w) was made by party P_i to $\mathfrak{I}_{\text{NIZK}}$.
- \blacksquare Where do we get w? We don't get it at all.
- \blacksquare Let C be the commitment of a random element w';
- Simulate the ZK proof of $(x, w') \in \mathcal{R}$:
 - lacktriangle Let c be a random challenge.
 - lacktriangle Let (a, z) be suitable witness and response for showing that C is the commitment of a suitable witness of x in \mathcal{R} .
- Let \bar{r} be a random string, such that (x, a, sid, \bar{r}) has not been a query to $\mathfrak{I}_{\mathrm{RO}}$.

Simulating (proof, i, sid, x)

- The query (prove, sid, x, w) was made by party P_i to $\mathfrak{I}_{\text{NIZK}}$.
- \blacksquare Where do we get w? We don't get it at all.
- \blacksquare Let C be the commitment of a random element w';
- Simulate the ZK proof of $(x, w') \in \mathcal{R}$:
 - lacktriangle Let c be a random challenge.
 - lacktriangle Let (a, z) be suitable witness and response for showing that C is the commitment of a suitable witness of x in \mathcal{R} .
- Let \bar{r} be a random string, such that (x,a,sid,\bar{r}) has not been a query to $\mathfrak{I}_{\mathrm{RO}}$.
- Define $H(x, a, sid, \bar{r}) := c$. Let $\pi = (C, \bar{r}, a, z)$.
- lacksquare Send (proof, sid, x, i, π) to $\mathfrak{I}_{ ext{NIZK}}$.

(Programmable random oracle)

Simulating (witness?, sid, x, π)

This is called if the real adversary has independently constructed a valid proof.

- Change the simulator as follows:
 - Initialization: the simulator generates g and h so, that it knows $\log_a h$.
- On a (witness?,...)-query, the simulator checks whether the proof $\pi=(C,\bar{r},a,z)$ is correct.
- lacktriangle If it is, then it extracts the witness w from C by ElGamal decryption.
- After that, it sends (prove, sid, x, w, π) to \Im_{NIZK} .

Exercise. What if C does not contain a valid witness?

Corruptions

- The real adversary may send (corrupt)-command to some machine M_i .
 - ◆ Static corruptions only at the beginning.
 - ◆ Adaptive corruptions any time.
- The machine responds with its current state.
- \blacksquare Afterwards, M_i "becomes a part of" the adversary.
 - ◆ Forwards all received messages to the adversary.
 - lacktriangle M_i accesses other components on behalf of the adversary.
 - lacktriangle No more traffic between M_i and the user.
- Possibility to corrupt players has to be taken into account when specifying ideal functionalities.
 - lacktriangle The ideal adversary may send (corrupt, i) to the functionality.
 - The simulator will make these queries if the real adversary corrupted someone.
 - lacktriangle The functionality may change the handling of the *i*-th party.

Corruptions and functionalities

- Random oracles impossible to corrupt.
- Generating a random element of the group:
 - Implementations uses MPC techniques.
 - lacktriangle Tolerates adaptive corruptions of less than n/3 participants.
 - If party i is corrupted, then \mathcal{I}_{RGR}
 - Gives no output to the i-th party.
 - lacksquare Forwards to the adversary all requests from the i-th party.
 - If too many parties are corrupted (at least n/3) then \mathfrak{I}_{RGR} gives all control to the adversary.
 - The simulator simply acts as a forwarder between a corrupted party and the adversary.

Corrupting J_{NIZK}

- The realization of NIZK uses \mathcal{I}_{RGR} .
 - lacktriangle It fails if there are at least n/3 corrupt parties.
- It has no other weaknesses.

Corrupting \mathcal{I}_{NIZK}

- lacktriangle The realization of NIZK uses \mathcal{I}_{RGR} .
 - lacktriangle It fails if there are at least n/3 corrupt parties.
- It has no other weaknesses.
- If party i is corrupted in \mathcal{I}_{NIZK} then it stops talking to the user.
 - ◆ The adversary may prove things on user's behalf.
- If at least n/3 parties are corrupted then $\mathcal{I}_{\text{NIZK}}$ gives up.

