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Abstract. In this paper we address the problem of inefficiency of ex-
act attack tree computations. We propose several implementation-level
optimizations and introduce a genetic algorithm for fast approximate
computations. Our experiments show that for attack trees having less
than 30 leaves, the confidence level of 89% can be achieved within 2 sec-
onds using this algorithm. The approximation scales very well and attack
trees of practical size (up to 100 leaves) can be analyzed within a few
minutes.

1 Introduction

Structural methods for security assessment have been used for several
decades already. Called fault trees and applied to analyse general security-
critical systems in early 1980-s [1], they were adjusted for information
systems and called threat logic trees by Weiss in 1991 [2]. In the late
1990-s, the method was popularized by Schneier under the name attack

trees [3]. Since then, it has evolved in different directions and has been
used to analyze the security of several practical applications, including
PGP [4], Border Gateway Protocol [5], SCADA systems [6], e-voting sys-
tems [7], etc. We refer to [8, 9] for good overviews on the development
and applications of the methodology.

Even though already Weiss [2] realized that the attack components
may have several parameters in practice, early studies mostly focused
on attack trees as a mere attack dependence description tool and were
limited to considering at most one parameter at a time [3, 10, 11]. A sub-
stantial step forward was taken by Buldas et al. [12] who introduced the
idea of game-theoretic modeling of the attacker’s decision making process
based on several interconnected parameters like the cost, risks and penal-
ties associated with different elementary attacks. This approach was later



refined by Jürgenson and Willemson by first extending the parameter do-
main from point values to interval estimates [13] and then by creating
the first semantics for multi-parameter attack trees, consistent with the
general framework of Mauw and Oostdijk [11, 14].

Even though being theoretically sound, the results of Jürgenson and
Willemson are rather discouraging from an engineering point of view.
Even with all the optimizations proposed in [14], they are still able to
analyze the trees of at most 20 leaves in reasonable time and this may
not suffice for many practical applications. Hence, the aim of this paper is
to improve their results in two directions. First, we implement several ad-
ditional optimizations and second, we create and test a genetic algorithm
for fast approximations.

The paper is organized as follows. First, in Section 2 we will briefly de-
fine attack trees and the required parameters. Then Section 3 will explain
our new set of optimizations, which in turn will be tested for performance
in Section 4. Section 5 will cover our genetic algorithm and finally Sec-
tion 6 will draw some conclusions.

2 Attack Trees

Basic idea of the attack tree approach is simple – the analysis begins by
identifying one primary threat and continues by dividing the threat into
subattacks, either all or some of them being necessary to materialize the
primary threat. The subattacks can be divided further etc., until we reach
the state where it does not make sense to divide the resulting attacks any
more; these kinds of non-splittable attacks are called elementary attacks

and the security analyst will have to evaluate them somehow.

During the splitting process, a tree is formed having the primary
threat in its root and elementary attacks in its leaves. Using the struc-
ture of the tree and the estimations of the leaves, it is then (hopefully)
possible to give some estimations of the root node as well. In practice, it
mostly turns out to be sufficient to consider only two kinds of splits in
the internal nodes of the tree, giving rise to AND- and OR-nodes. As a
result, an AND-OR-tree is obtained, forming the basis of the subsequent
analysis. We will later identify the tree as a (monotone) Boolean formula
built on the set of elementary attacks as literals.

The crucial contribution of Buldas et al. [12] was the introduction
of four game-theoretically motivated parameters for each leaf node of
the tree. This approach was later optimized in [14], where the authors
concluded that only two parameters suffice. Following their approach, we



consider the set of elementary attacks X = {X1,X2, . . . ,Xn} and give
each one of them two parameters:

– pi – success probability of the attack Xi,

– Expensesi – expected expenses (i.e. costs plus expected penalties) of
the attack Xi.

Besides these parameters, there is a global value Gains expressing the
benefit of the attacker if he is able to materialize the primary threat.

3 Efficient Attack Tree Computations

Let us have the attack tree expressed by the monotone Boolean formula F
built on the set of elementary attacks X = {X1,X2, . . . ,Xn}. In the model
of [14], the expected outcome of the attacker is computed by maximizing
the expression

Outcomeσ = pσ · Gains−
∑

Xi∈σ

Expensesi (1)

over all the assignments σ ⊆ X that make the Boolean formula F true.
Here pσ denotes the success probability of the primary threat and as
shown in [14], this quantity can be computed in time linear in the number
n of elementary attacks. The real complexity of maximizing (1) comes
from the need to go through potentially all the 2n subsets σ ⊆ X . Of
course, there are some useful observations to make.

