
Block vs. Stream cipher

Idea of a block cipher: partition the text into relatively large (e.g.

128 bits) blocks and encode each block separately. The encoding of

each block generally depends on at most one of the previous blocks.

• the same “key” is used at each block.

Idea of a stream cipher: partition the text into small (e.g. 1 bit)

blocks and let the encoding of each block depend on many previous

blocks.

• for each block, a different “key” is generated.

Examples of stream ciphers

• One-time pad.

• Block cipher in OFB or CTR mode.

IV

y0

IV + 1

Ek

x1

y1

IV + 2

Ek

x2

y2

IV + 3

Ek

x3

y3

IV + 4

Ek

x4

y4

Synchronous stream ciphers

Definition 1. A stream cipher is synchronous if its key sequence does

not depend on the plain- and ciphertexts but only on the previous

elements of the key sequence and the initial key.

zi = f(zi−1, zi−2, . . . , zi−t, k),

yi = g(xi, zi).

replacements

k

z
−1 z0 f z1 f z2 f z3

g y1 g y2 g y3

x1 x2 x3

Properties of the synchronous stream cipher

1. The encoder and decoder must be synchronized, i.e. the decoder

must always make sure that it applies the right element of the key

sequence to the given element of the ciphertext sequence.

2. If an element of the ciphertext sequence has been changed (but not

deleted) then only the corresponding plaintext element is affected.

One-time pad is a synchronous stream cipher.

Other synchronous stream ciphers could be called “pseudo one-time

pads”.

They are as secure as hard it is to distinguish (zi) from a truly random

sequence.

Self-synchronizing stream ciphers

Definition 2. A stream cipher is self-synchronizing if its keystream

depends on the plain- or ciphertext.

zi = f(yi−1, yi−2, . . . , yi−t, k),

yi = g(xi, zi).

k

y
−1 y0

f z1 f z2 f z3

g y1
g y2

g y3

x1 x2 x3

Properties of a self-synchronizing stream cipher

1. If a ciphertext block is changed somehow (either randomly or adve-

rently) then only the decryptions of the next t blocks are affected.

Hence the decoding process synchronizes itself.

2. The rather quick reappearance of the correct decoding means that

the tampering of some ciphertext blocks may remain unnoticed.

3. As the cryptotext blocks depend on all preceeding plaintext blocks,

the statistical analysis of the cryptotext is hopefully more difficult.

Linear keystream generator

Let c1, . . . , ct ∈ {0, 1} certain fixed bits and z1, . . . , zt the initial keyst-

ream bits. The subsequent bits zi of the keystream (zn), where i > t,

are generated using the rule

zi = f(zi−1, zi−2, . . . , zi−t) =

= (c1 · zi−1 + c2 · zi−2 + . . . + ct · zi−t) mod 2.

Example: let t = 4, c1 = c2 = 0 ja c3 = c4 = 1 and (z1, z2, z3, z4) =

(0, 1, 0, 0). The output of the generator is then

0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0,

Linear feedback shift register

(Lineaarse tagasisidega nihkeregister)

. . . is an electronic gadget for generating a linear keystream. The LFSR

corresponding to the previous example is

R4 R3 R2 R1 output

LFSR works like this. . .

step R4 R3 R2 R1

0 0 0 1 0

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 1 0 1 1

5 0 1 0 1

6 1 0 1 0

7 1 1 0 1

step R4 R3 R2 R1

8 1 1 1 0

9 1 1 1 1

10 0 1 1 1

11 0 0 1 1

12 0 0 0 1

13 1 0 0 0

14 0 1 0 0

15 0 0 1 0

Periodic sequences

Definition 3. A sequence z1, z2, z3, . . . is periodic if there exists a

d ≥ 1, such that zi = zi+d for all i ≥ 1. The smallest such d is called

the period of that sequence.

If zi = zi+d holds only for all sufficiently large i-s, then z is called

eventually periodic.