Corrupting J_{NIZK}

- The realization of NIZK uses \mathcal{I}_{RGR} .
 - lack It fails if there are at least n/3 corrupt parties.
- It has no other weaknesses.
- If party i is corrupted in $\mathcal{I}_{\text{NIZK}}$ then it stops talking to the user.
 - ◆ The adversary may prove things on user's behalf.
- If at least n/3 parties are corrupted then $\mathcal{I}_{\text{NIZK}}$ gives up.
- The simulator corrupts i-th party of $\mathcal{I}_{\text{NIZK}}$ if M_i is corrupted or the i-th party in \mathcal{I}_{RGR} is corrupted.

Exercise

How should corruptions be integrated to \mathcal{I}_{MB} ?

Ideal functionality \mathcal{I}_{MB} for parties P_1, \ldots, P_n is the following:

- On input (bcast, sid, v) from P_i , store (bcast, i, sid, v). Accept no further (bcast, sid, . . .)-queries from P_i . Send (bcast, sid, i, v) to the adversary.
- On input (pass, sid, i) from the adversary, if (bcast, i, sid, v) has been stored, store (post, sid, i, v).
- On input (tally, sid) from the adversary, accept no more (bcast, sid, ...) and (pass, sid, ...)-requests.
- On input (request, sid, i) from P_j , if (tally, sid) has been received before, send all stored (post, sid, . . .)-tuples to P_j (as a single message).

Homomorphic encryption

- \blacksquare A public-key encryption system $(\mathcal{K}, \mathcal{E}, \mathcal{D})$.
- The set of plaintexts is a ring.
- There is an operation \oplus on ciphertexts, such that if $\mathfrak{D}(k^-,c_1)=v_1$ and $\mathfrak{D}(k^-,c_2)=v_2$ then $\mathfrak{D}(k^-,c_1\oplus c_2)=v_1+v_2$.
- Security IND-CPA.

Homomorphic encryption

- \blacksquare A public-key encryption system $(\mathcal{K}, \mathcal{E}, \mathcal{D})$.
- The set of plaintexts is a ring.
- There is an operation \oplus on ciphertexts, such that if $\mathfrak{D}(k^-,c_1)=v_1$ and $\mathfrak{D}(k^-,c_2)=v_2$ then $\mathfrak{D}(k^-,c_1\oplus c_2)=v_1+v_2$.
- Security IND-CPA.
- In a threshold encryption system, the secret key is shared. There are shares k_1^-, \ldots, k_n^- .
- Also, there are public verification keys $k_1^{\text{v}}, \ldots, k_n^{\text{v}}$ that are used to verify that the authorities have correctly computed the shares of the plaintext.
 - ...like in verifiable secret sharing.
- We use secure MPC to generate $k^+, k_1^-, \ldots, k_n^-, k_1^v, \ldots, k_n^v$.
 - lacktriangle This can be modeled by an ideal functionality $\mathcal{I}_{ ext{KGEN}}$.
 - ◆ There are more efficient means of generation than general MPC.

Key generation

The ideal functionality $\mathcal{I}_{\text{KGEN}}$ for m users and n authorities works as follows:

- On input (generate, sid) from the adversary, generates new keys. and gives the keys $k^+, k_1^{\text{v}}, \ldots, k_n^{\text{v}}$ to the adversary.
- On input (getkeys, sid) from a party, gives the party this party's generated keys. (works like subroutine)
- Breaks down if there are at least (m+n)/3 corrupt parties.

Each voting session needs new keys, otherwise chosen-ciphertext attacks are possible.

Voting protocol

- Voter machines M_1^V, \ldots, M_m^V , tallier machines M_1^T, \ldots, M_n^T .
- The first time some M_i^V or M_i^T is activated, it asks for its key(s) from \mathcal{I}_{KGEN} and receives them.
- lacksquare On input (vote, sid,v) from the user the machine M_i^V
 - Let $c_i \leftarrow \mathcal{E}_{k^+}(\operatorname{Encode}(v))$. Make a NIZK proof π_i that c_i contains a correct vote. Send (bcast, $sid || 0, (c_i, \pi_i)$) to \mathfrak{I}_{MB} .
- lacksquare On input (count, sid) from the adversary the machine M_i^T
 - Sends (request, sid || 0, i) to \mathfrak{I}_{MB} and receives all the votes and correctness proofs $(c_1, \pi_1), \ldots, (c_m, \pi_m)$.
 - lacktriangle Checks the validity of the proofs, using $\mathcal{I}_{\text{NIZK}}$.
 - Multiplies the valid votes and decrypts the result, using k_i^- . Let the result of the decryption be d_i . Makes a NIZK proof ξ_i that d_i is a valid decryption and sends (bcast, $sid || 1, (d_i, \xi_i)$ to \mathcal{I}_{MB} .
 - lacksquare The proof also uses $k_i^{
 m v}$.

