
Foundations and properties of Shamir’s secret
sharing scheme

Research Seminar in Cryptography

Dan Bogdanov
University of Tartu, Institute of Computer Science

May 1st, 2007

1 Introduction

Secret sharing is a technique for protecting sensitive data, such as cryptographic
keys. It is used to distribute a secret value to a number of parts—shares—that
have to be combined together to access the original value. These shares can then be
given to separate parties that protect them using standard means, e.g., memorize,
store in a computer or in a safe. Secret sharing is is used in modern cryptography
to lower the risks associated with compromised data.

Sharing a secret spreads the risk of compromising the value across several
parties. Standard security assumptions of secret sharing schemes state that if an
adversary gains access to any number of shares lower than some defined threshold,
it gains no information of the secret value. The first secret sharing schemes were
proposed by Shamir [Sha79] and Blakley [Bla79].

This work gives the standard definition of a (k, n) threshold secret sharing
scheme and its properties. We continue by exploring polynomial evaluations as the
mathematical background for Shamir’s scheme. After describing Shamir’s scheme
we prove its security and present algorithms for performing operations with shares.

2 Concept of secret sharing

Definition 2.1. Let the secret data be a value s. An algorithm S defines a k-out-
of-n threshold secret sharing scheme, if it computes S(s) = [s1, . . . , sn] and the
following conditions hold [Sha79, Dam02]:

1



1. Correctness: s is uniquely determined by any k shares from {s1, . . . , sn}
and there exists an algorithm S′ that efficiently computes s from these k
shares.

2. Privacy: having access to any k−1 shares from {s1, . . . , sn} gives no infor-
mation about the value of s, i.e., the probability distribution of k − 1 shares
is independent of s.

A secret sharing scheme is homomorphic if it is possible to compute new valid
shares from existing shares.

Definition 2.2. Let s and t be two values and [s] = [s1, . . . , sn] and [t] = [t1, . . . , tn]
be their shares. A secret sharing scheme is (⊕,⊗)-homomorphic if shares [(s1 ⊗
t), . . . , (sn ⊗ t)] uniquely determine the value s⊕ t.

If individual shares are from a uniform distribution it can be shown that secret
sharing is secure in a multiparty computation setting. Indeed, the protocol is
simple—one party sends values from a uniform distribution to other parties in
the system. In the ideal world this means the trusted third party F outputs
nothing. The simulator is easy to build—it just generates a value from a uniform
distribution and passes it to the adversary. Again, the values are from the same
distribution and the adversary cannot distinguish between them.

To illustrate the concept of secret sharing, we use the following classical ex-
ample [Sha79]. Assume that there is a corporation where the management needs
to digitally sign cheques. The president can sign cheques on his or her own, the
vice presidents need at least another member of the board to give a signature and
other board members need at least two other managers to sign a cheque.

We can solve this problem by sharing the secret key needed for giving a sig-
nature with a 3-out-of-n threshold secret sharing scheme, where n is the required
number of shares. We give the company president three shares, so he or she can
sign cheques alone. Vice presidents get two shares each, so that they need the
agreement of another manager to give a signature. Other members of the board
get one share per member, so that three of them are needed for a signature.

The signing device is completely secure as it does not contain any secret infor-
mation. It requires the members of the board to provide three shares to retrieve
the signature key. This key is used for a single signature and then forgotten so the
next signature will again require three shares of the key. If a malicious adversary
coerces one manager to sign a cheque, then it has to be the president of the cor-
poration. Otherwise the adversary will have to persuade more than one member
of the board.

2



2.1 Mathematical foundations of secret sharing

2.1.1 Polynomial evaluations

We start by describing some basic properties of polynomials. Let us consider a
ring R and denote the set of all polynomials over R by R[x]. Let f(x) = f0 +f1x+
· · · + fkx

k be a polynomial in R[x]. We also fix a vector a = [a0, . . . , an] ∈ Rn

so that all values ai are different and nonzero. Then we define the polynomial
evaluation mapping eval : R[x] → Rn. as follows. We evaluate the polynomial
f(x) on the vector a and present the result as a vector.

eval(f) := [f(a0), . . . , f(an)]T .

In the following theorem operations between vectors in Rn are defined elementwise.
That is, if u, v ∈ Rn and ⊕ is a binary operator, then:

u⊕ v := [(u1 ⊕ v1), . . . , (un ⊕ vn)]T .

