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1 Cybernetica AS, Mäealuse 2/1, Tallinn, Estonia
2 Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia

Abstract. Providing meaningful estimations for the quantitative an-
notations on the steps of complex multi-step attacks is hard, as they
are jointly influenced by the infrastructure and attacker properties. The
paper introduces attacker profiling as the concept of separation of the
infrastructure properties from the properties of malicious agents under-
taking strategic decisions in the considered environment. We show that
attacker profiling may be integrated into existing quantitative security
assessment tools without any significant performance penalty. As an ex-
ample of such integration we introduce the new analysis tool named
ApproxTree+ which is an extension of the existing ApproxTree tool,
enhancing it by incorporating attacker profiling capabilities into it.

1 Introduction

Targeted malicious attacks are intentional by their nature and may be
interpreted as sequences of actions (attack steps) performed by malicious
agents undertaking informed strategic decisions in the target infrastruc-
ture. This way we can distinguish between the two landscapes – the one
which we call the threat landscape and the vulnerability landscape. The
threat landscape is formed by various kinds of malicious agents – they
have different sets of properties, available resources, varying intentions,
motivations, views, and expectations of the target infrastructure. These
properties determine strategic preferences of the agents, and eventually
their behavior. The vulnerability landscape is formed by the infrastruc-
ture of the organization, its employees, assets, policies, processes, etc.
Both landscapes are dynamic by their nature and are constantly chang-
ing. The threat landscape may change due to the agent behavior (e.g.
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increase in resources available to the agent) as well as external events,
while the vulnerability landscape may change due to the infrastructure
updates (e.g. patching, component replacement, awareness training, de-
ployment of defensive measures, etc.) as well as unintentional events.

We propose the separation between the infrastructure properties (the
vulnerability landscape) and the adversarial properties (the threat land-
scape), represented by an attacker profile. This separation adds flexibility
to the quantitative security analysis enabling the assessment of opera-
tional security risks using different combinations of attacker profiles and
infrastructure properties providing much deeper insight on the surround-
ing risk landscape. Besides, attacker profiling increases the reliability of
the analysis results as the separation of infrastructure properties and
attacker properties allows to update these values in a timely manner in-
dependently from each other and reflect the ever changing risk landscape
in a more reliable way.

The paper aims at introducing attacker profiling in the context of
quantitative security analysis based on attack trees and demonstrates
integration of attacker profiling into existing security assessment tools
introducing the new tool named ApproxTree+. In the introduced Ap-
proxTree+ model the considered infrastructure properties (cost, difficulty,
minimal required attack time) are quantitative annotations on the attack
tree leaves, while the adversarial properties (budget, skill, available time)
are described by attacker profiles. Additionally we compare the perfor-
mance of the profiling computations to the ApproxTree approach [1] and
reassess if the genetic algorithm parameters, used by ApproxTree for fast
approximations, are optimal for the profiling computations.

The outline of the paper is the following: Section 2 outlines the state
of the art in quantitative security assessment, attack trees, and attacker
profiling. Section 3 describes motivation for the attacker profiling in se-
curity risk assessment. Section 4 introduces the ApproxTree+ tool, while
Section 5 outlines the tool performance analysis results. Section 6 briefly
lists the achievements made so far and outlines areas for future research.

2 Related Work

2.1 Attack trees

Attack trees as one of the ways of quantitative security assessment, evolved
from fault trees [2] and were popularized by Schneier [3] who suggested to
use them as a way to model security threats and to perform quantitative
security assessment using this convenient hierarchical representation by



means of bottom-up single parameter propagation. Quantitative security
assessment has been studied by various researchers [4–8] and different
variations of techniques and methodologies were suggested.

Buldas et al. [9] suggested to use multi-parameter approach instead
of the historical single-parameter one and applied economic reasoning by
propagating adversarial utility. This kind of analysis allowed to assess
whether the analyzed system is secure against targeted rational profit-
oriented attacks.

Jürgenson and Willemson improved the model of Buldas et al., mak-
ing their parallel [10] and serial [11] models consistent with Mauw and
Oostijk foundations [12] and introducing genetic approach to speed up
computations. The parallel model assumed that the attacker launches
attack steps, required to fulfil the attack scenario, simultaneously, while
the serial model assumed that an attacker launches the attack steps in a
predefined order.

Later, Buldas and Stepanenko introduced the failure-free model [13]
suggesting not to limit the adversary in any way and thus analyzing fully
adaptive adversarial utility upper bounds. This approach was later im-
proved by Buldas and Lenin [14]. Their model better conforms to the
upper bounds ideology and is computationally less complex.