Voting protocol

- \blacksquare On input (result, sid) from the adversary any machine
 - Sends (request, sid || 0, i) to \mathcal{I}_{MB} and receives all the votes and correctness proofs $(c_1, \pi_1), \ldots, (c_m, \pi_m)$.
 - lacktriangle Checks the validity of the proofs, using $\mathcal{I}_{\text{NIZK}}$.
 - lacktriangle Multiplies the valid votes, let the result be c.
 - Sends (request, sid || 1, i) to \mathfrak{I}_{MB} and receives the shares of the result d_1, \ldots, d_n together with proofs ξ_1, \ldots, ξ_n .
 - Check the validity of those proofs.
 - lacktriangle Combines a number of valid shares to form the final result r.
 - lack Sends (result, sid, r) to the user.

Exercise. What kind of corruptions are tolerated here?

The simulator — interface

The simulator encapsulates $\mathcal{I}_{\mathrm{MB}}$, $\mathcal{I}_{\mathrm{NIZK}}$, $\mathcal{I}_{\mathrm{KGEN}}$. The simulator handles the following commands:

- From $\mathcal{I}_{\text{VOTE}}$:
 - lacktriangle (vote, sid, i) V_i has voted (but don't know, how).
 - lacktriangle (result, sid, r) the result of the voting session sid.
- From the real adversary:
 - lacktriangle (count, sid) for M_i^T produce the share of the voting result.
 - lacklosh (result, sid) for any M combine the shares of the result and send it to the user.
 - Corruptions; messages on behalf of corrupted parties.

The simulator — interface

- From the real adversary (on behalf of \mathcal{I}_{MB}):
 - lacktriangle (pass, sid, i) lets the message sent by M_i to pass.
 - lack (tally, sid) finishes round sid.
 - lacktriangle (bcast, sid, i, v) broadcast by a corrupt party.
- From the real adversary (on behalf of \mathcal{I}_{NIZK}):
 - (proof, sid, x, π) generate a proof token π for an honest prover.
 - lacktriangle (prove, sid, x, w, π) the adversary proves something himself.
- From the real adversary (on behalf of \mathcal{I}_{KGEN}):
 - lack (generate, sid) generates the keys.

The simulator — interface

The simulator issues the following commands:

```
\begin{array}{ll} \underline{\text{To } \mathcal{I}_{\text{VOTE}}:} & \underline{\text{To the real adversary (as } \mathcal{I}_{\text{MB}}):} \\ \underline{\text{(init, } sid)} & \underline{\text{(bcast, } sid, i, v)} \\ \\ (\text{accept, } sid, i) & \underline{\text{To the real adversary (as } \mathcal{I}_{\text{NIZK}}):} \\ (\text{result, } sid) & \underline{\text{(proof, } i, sid, x)} \\ (\text{giveresult, } sid, i) & \underline{\text{(witness?, } sid, x, \pi)} \\ (\text{corrupt, } i) & \underline{\text{To the real adversary (as } \mathcal{I}_{\text{KGEN}}):} \\ (\text{vote, } sid, i, v) & \underline{\text{(keys, } sid, k^+, k_1^v, \dots, k_n^v)}} \end{array}
```

The simulator — initialization

- \blacksquare On the first activation with a new sid:
 - lacktriangle Generates keys $k^+, k_1^-, \dots, k_n^-, k_1^{\mathrm{v}}, \dots, k_n^{\mathrm{v}}$ for this session.
- $lacktriangmath{\blacksquare}$ When receiving (generate, sid) from the adversary for $\mathfrak{I}_{ ext{KGEN}}$,
 - marks that voting can now commence;
 - lacktriangle sends (init, sid) to $\mathcal{I}_{\text{VOTE}}$.
- \blacksquare Corruptions by the adversary are forwarded to $\mathcal{I}_{\mathrm{VOTE}}$ and recorded.