Theorem 2.1. For any two polynomials f and g in R[x] and a scalar value r ∈ R
the following conditions hold:

(i) Additivity: eval(f + g) = eval(f) + eval(g).

(ii) Multiplicativity: eval(f · g) = eval(f) · eval(g).

(iii) Multiplicativity w.r.t. scalar values: eval(r · f) = r · eval(f)

The mapping eval is a linear transformation.

Proof. The conditions hold because of the duality with the respective polynomial
operations:

(i) Additivity: (f + g)(a) = f(a) + g(a)

(ii) Multiplicativity: (f · g)(a) = f(a) · g(a)

(iii) Multiplicativity w.r.t. scalar values: (r · f)(a) = r · f(a)

The conclusion that the mapping is a linear transformation directly follows from
the above conditions. Thus we have shown that eval is a linear mapping between
the evaluation positions of the polynomial and the result vector.

We will now give a further analysis of the properties of this mapping. Let
~f = [f0, . . . , fk] be the array of coefficients of the polynomial f . Note that in
further discussion we consider a polynomial f being equivalent to the vector of its
coefficients.

3



We now compute the vector ~y = eval(f) = [f(a0), . . . , f(an)]T .

~y =
k∑

i=0

fieval(xi) =
k∑

i=0

fi

[
ai

0, . . . , a
i
n

]T

= f0


1
1
...
1

+ f1


a0

a1
...
an

+ · · ·+ fk


ak

0

ak
1
...
ak

n

 =


f0 + f1a0 + · · ·+ fka

k
0

f0 + f1a1 + · · ·+ fka
k
1

· · ·
f0 + f1an + · · ·+ fka

k
n

 .
We notice that the vector ~y is actually the product of a matrix and another vector.

f0 + f1a0 + · · ·+ fka
k
0

f0 + f1a1 + · · ·+ fka
k
1

· · ·
f0 + f1an + · · ·+ fka

k
n

 =


1 a0 a2

0 · · · ak
0

1 a1 a2
1 · · · ak

1
...

...
...

. . .
...

1 an a2
n · · · ak

n

×

f0

f1
...
fk

 . (1)

We denote the matrix by V and notice that the vector on the right side is the vector
~f of polynomial coefficients. This way we can rewrite equation (1) as follows:

~y = V ~f .

This shows that the evaluation mapping between the coefficients f0, . . . , fn and
evaluations f(a0), . . . , f(an) of a polynomial is a linear tranformation determined
by the matrix V .

2.1.2 Reconstructing the polynomial

If k = n then the matrix V is a (k + 1)× (k + 1) square matrix. A matrix in this
form is known as the Vandermonde matrix. It’s determinant is equal to [Kil05,
page 147]

∆(V ) =
∏
i,j
i>j

(ai − aj) .

We need the evaluation mapping to be reversible and for this we need to show
that the matrix V is invertible. A matrix is invertible, if it is regular that is,
its determinant is invertible [Kil05, page 143]. We have defined the values of
a0, . . . , an to be distinct so the differences (ai − aj) in the given sum are nonzero.
To achieve that the product of the differences is nonzero it is enough to make sure
that the ring has no zero divisors. For that reason we require from now on that R
is a field, since fields have no zero divisors. With this assumption we ensure that
∆(V ) is invertible and therefore V is invertible, if all values ai are distinct. This

4



in turn confirms that the transformation provided by V is also invertible and we
can express f by using the inverse of V .

~f = V −1~y

We will now show, how to reconstruct the polynomial f from its evaluations. We
define vectors ~ei as unit vectors in the form

[
e0 . . . en

]
.

~e0 =
[

1 0 . . . 0
]

~e1 =
[

0 1 . . . 0
]

. . .

~en =
[

0 0 . . . 1
]

Let ~bi be such that

~ei = V~bi. (2)

Because of the properties of V we showed earlier we can rewrite equation (2) and

express ~bi as follows.
~bi = V −1~ei .

Noting that

~y =
n∑

i=0

yi~ei

we see that we can reconstruct ~f from evaluations as follows

~f =
n∑

i=0

V −1yi~ei =
n∑

i=0

yi
~bi .

It follows that we can reconstruct the coefficients of the polynomial f , if we have
access to its evaluations at n+1 positions and the vectors ~bi and therefore we have
constructively proved the well-known Lagrange interpolation theorem.