For a more thorough overview of the quantitative security analysis
using attack trees we refer the reader to [15].

2.2 Attacker profiling

Back in 1998, Philips et al. [16] outlined the importance of the attacker
feature in attack graphs for network vulnerability analysis. Several re-
search projects have focused on attacker profiling using honeypot in “Know
Your Enemies” series [17–19] which outlined the range of techniques and
tools that were used by attackers for reconnaissance and also motives of
the blackhat community. Several researchers proposed the concept of at-
tacker personas, which was related to goal, motivations, attitudes, and
skills [20–23]. Faily et al. highlighted insider threat motivations and char-
acteristics, as well as the use of attacker personas for threat identification.

Pardue et al. [24] mentioned the importance of attacker characteris-
tics and also the complexity of the attacks assessing risks of an e-voting
system. The authors argue that the likelihood of attacks can be referred
to as cost of an attacker, which can be estimated on various scales and
measured in various units, such as dollars, number of attackers, time
invested into attacking, and effort. In addition, Sallhammar et al. [25]



demonstrate the process of deriving the probability of the expected at-
tacker behavior in assumption that the attacker has complete information
about the vulnerabilities of the targeted systems. Tipton et al. [26] ar-
gue that risk aversion, degree of difficulty, discoverability, ease of access,
effectiveness of controls, effort, incentive, interest, skill level, motivation,
resources required, risk of detection, and special equipment needed are
the factors that can be included in attacker profiling. There are some
common parameters that are most often used in research projects to de-
fine an attacker profile – these values are more feasible for quantitative
analysis and give clear understanding of attacker properties.

2.3 Parallel model

The parallel model [10] by Jürgenson et al. allows to assess whether the
analyzed system is secure against targeted rational profit-oriented attacks
by assessing adversarial utility. In case the utility is positive, the system
is considered to be insecure, as profitable attack vectors which may result
in positive outcome for an attacker are likely to exist. Otherwise the anal-
ysis assumed that the system is reasonably secure to withstand emerging
attacks.

An attack scenario, represented by an attack tree, is treated as a
monotone Boolean function, each variable of which corresponds to a leaf
node in the attack tree, and logic operators correspond to the refined
nodes in the attack tree. The successful outcome of an elementary attack
is modelled by assigning value 1 to the corresponding variable in the
Boolean function. If the Boolean function is satisfied, the attacker has
succeeded in the security scenario. More complex multi-step attacks are
modelled as attack suites.

The computational method maximizes the adversarial utility over the
entire set of satisfying attack suites. The complexity of the approach arises
from the need to process the entire set of 2n attack suites, which intro-
duces unnecessary overhead. Even with the optimizations proposed [10]
this approach was able to analyze attack trees of at most 20 leaves in rea-
sonable time which has made this method inapplicable for the practical
case analysis.

To overcome limitations of the parallel model [10], a set of further
optimizations was proposed by Jürgenson et al. [1] and implemented in
the tool later called ApproxTree.

More significant contribution of the paper is the development of ge-
netic algorithm for fast approximations, which increased performance
compared to [10]. The implementation of the approach described in the



paper reached 89% confidence1 level within 2 seconds of computation for
the tree having up to 29 leaves. As the genetic algorithm is very scal-
able it has potential to be used for the analysis of practical attack trees
containing more than 100 leaves. The computational complexity of the
suggested approximation algorithm in the worst case was estimated to be
O(n4). The authors have performed benchmarking tests and experimen-
tally derived the optimal set of values for genetic algorithm parameters.

3 Motivation for the attacker profiling

An attack tree is a hierarchical description of possible attacks against
the target infrastructure. Constructing an attack tree, analysts include
all possible attack scenarios in the tree. Some of them are more realistic,
some are less, considering the environment in which such a system is
deployed. This way, attack tree analysis assumes an overpowered attacker
who is capable of launching every possible attack, included in the attack
tree, against the system. However, real life attacks are, as a rule, not
so powerful and thus analysis assuming the almighty adversary concept
does not provide deep insight on the security risks taking into account
the surrounding risk landscape. Applying attacker profile to the attack
tree invalidates certain nodes and eventually entire subtrees in the initial
attack tree, thus enabling the independent analysis of the derived attack
scenarios, containing attacks feasible for the considered class of malicious
agents. Depending on the severity of adversarial limitations used in the
profile, the derived attack scenario may be much smaller and thus much
easier to analyze.