Exercise. Show that the sequence of bits generated by any LFSR is

eventually periodic. Show that the period of a sequence generated by

a t-register LFSR is at most 2t − 1.

Exercise. Show that any (eventually) periodic sequence can be gene-

rated by an LFSR.

The linear complexity L(z) of a sequence z is the minimal number of

registers that a LFSR needs to output this sequence.

LFSR as a stream cipher

• P = C = {0, 1}∗.

• A key k ∈ K consists of

– t ∈ N;

– c1, . . . , ct ∈ {0, 1};

– z1, . . . , zt ∈ {0, 1}.

• To encode or decode x ∈ {0, 1}n: compute zi = c1zi−1+. . . ctzi−t mod

2 for t + 1 ≤ i ≤ n and output x ⊕ z.

A synchronous stream cipher. . . how difficult it is to distinguish (zi)

from a truly random sequence of bits?

I.e. if we know a part of the sequence (zi), how difficult it is to predict

the next element(s)?

If we know the linear complexity

Let L(z) = t.

We need to find out 2t consequtive keystream bits zr, . . . , zr+2t−1.

Known-plaintext attack can provide them.

The following equations hold:

zr+t−1 · c1 + zr+t−2 · c2 + · · ·+ zr · ct = zr+t

zr+t · c1 + zr+t−1 · c2 + · · ·+ zr+1 · ct = zr+t+1

. .

zr+2t−2 · c1 + zr+2t−3 · c2 + · · ·+ zr+t−1 · ct = zr+2t−1

Solve this system over Z2 for (c1, . . . , ct).

It has a solution — the coefficients of the LFSR generating this sequence.

If we do not know the linear complexity

Then we must (over)estimate it. Let us know t ≥ L(z) = t′.

We need 2t consequtive keystream bits; solve the same system of equa-

tions.

It has a solution: if (c′1, . . . , c
′

t′) are the coefficients of a minimal LFSR

generating z then

• ci = c′i if 1 ≤ i ≤ t′;

• ci = 0 if t′ + 1 ≤ i ≤ t

is a solution to the system of equations.

There are other solutions as well.

We can even determine the linear compexity.

Polynomials over a ring R

Formally, a polynomial p is a mapping N → R (here N = {0, 1, 2, . . .})

with only finitely many non-zero entries. Denote p(i) by pi.

The values of p are called its coefficients.

p is usually written as p0 + p1x + p2x
2 + · · · + pmxm where pm+1 =

pm+2 = · · · = 0.

Polynomials can be

• added, multiplied, divided (with remainder),

– division p/q is possible if the leading coefficient of q is invertible.

• multiplied with a scalar

• used as arguments to Euclid’s algorithm, giving their gcd.

The set of all polynomials over R, denoted R[x], is a ring.

Formal series over a ring R

A formal series f is a mapping N → R. The values of f are called its

coefficients. f is usually written as
∑

∞

i=0 fix
i.

Formal series can be added, multiplied, multiplied with a scalar:

(f + g)i = fi + gi (f · g)i =
i

∑

j=0

fj · gi−j (kf)i = k · fi

If f0 is invertible then f−1 exists and is given by

(f−1)0 = f−1
0 (f−1)i = −f−1

0 ·
(

i−1
∑

j=0

(f−1)jfi−j

)

The set of all formal series over R, denoted R[[x]], is a ring.

A sequence (zi) can also be seen as a formal series (over Z2).

Rational formal series

A formal series f is rational if it can be expressed as pq−1, where p

and q are polynomials. Then f0 = p0q
−1
0 and

fi =
i

∑

j=0

pi−j(q
−1)j = q−1

0

(

pi −
i

∑

j=1

j
∑

k=1

pi−j(q
−1)j−kqk

)

=

q−1
0

(

pi−
i

∑

k=1

qk

i
∑

j=k

pi−j(q
−1)j−k

)

= q−1
0

(

pi−
i

∑

k=1

qk

i−k
∑

j=0

pi−k−j(q
−1)j

)

=

q−1
0

(

pi −
i

∑

k=1

qkfi−k

)

.

