‘Block vs. Stream cipher'

Idea of a block cipher: partition the text into relatively large (e.g.
128 bits) blocks and encode each block separately. The encoding of
each block generally depends on at most one of the previous blocks.

e the same “key” is used at each block.

Idea of a stream cipher: partition the text into small (e.g. 1 bit)

blocks and let the encoding of each block depend on many previous
blocks.

e for each block, a different “key” is generated.



e One-time pad.

‘Examples of stream ciphers'

e Block cipher in OFB or CTR mode.
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Synchronous stream ciphers'

Definition 1. A stream cipher is synchronous if its key sequence does
not depend on the plain- and ciphertexts but only on the previous
elements of the key sequence and the initial key.

Zi = f(zi—lazi—Qa'“)Zi—tak)a

yi = 9(wi,z).
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‘Properties of the synchronous stream cipher'

1. The encoder and decoder must be synchronized, i.e. the decoder
must always make sure that it applies the right element of the key

sequence to the given element of the ciphertext sequence.

2. If an element of the ciphertext sequence has been changed (but not
deleted) then only the corresponding plaintext element is affected.

One-time pad is a synchronous stream cipher.

Other synchronous stream ciphers could be called “pseudo one-time

pads”.

They are as secure as hard it is to distinguish (z;) from a truly random

sequelce.



Self-synchronizing stream ciphers'

Definition 2. A stream cipher is self-synchronizing if its keystream

depends on the plain- or ciphertext.

Z; = f(yi—layz'—Qa-"ayi—tak)a
yi = 9(xi,2i)
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‘Properties of a self-synchronizing stream cipher'

1. If a ciphertext block is changed somehow (either randomly or adve-
rently) then only the decryptions of the next ¢ blocks are affected.

Hence the decoding process synchronizes itself.

2. The rather quick reappearance of the correct decoding means that

the tampering of some ciphertext blocks may remain unnoticed.

3. As the cryptotext blocks depend on all preceeding plaintext blocks,
the statistical analysis of the cryptotext is hopefully more difficult.



Linear keystream generator'

Let c1,...,¢c: € {0,1} certain fixed bits and z1, . .., z; the initial keyst-
ream bits. The subsequent bits z; of the keystream (z,), where i > t,

are generated using the rule

Zi = f(Zi—1,Z7;—2,--->Zv;—t):

= (c1-%i—1+cC2-zi—2+ ...+ cC - 2i—4) mod2.

Example: let t =4, c1 =co =0jacs =c4 =1 and (21, 22, 23,24) =
(0,1,0,0). The output of the generator is then

0,1,0,0,1,1,0,1,0,1,1,1,1,0,0,0,. ...



Linear feedback shift register

(Lineaarse tagasisidega nihkeregister)

. is an electronic gadget for generating a linear keystream. The LFSR

corresponding to the previous example is
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LFSR works like this...
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‘ Periodic sequences I

Definition 3. A sequence zi, 29, 23, ... is periodic if there exists a
d > 1, such that z; = z;14 for all © > 1. The smallest such d is called
the period of that sequence.

If z; = z;14 holds only for all sufficiently large i-s, then z is called
eventually periodic.

Exercise. Show that the sequence of bits generated by any LFSR is
eventually periodic. Show that the period of a sequence generated by
a t-register LFSR is at most 2t — 1.

Exercise. Show that any (eventually) periodic sequence can be gene-
rated by an LFSR.

The linear complexity L(z) of a sequence z is the minimal number of
registers that a LFSR needs to output this sequence.



‘LFSR as a stream cipher'

e P=0C={0,1}".
e A key k € X consists of
— teN;
— c1,...,¢ €4{0,1};
— z1,...,2¢ € {0,1}.
e Toencode or decode x € {0,1}": compute z; = ¢12;_1+. .. ¢tz;—¢ mod

2fort+1 <1 <n and output x P z.

A synchronous stream cipher...how difficult it is to distinguish (z;)

from a truly random sequence of bits?

L.e. if we know a part of the sequence (z;), how difficult it is to predict

the next element(s)?



‘If we know the linear complexity.

Let L(z) =t.
We need to find out 2¢ consequtive keystream bits z,,..., 2,410t 1.
Known-plaintext attack can provide them.

The following equations hold:

)
Zr4t—1°Cl + Zpgt—2°C2 + -+  2Zp Ct =Zppy¢

Zr4tCl T+ Zr4t—1-C2 T ZppltCt = Zp4ttl

ooooooooooooooooooooooooooooooooooooooooooooooooooo

| Zr42t—2Cl T Zrq2¢t-3 - Cot Ft Zppt1 Cp = Zr42t—1
Solve this system over Zs for (cq,...,¢).

It has a solution — the coefficients of the LF'SR generating this sequence.



‘If we do not know the linear complexity'

Then we must (over)estimate it. Let us know t > L(z) =t'.