Quantitative security analysis relies on quantitative annotations (e.g.
likelihood of success in an attack step, time required to launch an attack
step, etc.) assigned to single attack steps in complex multi-step attacks.
We believe that the quantitative metrics of these annotations is jointly
influenced by various sets of underlying components in threat- as well
as vulnerability landscapes. Thus it is rather difficult to provide a trust-
worthy and reliable quantitative estimation for such parameters as it is
practically impossible to estimate the cumulative effect of several under-
lying factors altogether. Such kind of joint estimations are, as a rule,
imprecise and contain reasonable degree of uncertainty.

For example, it is almost impossible to provide a meaningful estima-
tion for the time parameter, as the time, required for an attack step,

1 By confidence authors mean the ratio of the trees actually computed correctly by
the suggested approximation technique, compared to the precise outcome.



depends on the attacker skills, capabilities, available resources, previous
experience, etc. (agent properties), as well as on the difficulty of the attack
step itself (infrastructure property). Similarly, the likelihood of success
depends on attacker skill, difficulty of the attack step, and time invested
into attacking. The more skilful and experienced the attacker is, the more
likely he is to succeed in an attack step. The more resources are available
to the attacker, the more likely will he be successful in an attack step.
Similar reasoning may be applied to the skill parameter – the more ex-
perienced the attacker is, the less difficult is the process for him, the less
time it will take to succeed in an attack step. Less skilled attacker, given
sufficient time, may be as efficient (in terms of likelihood of success) as a
more skilled attacker who has less time for attacking. Similar logic may
be applied to other parameters as well.

Despite that, the analysis has to deal somehow with the ever changing
nature of each of the landscapes mentioned above and update (or re-
assess) the estimations of the corresponding quantitative annotations in
a timely manner. It is unclear how to update such joint estimations in
case some of its components change while the others remain unchanged,
or, on the contrary, when all its components change.

In order to tackle the difficulties outlined above the propose attacker
profiling as a step forward in dealing with the challenges of security met-
rics.

4 The ApproxTree+ model

We introduce the ApproxTree+ model – the new model for quantita-
tive assessment of operational security risks. The computational method
is built on the logic of the parallel attack tree model [10] and fast ap-
proximations of ApproxTree [1], improved by adding attacker profiling
considerations into the method.

4.1 Definitions

We will use the same notation as in [10]. Let us have a set of all possi-
ble elementary attacks X = {X1,X2, . . . ,Xn}, and a Boolean function F
corresponding to the attack tree.

Definition 1 (Attack Suite). Attack suite σ ⊆ X is a set of elementary
attacks which have been chosen by the attacker to be launched and used
to try to achieve the attacker goal.



Definition 2 (Satisfying attack suite). A satisfying attack suite σ
evaluates F to true when all the elementary attacks from the attack suite
σ have been evaluated to true.

Definition 3 (Attacker profile). An attacker profile is a pair (t, Pt)
where t is an n-tuple of attacker properties (p1, p2, . . . , pn) and a function
Pt(σ) defined by t which takes an attack suite σ as input and returns true,
iff the attacker with the considered properties t is capable of launching all
the attacks in σ, and false otherwise.

Each of the elements pk in t belongs to a certain domain Pk which
provides quantitative metrics to the parameter. Some of the domains
may represent continuous values, e.g. money, so we can take Pk = R.
Others parameters may be measured on an ordinal scale to reflect the
magnitude and measured in levels e.g. High, Medium, and Low, in which
case Pk = {H,M,L}.

In our research we use the following attacker properties:

1. Budget tb ∈ R – the monetary resource of the attacker, measured in
currency units.

2. Skill ts ∈ {L,M,H} – the skill level of the attacker, measured on an
ordinal scale (Low/Medium/High).

3. Time ta ∈ {S,MT,HR,D} – the available time resource of the at-
tacker, measured on an ordinal scale (Seconds/Minutes/Hours/Days).

The attacker properties outlined above define function Pf (σ), which
returns true iff:

1. tb >
n∑
i=1

Cost(Xi),

2. ∀Xi ∈ σ : ts > Difficulty(Xi), and

3. ∀Xi ∈ σ : ta > Time(Xi).

Definition 4 (Profile satisfying attack suite). A profile satisfying
attack suite σ is a satisfying attack suite which satisfies all the constraints
of the chosen attacker profile (t,Pt).

4.2 Description of the approach

The analysis method can be described by the following rules [10]:

1. The attacker constructs the attack tree and evaluates the parameters
of each of the elementary attacks following these considerations:



– The attacker has to spend Costi resources to prepare and launch
an attack Xi.

– The attack Xi succeeds with probability pi and fails with proba-
bility 1− pi.

– Depending on the detective security measures, the attacker some-
times has to carry additional costs after failing or succeeding with
the attack. The sum of preparation and additional costs is denoted
as Expensesi parameter.