I.e. the coefficients of a rational formal series satisfy a linear recurrence.

If R is finite then the coefficients of f are eventually periodic.

Theorem 1. Let the coefficients of f ∈ R[[x]] be eventually periodic.

Then f is rational.

Proof. Let f0, . . . , fr−1 be the non-periodic part of f ’s coefficients and

let fi = fi+t for all i ≥ r. Let

p(0) =

r−1
∑

i=0

fix
i and p =

t−1
∑

i=0

fr+ix
i .

Then

f = p(0)+p·xr+p·xr+t+p·xr+2t+· · · = p(0)+(1+xt+x2t+· · ·)·p·xr =

p(0) + (1 − xt)−1 · p · xr =
p(0) · (1 − xt) + p · xr

1 − xt

Corollary. If f ’s coefficients are periodic (i.e. r = 0) then f = p

q
where

deg p < deg q.

Rational formal series over Z2 vs. LFSRs

Let c1, . . . , ct and z1, . . . , zt be given. Compare:

fi = pi +

i
∑

k=1

qkfi−k and zi =

t
∑

k=1

ckzi−k

Take

• q0 = f0 = p0 = 1;

• deg q = t and qi = ci for 1 ≤ i ≤ t.

• pi = zi + ci +
i−1
∑

k=1

ckzi−k for 1 ≤ i ≤ t.

Then f = z (except for the undefined z0).

q is the characteristic polynomial of the LFSR generating z.

If L(z) = t then q is the characteristic polynomial of z.

Finding the characteristic polynomial

Given: zr, . . . , zr+2t−1, such that t ≥ L(z). Assume r = 1.

• Compute c1, . . . , ct by solving a system of linear equations.

• Find q and p as in the previous slide.

• Return q/gcd(p, q).

LFSR-s with long periods

We know that an LFSR with t registers can output a sequence with a

period at most 2t − 1. How to achieve this upper bound?

Definition 4. A polynomial p ∈ R[x] is reducible if there exists a

polynomial q ∈ R[x], such that 1 ≤ deg q < deg p and q | p. Otherwise

we call p irreducible.

Residue classes modulo polynomials

Given p ∈ R[x] with invertible leading coefficient we can consider the

set R[x]/p of all residue classes of R[x] modulo p. We can define addi-

tion and multiplication on this set.

• R[x]/p ≡ {q | q ∈ R[x], deg q < deg p};

• q1 + q2 = q1 + q2;

• q1 · q2 = q1 · q2 mod p.

The structure (R[x]/p, +, ·) is a ring. If R is a field and p is irreducible

then R[x]/p is a field.

• Finding inverses in R[x]/p — just like in Zq, where q ∈ P.

– Main tool — Euclid’s algorithm.

Finite fields

• Let p be an irreducible polynomial of degree m over a finite field

K. Then K[x]/p is a field with pm elements.

• Up to isomorphism, there exists only one field with pm elements.

• If K is a finite field then K∗ is cyclic, i.e. it can be generated by a

single element of K∗.

Definition 5. A polynomial p ∈ K[x] is primitive if x is a generator

of (K[x]/p)∗.

Theorem 2. If a LFSR’s characteristic polynomial q is primitive then

the period of the sequence produced by this LFSR is 2deg q − 1 for any

non-zero initialization vector.

Proof follows. . .

LFSRs in Galois configuration

R1 R2 R3 R4 R5 R6

Normal; characteristic polynomial: 1 + x3 + x5 + x6

R0 R1 R2 R3 R4 R5

Galois configuration; char. polynomial: 1 + x + x3 + x6

Char. poly. of Galois conf: contains xi if there is extra input to Ri.

Also contains xt where t is the number of registers.

Evolution of state of a LFSR in Galois conf.

A state S of a t-register LFSR can be represented by a polynomial

p(S) =
∑t−1

i=0 S(Ri)x
i where S(Ri) is the contents of Ri in S.