We need 2t consequtive keystream bits; solve the same system of equa-

tions.

It has a solution: if (cf,...,c} ) are the coefficients of a minimal LFSR

generating z then
o ¢, =c,if 1 <i <t/
e ¢, =0ift' +1<i<t
is a solution to the system of equations.

There are other solutions as well.

We can even determine the linear compexity.



Polynomials over a ring RI

Formally, a polynomial p is a mapping N — R (here N = {0,1,2,...})
with only finitely many non-zero entries. Denote p(7) by p;.

The values of p are called its coefficients.

p is usually written as pp + p1x + p2x? + -+ + Ppa™ where P11 =
Pmgo =+ =0.

Polynomials can be

e added, multiplied, divided (with remainder),

— division p/q is possible if the leading coefficient of ¢ is invertible.
e multiplied with a scalar
e used as arguments to FEuclid’s algorithm, giving their gcd.

The set of all polynomials over R, denoted R|z], is a ring.



Formal series over a ring RI

A formal series f is a mapping N — R. The values of f are called its

coefficients. f is usually written as Zfio fixt.

Formal series can be added, multiplied, multiplied with a scalar:
(f+9)i=fitg (f'g)i:ij‘gi—j (kf)i=Fk- fi
j=0

If fo is invertible then f~! exists and is given by

1—1

o=t U i=—ft (i)

j=0
The set of all formal series over R, denoted R|[z]], is a ring.

A sequence (z;) can also be seen as a formal series (over Zs).



Rational formal series'

A formal series f is rational if it can be expressed as pg~!

, where p

and g are polynomials. Then fy = poq, I and

fi=> pioila ) =q" (pq; - Zpi_j(q_l)j_qu> =
=0 =1 k=1

1

) ) 1—k
qo_l(pq;—z G sz'—j(q_l)j—k> = Q()_l(pz’_ an S:pi—k—j(q_l)j) =
k=1 j=k k=1 j=0

i
d0 (pz' - ZQkfi—k> :
k=1

I.e. the coefficients of a rational formal series satisty a linear recurrence.

If R is finite then the coefficients of f are eventually periodic.



Theorem 1. Let the coefficients of f € R||x]] be eventually periodic.

Then f s rational.

Proof. Let fy,..., fr_1 be the non-periodic part of f’s coefficients and
let f; = fixs for all 2 > r. Let

r—1 t—1
PO =S gt and p=Y fat
1=0 1=0
Then

f — p(o) +p.xr+p.xr+t+p.xr+2t+. .. — p(o)_l_(l_l_xt_|_x2t_|_ .. ).p.ajr —

. PO (-2 +p-a’
B 1 — at

Corollary. If f’s coefficients are periodic (i.e. 7 = 0) then f = ; Where

degp < deggq.



‘Rational formal series over Zs vs. LFSRSI

Let ¢1,...,¢; and zq1,..., 2z be given. Compare:

i ¢
fi=pi+ Z Q. fi—k and 2 = Z CkZi—k
Take =1 k=1
® qo = fo =po =1;

e degg=tand q; =c¢; for 1 < <.

i—1
e p; ==z +ci+ > cpzig for 1 <i<Ht.
k=1

Then f = z (except for the undefined z).
q is the characteristic polynomial of the LF'SR generating z.
If L(z) =t then ¢ is the characteristic polynomial of z.



‘Finding the characteristic polynomial'

Given: z,,...,2r19¢_1, such that t > L(z). Assume r = 1.
e Compute cq,...,c; by solving a system of linear equations.
e Find ¢ and p as in the previous slide.

e Return ¢/gcd(p, q).



‘LFSR—S with long periods'

We know that an LFSR with ¢ registers can output a sequence with a

period at most 2 — 1. How to achieve this upper bound?

Definition 4. A polynomial p € R|x| is reducible if there exists a
polynomial ¢ € R|z], such that 1 < degq < degp and ¢ |p. Otherwise

we call p irreducible.



‘Residue classes modulo polynomials'

Given p € R|x| with invertible leading coefficient we can consider the
set R|z]/p of all residue classes of R|xz] modulo p. We can define addi-

tion and multiplication on this set.

e Rlz]/p=1{q|q € R|r],degq < degp};

® 1 +3q2 = q1 + q2;

® G142 =q1-q2 mod p.

The structure (R|z]/p, +, ) is a ring. If R is a field and p is irreducible
then R[x|/p is a field.

e Finding inverses in R[x|/p — just like in Z,, where q € P.
— Main tool — Euclid’s algorithm.



Finite fields '

e Let p be an irreducible polynomial of degree m over a finite field
K. Then Klz]/p is a field with p™ elements.

e Up to isomorphism, there exists only one field with p™ elements.

e If K is a finite field then K™ is cyclic, i.e. it can be generated by a
single element of K*.