– The Boolean function F is monotone and we are only interested in
the satisfying assignments σ. Hence, it is not necessary to consider
subsets of non-satisfying assignments.

– In [14], Theorem 1, it was proven that if for some AND-node in the
attack tree the assignment σ evaluates some of its children as true and
others as false, this σ can be disregarded without affecting the correct
outcome.

We start the contributions of the current paper by additionally noting
that the DPLL algorithm [15], used in [14] to generate all the satisfying
assignments, introduces a lot of unnecessary overhead. The formula F first
needs to be transformed to CNF and later maintained as a set of clauses,
which, in turn, are sets of literals. Since set is a very inconvenient data
structure to handle in the computer, we can hope for some performance
increase by dropping it in favor of something more efficient.



In our new implementation, we keep the formula F as it is – in the
form of a tree. The assignments σ are stored as sequences of ternary bits,
i.e. strings of three possible values t, f and u (standing for true, false
and undefined, respectively). The computation rules of the corresponding
ternary logic are natural, see Table 1.

& t f u

t t f u

f f f f

u u f u

∨ t f u

t t t t

f t f u

u t u u

Table 1. Computation rules for ternary logic

In its core, our new algorithm still follows the approach of DPLL –
we start off with the assignment [u, u, . . . , u] and proceed by successively
trying to evaluate the literals as f and t. Whenever we reach the value t for
the formula F , we know that all the remaining u-values may be arbitrary
and it is not necessary to take the recursion any deeper. Similarly, when
we obtain the value f for the formula F , we know that no assignment of
u-values can make F valid. Thus the only case where we need to continue
recursively, is when we have F = u. This way we obtain Algorithm 1,
triggered by process satisfying assignments([u, u, . . . , u]).

Algorithm 1 Finding the satisfying assignments
Require: Boolean formula F corresponding to the given AND-OR-tree
1: Procedure process satisfying assignments(σ)
2: Evaluate F(σ)
3: if F(σ) = f then

4: Return;
5: end if

6: if F(σ) = t then

7: Output all the assignments obtained from σ by setting all its u-values to t and
f in all the possible ways;
Return;

8: end if

9: //reaching here we know that F(σ) = u

10: Choose Xi such that σ(Xi) = u

11: process satisfying assignments(σ/[Xi := f]);
12: process satisfying assignments(σ/[Xi := t]);



Even though being conceptually simple, Algorithm 1 contains several
hidden options for optimization. The first step to pay attention to lies
already in line 2, the evaluation of F(σ). The evaluation process naturally
follows the tree structure of F , moving from the leaves to the root using
the computation rules given by Table 1. However, taking into account
Theorem 1 of [14] (see the second observation above), we can conclude
that whenever we encounter a node requiring evaluation of t&f or f&t,
we can abort this branch of the recursion immediately, since there is a
global optimum outcome in some other branch.

In the implementation, this kind of exception to evaluation is modelled
as additional data type shortcut-false to the already existing true, false
and undefined Boolean types. If the situation is encountered during the
recursive evaluation of F , shortcut-false is returned immediately to the
highest level and the entire branch of processing is dropped.

Another, somewhat more obvious optimization lies within the line 10
of Algorithm 1. Of course it would be the simplest to pick the next un-
defined literal randomly (or in some predefined order, which gives the
same result for randomly-generated test trees). However, intuitively this
approach is one of the worst possible, since the working time of the al-
gorithm depends on the number of the generated satisfying assignments.
Hence, the algorithm will be faster if we can systematically disregard
larger recursive branches. This is the reason why we first assign unde-
fined literals as f on line 11 and check first, if the whole formula has
become non-satisfied.

Still, a clever choice of the order of the undefined literals to specify can
speed up this process even further. We implemented and tested several
possible strategies.

1. Random – the next undefined literal is picked randomly.

2. Most-AND – for each undefined literal we compute the number of
AND-nodes on the path from the corresponding leaf to the root and
pick the onest with the highest score first.

3. Weighted-AND – the ordering routine is similar to Most-AND, but all
the AND-nodes on the path do not have an equal weight. The intuition
behind this approach is that when we can exclude a larger subtree,
we should be able to cut off more hopeless recursion branches as well,
hence it makes more sense to prefer paths with AND-nodes closer to
the root. Thus we gave each node on the distance i from the root the
weight 1/ci, where c is a predefined constant. In our experiments we
used the values c = 2. For comparison, we also ran tests with c = 0.5



Fig. 1. Performance test results of different strategies for choosing undefined literals
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O(1.71n)

and c = 1. (Not that the Most-AND strategy is equivalent to the
Weighted-AND strategy with c = 1.)