The next state of LFSR in Galois conf. is then (x · p(S)) mod q where

q is the characteristic polynomial.

If q is primitive then the state of that LFSR in Galois conf. passes

through all 2t − 1 possible values.

We can define an isomorphism between the states of a normal LFSR

and its corresponding LFSR in Galois conf.

Hence the states of a LFSR pass through all 2t − 1 possible values if

the corresponding LFSR in Galois conf. has a primitive characteristic

polynomial. The period of the output sequence is then 2t − 1 as well.

Mirror images of polynomials

For a polynomial q =
∑k

i=0 qix
i with q0 6= 0 6= qk define its mirror

image by r(q) =
∑k

i=0 qk−ix
i.

If a (normal) LFSR has the characteristic polynomial q then the corres-

ponding LFSR in Galois conf. has the characteristic polynomial r(q).

r(q) · r(q′) = r(q · q′). Just compare the coefficients.

Hence q is irreducible iff r(q) is.

q (of degree k) is primitive iff r(q) is. Indeed, suppose an irreducible q is

not primitive, then xi ≡ 1 (mod q) for some i < pk−1. I.e. there exists

a polynomial q′, such that xi−1 = qq′. Then also r(xi−1) = r(q)r(q′).

But r(xi − 1) = −(xi − 1). Hence r(q) · (−r(q′)) = xi − 1 and r(q) is

not primitive.

Testing irreducibility

Theorem 3. An irreducible polynomial m of d-th degree divides xpd

−x

in Zp[x].

Proof. Zp[x]/m is a field with pd elements. Hence αpd

− α = 0 in

Zp[x]/m for all α ∈ Zp[x]/m (Fermat’s little theorem). The polynomial

x is also a member Zp[x]/m, hence xpd

− x ≡ 0 (mod m) in Zp[x].

Theorem 4. If an irreducible polynomial m of d-th degree divides

xpd′

− x then d | d′.

Proof. Let K be the field with pd′

elements; it contains exactly the roots

of xpd′

− x. K is a vector space over Zp with dimension d′. It contains

also the roots of m, let α be a root of m. Let S = {
∑d−1

i=0 λiα
i |λi ∈ Zp}.

Then S is a field. We have K ⊇ S ⊇ Zp, hence d′ = dimZp
K =

(dimZp
S) · (dimS K) = d · (dimS K) and d | d′.

Testing irreducibility

q ∈ Zp[x] is irreducible if gcd(q, xpi

− x) = 1 for all i ≤ (deg q)/2.

Here xpi

may be computed modulo q.

Testing primitiveness

For q ∈ Zp[x] to be primitive, it must first be irreducible. Let m =

deg q.

We must have xi 6≡ 1 (mod q) for all i < pm − 1. It is sufficient to test

this only for the values i = (pm − 1)/p′ where p′ is a prime factor of

pm − 1.

Polynomials: exercise

Which of those polynomials are reducible, which are irreducible and

which are primitive over Z2?

1. x + 1,

2. x2,

3. x2 + 1,

4. x2 + x + 1

5. x3 + 1

6. x3 + x + 1,

7. x4 + x + 1,

8. x4 + x2 + 1.

Linear complexity: exercises

Exercise. Determine the linear complexities of the following sequences.

1. 1, 0, 1, 0, 1, 0, . . .

2. 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, . . .

3. 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, . . .

Exercise.

1. Construct a sequence with infinite linear complexity (i.e. a sequence

that is generated by no LFSR).

Shrinking generator

. . . is constructed from two LFSRs working synchronously. The shrin-

king generator produces up to one bit for each bit-pair generated by

these two LFSRs. It is defined as follows:

1. If the first LFSR outputs 1 then return the output of the second

LFSR.

2. If the first LFSR outputs 0 then return nothing (discard the output

of the second LFSR).

If the linear complexities of these two LFSR-s are L1 and L2 then the

linear complexity L of the shrinking generator satisfies

L2 · 2
L1−2 < L < L2 · 2

L1−1.