Theorem 2.2 (Lagrange interpolation theorem). Let R be a field and a0, . . . , an,
y0, . . . , yn ∈ R so that all values ai are distinct. Then there exists only one poly-
nomial f over R so that degf ≤ n and f(ai) = yi, (i = 0, . . . , n).

The Lagrange interpolation polynomial can be computed as the sum

f(x) = y0b0(x) + · · ·+ ynbn(x)

5



where the base polynomials bi(x) are defined as

bi(x) =
n∏

j=0
i 6=j

(x− aj)

(ai − aj)
.

As one could expect, the Lagrange interpolation polynomial has a useful property—
its base polynomials correspond to our vectors ~bi:

eval(bi) =
[
bi(a0) . . . bi(an)

]T
Since

bi(aj) =

{
0, if i 6= j
1, if i = j

we see that
eval(bi) = ~ei .

We also have to handle the cases where k 6= n. We will reduce these cases to the
(k + 1) × (k + 1) case observed before. First we consider the case where n > k.
If we choose k + 1 different values l0, . . . , lk ∈ {0, . . . , n}, then we obtain a virtual
matrix V ′ by choosing rows l0, . . . , lk from the original matrix V :

V ′ =


1 al0 a2

l0
· · · ak

l0

1 al1 a2
l1
· · · ak

l1
...

...
...

. . .
...

1 alk a2
lk
· · · ak

lk

 .

The square matrix V ′ is invertible as its determinant is nonzero, because it corre-
sponds to the evaluation map at [al0 , . . . , alk ] and by showing that we have reached
the previously observed and proved case. In the third case when n < k we gener-
ate k − n values an+1, . . . , ak so that all values ai are distinct. We use these new
positions to add rows to the matrix V and get the virtual matrix V ′

V ′ =



1 a0 a2
0 · · · ak

0

1 a1 a2
1 · · · ak

1
...

...
...

. . .
...

1 an a2
n · · · ak

n

1 an+1 a2
n+1 · · · ak

n+1
...

...
...

. . .
...

1 ak a2
k · · · ak

k


.

This matrix V ′ is an invertible (k+ 1)× (k+ 1) square matrix that can replace V
in the first observed case. Note that if n < k the reconstruction of the polynomial

6



is not unique and is determined by the choice of values an+1, . . . , ak. This gives us
a guarantee that it is not possible to uniquely reconstruct the polynomial if there
are not enough pairs of positions and evaluations available. Later we will use this
property to prove privacy of the following secret sharing scheme.

2.2 Shamir’s secret sharing scheme

We now describe Shamir’s secret sharing scheme that is based on polynomial eval-
uations [Sha79]. We start by explaining the infrastructure of secret sharing. The
central party is the dealer that performs share computation operations on input
secrets and distributes the resulting shares to other parties. When the secret has to
be reconstructed, the parties give their shares to the dealer, that can then combine
the shares and retrieve the secret.

In Shamir’s scheme shares are evaluations of a randomly generated polynomial.
The polynomial f is generated in such a way that the evaluation f(0) reveals
the secret value. If there are enough evaluations, the parties can reconstruct
the polynomial and compute the secret. Algorithm 1 describes how shares are
computated in Shamir’s scheme.

Algorithm 1: Share computation algorithm for Shamir’s scheme

Data: finite field F, secret data s ∈ F, threshold k, number of shares n
Result: shares s1, . . . , sn

Set f0 = s
Uniformly generate coefficients f1, . . . , fk−1 ∈ F
Construct the polynomial f(x) = f0 + f1x+ · · ·+ fk−1x

k−1

Evaluate the polynomial: si = f(i), (i = 1, . . . , n)

Note that the indices of the shares start from one, as we cannot output s0 =
f(0), because it is the secret value. The resulting shares s1, . . . , sn can be dis-
tributed to their holders. If the original value needs to be retrieved, we need a
subset of at least k shares. Note that it is important to store the index i together
with the share si, because it is later needed for reconstruction.

The classical algorithm of Shamir’s scheme reconstructs the whole polynomial,
whereas we describe versions optimised for reconstructing only the secret f(0) = s.
We only need to compute f(0) so for our purposes we can simplify the base poly-
nomials bi(x) as follows:

βi = bi(0) =
k∏

j=1
i 6=j

(−aj)

(ai − aj)
. (3)

7



If the shares are computed using Shamir’s scheme then algorithm 2 retrieves the
secret value s.