4 Performance analysis

Somewhat surprisingly it turned out that giving more weight to the AND
nodes which are closer to the root node does not necessarily help. The
weighting constant c = 0.5 gave also very good results and in some cases
better than the Weighted-2-AND strategy.

We generated random sample attack trees with 5 leaves up to 29
leaves, at least 100 trees in each group, and measured the solving time
with our optimized realization and with different strategies. The results
are depicted in Fig. 1.

To estimate the complexity of our algorithms, we used the least-
squares method to fit a function a−1 · bn to the running times of our best
strategy method. Since there is no reasonable analytical way to establish
the time complexity of our algorithm, this approach provided a quick and



easy way to estimate it. The found parameters to fit the data points of
the best solution (the (1)-AND method) optimally were a = 109828 and
b = 1.71018. Hence we can conclude that the average complexity of our
algorithm with our generated sample data is in the range of ∼ O(1.71n).

The average complexity estimations for all strategies were the follow-
ing:

– Random strategy – O(1.90n)
– Weighted-2-AND strategy – O(1.78n)

– Weighted-1-AND strategy – O(1.71n)

– Weighted-0.5-AND strategy – O(1.75n)

However, it should be noted that differences between the Weighted-c-
AND strategies were quite small and within the margin of error. There-
fore, no conclusive results can be given regarding the different weighting
constants. It is clear though that all the tested strategies are better than
just choosing the leafs in random.

Currently the world’s best #3-SAT problem solving algorithm by
Konstantin Kutzkov ([16]) has the worst-case complexity O(1.6423n). As
#SAT problems can be parsinomically and in polynomial time converted
to the #3-SAT problems (see [17], chapter 26), we can roughly compare
our algorithm complexity and the #3-SAT problem solver complexity.

Direct comparison is however not possible for several reasons. First,
our estimate is heuristic and is based on experimental data. Second, we
are not only counting all the possible SAT solutions to the formula F ,
but we actually have to generate many of them. At the same time, we are
using optimizations described in Section 3.

Comparison with the result of Kutzkov still shows that our approach
works roughly as well as one would expect based on the similarity of
our problem setting to #SAT. It remains an open problem to develop
more direct comparison methods and to find out whether some of the
techniques of #SAT solvers could be adapted to the attack trees directly.

5 Approximation

Even though reimplementation in C++ and various optimization tech-
niques described in Section 3 helped us to increase the performance of
attack tree analysis significantly compared to [14], we are still practically
limited to the trees having at most 30 leaves. Given the exponential na-
ture of the problem, it is hard to expect substantial progress in the exact
computations.



In order to find out, how well the exact outcome of the attack tree
can be approximated, we implemented a genetic algorithm (GA) for the
computations. (See [18] for an introduction into GAs.) Let us have an
attack tree described by the Boolean formula F and the set of leaves
X = {X1,X2, . . . ,Xn} having the parameters as described in 3. We will
specify the following concepts for our GA.

Individual: any subset σ ⊆ X . The individuals are internally repre-
sented by bitstrings of length n, where 1 in position i means that
Xi ∈ σ and 0 in position i means that Xi 6∈ σ.

Live individual: σ ⊆ X such that F(σ := t) = t, i.e. such that the
value of F is t when all the literals of σ are set to t and all the others
to f.

Dead individual: σ ⊆ X such that F(σ := t) = f.

Generation: a set of p live individuals (where p is a system-wide pa-
rameter to be determined later).

Fitness function: Outcomeσ. Note that σ must be alive in order for
the fitness function to be well-defined.

Crossover: in order to cross two individuals σ1 and σ2, we iterate
throughout all the elementary attacks Xi (i = 1, . . . , n) and decide
by a fair coin toss, whether we should take the descendant’s ith bit
from σ1 or σ2.

Mutation: when an individual σ needs to be mutated, a biased coin is
flipped for every leafXi (i = 1, . . . , n) and its status (included/excluded)
in σ will be changed if the coin shows heads. Since σ is internally kept
as a bit sequence, mutation is accomplished by simple bit flipping.

In order to start the GA, the first generation of p live individuals must
be created. We generate them randomly, using the following recursive
routine.

1. Consider the root node.

2. If the node we consider is a leaf, then include it to σ and stop.

3. If the node we consider is an AND-node, consider all its descendants
recursively going back to Step 2.

4. If the node we consider is an OR-node, flip a fair coin for all of them
to decide whether they should be considered or not. If none of the
descendants was chosen, flip the coin again for all of them. Repeat
until at least one descendant gets chosen. Continue with Step 2.