– Additionally, there is global parameter Profit for the whole attack
scenario, which describes the benefit of the attacker, in case the
root node is achieved.

2. The attacker considers all potential attack suites – subsets σ ⊆ X ,
where X = {X1, . . . ,Xn} is the set of all elementary attacks considered
in the attack scenario. Some of the attack suites satisfy the Boolean
function F , some do not. For the satisfying attack suites the attacker
computes the outcome value Outcomeσ.

3. Finally, the attacker chooses the most profitable attack suite and
launches the corresponding elementary attacks simultaneously.

The computational method presented in [10] aims at maximizing the
expression

Outcomeσ = pσ · Profit−
∑
Xi∈σ

Expensesi

over all the assignments σ ⊆ X that turn the monotone Boolean func-
tion F to true. The success probability of the primary threat pσ can be
computed in time linear in the size of elementary attacks n:

pσ =
∑
R⊆σ

F(R:=true)=true

∏
Xi∈R

pi
∏

Xj∈σ\R

(1− pj) . (1)

In order to tackle the potential exponential amount of computations
in (1), a genetic algorithm was proposed and benchmarked by Jürgenson
et al. [1].

4.3 Approximation

The ApproxTree+ method uses the genetic algorithm to facilitate the
usage of the computational method for large attack trees:

1. Create the first generation of n individuals (profile satisfying attack
suites, not all of them are necessarily distinct).



2. All the individuals in the initial population are crossed with everybody
else producing

(
n
2

)
new individuals.

3. Each individual is mutated with probability p.
4. The mutated population is joined with the initial population.
5. Finally, n fittest profile satisfying individuals out of the

(
n
2

)
+ n indi-

viduals are selected and form the next generation.

The reproduction phase terminates when k last generations do not in-
crease outcome. The complexity of the suggested approach was measured
to be approximately O(0.85n) using exponential regression.

5 Performance analysis

In order to assess the performance of the introduced computational method
we have randomly generated a set of attack trees. The attack tree genera-
tion procedure was a two-step process. First, the random Boolean function
with the predefined number of variables (leaves in the attack tree) was
generated. It contained from 2 to 5 operands per operator – the values
of operands in each case were chosen randomly. The next step was to
provide quantitative annotations on the leaves of the attack tree. These
values were chosen randomly from the predefined intervals: the cost pa-
rameter was estimated in the interval [100, 1000], the success probability
parameter was estimated in the interval (0, 1). The value for the difficulty
parameter was chosen from uniformly distributed values low, medium,
high, and very high. The value for the time parameter was chosen from
uniformly distributed values seconds, minutes, hours, and days2.

One of the questions that needs to be answered is if attacker profil-
ing adds extra computational overhead. It can be seen on the cumula-
tive time distribution diagram (see Fig. 1) that attacker profiling does
not add any significant computational overhead (in the case of a single
attacker profile being analyzed) compared to the ApproxTree approach
(see Fig. 2). In both methods the initial population generation phase is
almost immediate, as well as the mutation phase. The main workload is
performed by the crossover phase and consumes approximately 85-99%
of the cumulative time distribution among all the phases. The last phase,
the best individuals selection phase, does not introduce any significant
workload and consumes approximately 1 - 15%. The crossover phase is
the most time consuming as each individual is crossed with every other
individual in the population producing N × N cross operations, where

2 assuming uniform distribution of the PRNG output



N is the amount of individuals in the initial population. Fig. 3 shows
that the execution time of the ApproxTree+ approach is proportional to
the ApproxTree approach. The increased execution time arises from the
fact that, as a rule, one doesn’t assess risks using just a single adversarial
profile, as it is reasonable to assess risks using the entire set of possible
adversarial profiles so that the results would produce meaningful insight
on the risk landscape – thus the overall execution time is proportional to
the number of the attacker profiles under consideration.
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Fig. 1. Cumulative time distribution of ApptoxTree+ phases.

The analysis of the speed of convergence shows that the convergence
speed of ApproxTree does not exceed the convergence speed of Approx-
Tree+. Additionally, it does not depend on the size of the attack tree –
independently of the size of the tree, the convergence speed stays approx-
imately at the same level.

Additionally, we have analyzed the effect of the genetic algorithm
parameters such as mutation rate and initial population size on the con-
vergence speed to assess whether the parameters of the genetic algorithm
used by ApproxTree [1] are optimal for the ApproxTree+ approach.

The convergence speed decreases with the increase in the percentage
of mutations from approximately 2 generations in the case when the mu-
tation rate is 10% up to 6 generations in the case when mutation rate is
90% (see Fig. 5). Independently of the mutation rate, the speed of con-
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Fig. 2. Cumulative time distribution of ApproxTree phases.
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Fig. 3. Execution time.

vergence of ApproxTree+ does not exceed the speed of convergence of
ApproxTree.