Definition 5. A polynomial p € K|z| is primitive if T is a generator
of (K[z|/p)".
Theorem 2. If a LF'SR’s characteristic polynomial q is primitive then

the period of the sequence produced by this LFSR is 29°89 — 1 for any
non-zero initialization vector.

Proof follows. ..



‘LFSRS in Galois conﬁguration'

R1—>R2—I>R3—I>R4—I>R5—|>R6—l>

Normal; characteristic polynomial: 1 + 23 + 2° + 2°

—=> R, Ri—="1R, Rs—"= R, R; —

Galois configuration; char. polynomial: 1 + x + 23 + 2%

Char. poly. of Galois conf: contains z* if there is extra input to R;.
Also contains x? where ¢ is the number of registers.



Evolution of state of a LFSR in Galois conf.'

A state S of a t-register LFSR can be represented by a polynomial
ptd) = Zz;é S(R;)x" where S(R;) is the contents of R; in S.

The next state of LESR in Galois conf. is then (x - p®)) mod ¢ where

q is the characteristic polynomial.

If ¢ is primitive then the state of that LF'SR in Galois conf. passes
through all 28 — 1 possible values.

We can define an isomorphism between the states of a normal LE'SR

and its corresponding LFSR in Galois conf.

Hence the states of a LFSR pass through all 2¢ — 1 possible values if
the corresponding LFSR in Galois conf. has a primitive characteristic
polynomial. The period of the output sequence is then 2¢ — 1 as well.



‘Mirror images of polynomials'

For a polynomial ¢ = Zf:o g;x' with qo # 0 # ¢ define its mirror
. k i

image by r(q) = >_;_o qk—i®".

If a (normal) LFSR has the characteristic polynomial g then the corres-
ponding LFSR in Galois conf. has the characteristic polynomial r(q).
r(q)-r(q¢") =r(q-q"). Just compare the coefficients.

Hence ¢ is irreducible iff r(q) is.

q (of degree k) is primitive iff r(q) is. Indeed, suppose an irreducible q is
not primitive, then 2! = 1 (mod ¢) for some i < p* —1. L.e. there exists
a polynomial ¢/, such that z* —1 = ¢qq’. Then also r(z* —1) = r(q)r(¢).
But r(z* — 1) = —(2* — 1). Hence r(q) - (-r(¢’)) = 2 — 1 and r(q) is

not primitive.



‘ Testing irreducibility I

Theorem 3. An irreducible polynomial m of d-th degree divides A
in Zn|x].

Proof. Z,[z]/m is a field with p? elements. Hence o’ —a = 0 in
Zp|x]/m for all a € Z,|z]/m (Fermat’s little theorem). The polynomial
z is also a member Z,[x]/m, hence P — =0 (mod m) in Z,[z].

Theorem 4. If an irreducible polynomial m of d-th degree divides

d/

P —x then d|d'.

Proof. Let K be the field with pd/ elements; it contains exactly the roots
of chd/ — x. K is a vector space over Z, with dimension d’. It contains
also the roots of m, let a be a root of m. Let S = {Zf:_ol Nl |\ € Z,}.
Then S is a field. We have K O S D Zp, hence d' = dimz K =
(dimz, S) - (dimg K) = d - (dimg K) and d|d'.



‘ Testing irreducibility I

q € Zy|z] is irreducible if ged(q, 2P —z) =1 for all i < (degq)/2.

Here xP" may be computed modulo q.



‘ Testing primitiveness I

For q € Z,|x| to be primitive, it must first be irreducible. Let m =
deg q.
We must have z* £ 1 (mod q) for all 7 < p™ — 1. It is sufficient to test

this only for the values i = (p™ — 1)/p’ where p’ is a prime factor of
p™ — 1.



‘ Polynomials: exercise I

Which of those polynomials are reducible, which are irreducible and
which are primitive over Zs?

1. =+ 1,

2,

2 41,
2+ x4+ 1
3 + 1
34+ x4+ 1,
zt 4+ + 1,

0 N S Tt W

xt + 2+ 1.



Linear complexity: exercises'

Exercise. Determine the linear complexities of the following sequences.
1. 1,0,1,0,1,0,...
2. 1,0,0,1,0,1,1, 1,0,0,1,0,1,1,...
3. 1,0,0,0,1,0, 1,0,0,0,1,0,...

Exercise.

1. Construct a sequence with infinite linear complexity (i.e. a sequence
that is generated by no LFSR).



‘ Shrinking generator I

.. is constructed from two LF'SRs working synchronously. The shrin-

king generator produces up to one bit for each bit-pair generated by
these two LFSRs. It is defined as follows:

1. If the first LFSR outputs 1 then return the output of the second
LEFSR.

2. If the first LFSR outputs 0 then return nothing (discard the output
of the second LFSR).

If the linear complexities of these two LE'SR-s are L1 and L, then the

linear complexity L of the shrinking generator satisfies

Lo-20172 « [, <« [, . 20171