It is easy to see that the resulting σ is guaranteed to be live and that the
routine stops with probability 1.



Having produced our first generation of individuals σ1, . . . , σp (not all
of them being necessarily distinct), we start the reproduction process.

1. All the individuals σi are crossed with everybody else, producing
(

p
2

)

new individuals.
2. Each individual is mutated with probability 0.1 and for each one of

them, the bias 0.1 is used.
3. The original individuals σ1, . . . , σp are added to the candidate (multi)set.

(Note that this guarantees the existence of p live individuals.)
4. All the candidates are checked for liveness (by evaluating F(σ = t))

and only the live ones are left.
5. Finally, p fittest individuals are selected for the next generation.

The reproduction takes place for g rounds, where g is also a system-
wide parameter yet to be determined.

Next we estimate the time complexity of our GA.

– Generating p live individuals takes O(np) steps.
– Creating a new candidate generation by crossing takes O(np2) steps.
– Mutating the candidate generation takes O(np2) steps.
– Verifying liveliness takes O(np2) steps.
– Computing the outcomes of live individuals takes O(np2) steps.
– Sorting out the p best individuals out of the

(

p
2

)

+ p individuals takes
O(p2 log p)) steps.

Since these steps are repeated for g generations, we can find the overall
time complexity to be O(gp2(log p+ n)).

Of course, a GA does not guarantee that the final outcome is the best
one globally. To find out, how large populations and how many iterations
one has to use to hit the global maximum outcome with some degree of
certainty, we performed series of tests.

First we generated a sample random set of about 6000 trees (having
n = 5 . . . 29 leaves) and computed the exact outcome for each one of them
as described in Sections 3 and 4. Next we ran our GA for population
sizes p = 5, 10, 15, . . . , 60 and the number of iterations 1, 2, . . . , 200. We
recorded the average running times and attacker’s estimated outcomes,
comparing the latter ones to the exact outcomes computed before.

As a result of our tests we can say that GA allows us to reach high
level of confidence (say, with 90% accuracy) very fast. There are many
possible reasonable choices for p = p(n) and g = g(n). For example,
taking p = 2n and g = 2n allowed us to reach 89% level of confidence
for all the tree sizes of up to 29 leaves (see Fig. 2). By accuracy we here



Fig. 2. Accuracy of genetics algorithm with p = 2n and g = 2n
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mean the ratio of the trees actually computed correctly by our GA when
compared to the exact outcome.

The theoretical time complexity of our GA is in this case O(n4), which
in reality required up to roughly 2 seconds for trees with less than 30
leaves on 2.33 GHz Intel Xeon processor. The same approach also enables
us to process moderate size attack trees (70-80 leaves) in reasonable time
(1-2 minutes). Attack trees of this size are helpful in analyzing real-life
information systems and the multi-parameter attack trees can be now
used in practical security analysis. The performance results for larger trees
are given in Fig. 3. For each data point we generated 10 random trees and
the average running times were measured for the genetic algorithm with
parameters p = 2n and g = 2n. The error bars represent the standard
deviation of the average running time.

6 Conclusions and Further Work

In this paper we reviewed the method proposed by Jürgenson and Willem-
son for computing the exact outcome of a multi-parameter attack tree [14].
We proposed and implemented several optimizations and this allowed us
to move the horizon of computability from the trees having 20 leaves (as
in [14]) to the trees with roughly 30 leaves.

However, computing the exact outcome of an attack tree is an inher-
ently exponential problem, hence mere optimizations on the implementa-



Fig. 3. Performance results of the genetic algorithm
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tion level are rather limited. Thus we also considered an approximation
technique based on genetic programming. This approach turned out to be
very successful, allowing us to reach 89% of confidence within 2 seconds of
computation for the trees having up to 29 leaves. The genetic algorithm
is also very well scalable, making it practical to analyze even the trees
having more than 100 leaves.

When running a genetic approximation algorithm, we are essentially
computing a lower bound to the attacker’s expected outcome. Still, an
upper bound (showing that the attacker can not achieve more than some
amount) would be much more interesting in practice. Hence, the prob-
lem of finding efficient upper bounds remains an interesting challenge for
future research.

Another interesting direction is extending the model of attack tree
computations. For example, Jürgenson and Willemson have also consid-
ered the serial model, where the attacker can make his decisions based on
previous success or failure of elementary attacks [19]. It turns out that
finding the best permutation of the elementary attacks may turn com-



puting the optimal expected outcome into a super-exponential problem,
hence the use of good approximation methods becomes inevitable in that
setting.
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