Benchmarking results have shown that the mutation step has no sig-
nificant effect on the convergence speed at all. We were unable to find
any case where the method would get stuck in the local optimum. Even
when the mutation step was excluded entirely (as a phase of the genetic
algorithm) – the global optimum was always reached. This may hap-
pen because of “good” initial population generation – if the size of the
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Fig. 5. Convergence speed as a function of the mutation rate.

initial population is rather big compared to the number of satisfying so-
lutions, it is highly likely that the initial population will contain all the
solutions (profile satisfying attack suites). In this case the convergence
is immediate, which was observed in some cases during benchmarking. If
the initial population does not contain all the solutions, still it may be
“good enough” so that the crossover step produces the entire domain of
solutions.

With the increase in the initial population size (see Fig. 6) the conver-
gence speed increases, stabilising at a value of approximately 1.6 genera-
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tions for the initial population size greater than 4n (n being the number
of leaves in the attack tree) in the case of the ApproxTree approach. In
the case of ApproxTree+ we can see slight, but firm decrease in the con-
vergence speed. In some cases when initial population size was less than
n the computational method was unable to reach global optimum, which
may happen when rather small initial population limits the amount of
possible solutions that may be reached and the mutation rate is small
enough and does not improve the situation.

The precision assessment shows that in ApproxTree+, as well as in
ApproxTree, either the result converges to the global optimum (most
profitable attack suite) or the computational method fails to generate the
initial population of individuals. In case of profiling, the attacker profile
may contain so strict constraints that not a single profile satisfying attack
suite may exist. The more strict constraints are used in the considered
attacker profiles the higher is the probability that no profile satisfying
assignments will be generated. However we are unable to state that the
profile satisfying solutions definitely do not exist in this case, as the state
when ApproxTree+ is unable to generate the initial population means 2
possible conditions – either no profile satisfying attack suites exist (and
thus the considered attack scenario has no profitable solutions), or such
attack suites exist, however the attack suite generation procedure failed
to generate profile satisfying solutions due to the stochastic nature of the
process.



6 Conclusions and Future Research

Attacker profiling is a way to separate infrastructure properties and the
properties of the malicious agents who are undertaking strategic decisions
in the target infrastructure. This kind of separation allows to estimate
and assess these properties independently from one another. This allows
to derive meaningful values for the quantitative annotations on the at-
tack steps in complex multi-step attacks from the underlying properties
instead of providing joint estimations to these values directly. One can
more precisely estimate how would a complex value change in case when
some of its underlying components change. In example, how would the
likelihood of success in an attack step change if instead of profit-oriented
malicious individuals we face organized groups of attackers or a national
security agency and the target infrastructure was patched meanwhile and
the employees have received an awareness training? Thus, attacker pro-
filing enables more detailed assessment of the impact of the fluctuations
in threat and vulnerability landscapes on the values of the quantitative
annotations on the attack steps.

Additionally, it adds flexibility to the analysis in general, enabling
analysis using different combinations of attacker profiles and infrastruc-
ture properties, making comprehensive risk assessment possible. It pro-
vides broader and more detailed overview of the risk landscape in a timely
manner, following constant changes in the risk environment. It allows to
make informed decisions in assessing the cost-effectiveness of the defen-
sive measures and enabling the prediction, prioritization and prevention
of emerging attacks in nearly semi-automated way.

We introduced the attacker profiling and demonstrated the applica-
tion of profiling in the framework of attack tree analysis by introducing
the new analysis tool named ApproxTree+ and demonstrating that in-
tegrating attacker profiling into an existing analysis method does not
introduce any significant performance penalty.

The constraint based approach, outlined in the paper, is only one
possible interpretation of attacker profiling. Another possibility is to ap-
ply Item Response Theory to represent the relation between various un-
derlying components in the threat and vulnerability landscapes. Such a
relation may be represented, in example, in the form of a logistic func-
tion in its simplest form indicating that the likelihood of success will
be assigned value 0.5 when the skill (β) and difficulty (γ) are equal:
p =

(
eβ−δ

)
/(1 + eβ−δ). In more complex scenarios the function may be

extended to take 3 arguments, as the likelihood of success depends on the



invested time parameter as well, and in this case it will take the form of:
p = f(β, δ, γ) where γ is the time invested into attacking.

We see the way forward in implementing the above mentioned inter-
pretation of profiling, integrating ApproxTree+ in the existing risk as-
sessment frameworks and tools, and validating the approach in real-case
risk analysis.
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