Algorithm 2: Share reconstruction algorithm for Shamir’s scheme

Data: finite field F, shares st1 , . . . , stk ∈ F where tj ∈ {1, . . . , n} are
distinct indices

Result: secret data s
compute the reconstruction coefficients βi according to equation (3)
compute f(0) = st1βt1 + · · ·+ stkβtk

Return s = f(0)

Theorem 2.3. Shamir’s secret sharing scheme is correct and private in the sense
of Definition 2.1.

The proof for this theorem is given in [Bog07]. The proof of privacy is based
on the properties of the evaluation mapping to show that any number of shares
less than k reveals nothing about the secret value s.

2.3 Secure computation with shares

We will now show what can be done with the shares once they have been dis-
tributed. We will investigate the possibility of using the homomorphic property of
the secret sharing scheme to perform operations with the shares. In the following
assume that a k-out-of-n threshold scheme is used. Assume that we have n parties
P1, . . . , Pn and the dealer gives each one of them a share according to its index.
Addition. Assume that we have shared values [u] = [u1, . . . , un] and [v] =
[v1, . . . , vn]. Because the evaluation mapping is a linear transformation, we can
add the shares of [u] and [v] to create a shared value [w] so that u+ v = w. Each
party k has to run the protocol given in Algorithm 3 to add two shared values.

Algorithm 3: Protocol for adding two Shamir shares for node k

Data: shares uk and vk

Result: share wk that represents the sum of [u] and [v]
Round 1

wk = uk + vk

Multiplication with a scalar. Assume that we have a shared value [u] =
[u1, . . . , un] and a public value t. Again, thanks to the linear transformation prop-
erty of the evaluation mapping we can multiply the shares ui with t so that the
resulting shares represent the value [w] = t[u]. Algorithm 4 shows the protocol for
multiplication a share value by a scalar.

8



Algorithm 4: Protocol for multiplying Shamir shares by a scalar value for
node k

Data: shares uk and a public value t
Result: share wk that represents the value of t[u]
Round 1

wk = tuk

Multiplication. Assume that we have shared values [u] = [u1, . . . , un] and [v] =
[v1, . . . , vn]. Share multiplication, unfortunately, cannot be solved with the linear
property of the transformation, as multiplying two polynomials with the same
degree gives a polynomial with double the degree of the source polynomials. This
means that we must use a k-out-of-n threshold scheme where 2k ≤ n and the
polynomials must have a degree of at most 2k. By multiplying the respective
shares, the miners actually compute a share that represents the polynomial storing
the the product of the secrets. However, we must reconstruct the secret stored in
the product polynomial and reshare it to make further multiplications possible.
Otherwise, the multiplication of the product polynomial with another one will
give us a polynomial with a degree larger than n and we cannot reconstruct the
secret from such polynomials anymore.

We note that we can precompute the values of the optimised base polynomials
βi needed in the protocol by using equation (3) on page 7. This requires each
node to know its number and also how many other nodes there are, but that is a
reasonable assumption. Algorithm 5 gives the complete protocol for multiplying
Shamir shares.

Algorithm 5: Protocol for multiplying two Shamir shares for node i

Data: shares ui and vi, precomputed value βi

Result: share wi that represents the value of [u][v]
Round 1

zi = uiviβi

Share zi to zi1 , . . . , zin using the same scheme as the dealer uses
Send to each other node Pl, i 6= l the share zil

Round 2

Receive shares zji, j 6= i from other nodes
wi = zii +

∑n
j=1
j 6=i

zji

9



3 Conclusion

The Shamir’s secret sharing scheme has a good abstract foundation which provides
an excellent framework for proofs and applications. We presented algorithms for
performing addition, standard and scalar multiplication with shares. We are cur-
rently developing a secure computation platform based on a simple secret sharing
scheme than Shamir’s. However, we have found, that the properties of our scheme
are similar to the ones of Shamir’s scheme.

References

[Bla79] George R Blakley. Safeguarding cryptographic keys. In Proceedings of
AFIPS 1979 National Computer Conference, volume 48, pages 313–317,
1979.

[Bog07] Dan Bogdanov. How to securely perform computations on secret-shared
data. Master’s thesis, University of Tartu, 2007.

[Dam02] Ivan Damg̊ard. Secret sharing. Course notes, 2002.

[Kil05] Mati Kilp. Algebra I. Estonian Mathematical Society, 2005.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

10