The simulator — voting

- On input (vote, sid, i) from \mathcal{I}_{VOTE} :
 - Let the encrypted vote be $c \leftarrow \mathcal{E}_{k^+}(0)$.
 - lacktriangle Make a NIZK proof π that this vote is valid.
 - Going to \mathcal{I}_{NIZK} 's waiting state, as necessary.
 - lacktriangle Broadcast (using \mathfrak{I}_{MB}) the pair (c,π) on behalf of voter i.
- \blacksquare On input (pass, sid, i), if the vote was broadcast for the voter P_i :
 - Send (accept, sid, i) back to $\mathfrak{I}_{\text{VOTE}}$.
- If a corrupt party i puts a vote to the message board and makes a valid proof for it:
 - lacktriangle Decrypt that vote. Let its value be v.
 - Send (vote, sid, i, v) to $\mathcal{I}_{\text{VOTE}}$.

The simulator — tallying

On input (tally, $sid \parallel 0$) from the adversary for $\mathfrak{I}_{\mathrm{MB}}$:

- \blacksquare Close the voting session sid, accept counting queries.
- Send (result, sid) to $\mathfrak{I}_{\text{VOTE}}$.
- \blacksquare Get the voting result r from $\mathfrak{I}_{\text{VOTE}}$ and store it.

The simulator — counting

On input (count, sid) from the adversary for the tallier T_i :

- lacktriangle Check the proofs of all votes (c_i, π_i) using $\mathfrak{I}_{ ext{NIZK}}$.
 - ◆ Going to wait-state, if necessary.
- \blacksquare Let C be the product of all votes with valid proofs.
- For talliers T_1, \ldots, T_n , let d_1, \ldots, d_n be
 - lack if T_i is corrupt, then $d_i = \mathcal{D}(k_i^-, C)$;
 - lacktriangle if T_i is honest, then a d_i is simulated value

such that d_1, \ldots, d_n combine to r.

- $lack d_1, \dots, d_n$ are generated at the first (count, sid)-query.
- \blacksquare Make a NIZK proof ξ_i for the share d_i .
- lacksquare Broadcast (d_i, ξ_i) in session $sid \parallel 1$ using $\mathcal{I}_{\mathrm{MB}}$.
- A corrupt tallier can broadcast anything. But only (d_i, ξ_i) for the valid d_i is accepted at the next step.

The simulator — reporting the results

On input (result, sid) from the adversary for any voter or tallier i:

- Takes all votes (c_j, π_j) and all shares of the result (d_j, ξ_j) .
- Verifies all correctness proofs of votes.
- Multiplies the valid votes.
- Verifies the correctness proofs of shares.
- If sufficiently many proofs are correct then sends (giveresult, sid, i) to $\mathcal{I}_{\text{VOTE}}$.

Damgård-Jurik encryption system

- A homomorphic threshold encryption system
- Somewhat RSA-like
 - lacktriangle Operations are modulo n^s , where n is a RSA modulus.
 - Easy to recover i from $(1+n)^i \mod n^s$.
- Maybe in the lecture...
- Otherwise see http://www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps

Secure MPC from thresh. homom. encr.

Computationally secure against malicious coalitions with size less than the threshold.

- Function given as a circuit with multiplications and additions.
- The value on each wire is represented as its encryption, known to all.
- Addition gate everybody can add encrypted values by themselves.
- Multiplication of a and b (encryptions are \overline{a} and \overline{b}):
 - Each party P_i chooses a random d_i , broadcasts $\overline{d_i}$, proves in ZK that it knows d_i .
 - lacktriangle Let $d=d_1+\cdots+d_n$. Then $\overline{d}=\overline{d_1}\oplus\cdots\oplus\overline{d_n}$.
 - lacktriangle Decrypt $\overline{a} \oplus \overline{d} = \overline{a+d}$, let everybody know it.
 - lacktriangle Let $\overline{a_1} = \overline{a+d} \ominus \overline{d_1}$ and $\overline{a_i} = \ominus \overline{d_i}$. P_i knows a_i .
 - lacktriangle P_i broadcasts $a_i\odot \overline{b}=\overline{a_ib}$ and proves in ZK that he computed it correctly.
 - Everybody computes $\overline{a_1b} \oplus \cdots \oplus \overline{a_nb} = \overline{ab}$.