
Using DSLs for Developing Enterprise Systems

Margus Freudenthal
Cybernetica AS/University of Tartu

Aleksandri 8a
Tartu 51004, Estonia
margus@cyber.ee

ABSTRACT
This paper investigates the suitability of contemporary DSL
tools in the context of enterprise software development. The
main focus is on integration issues between the DSL tool, the
DSL implementation and the rest of the enterprise system.
The paper examines different scenarios for integrating DSLs
into the enterprise systems. A number of criteria for evaluat-
ing DSL tools are then extracted from these scenarios. These
criteria are then used to evaluate five industry-strength DSL
tools.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.2.6 [Software

Engineering]: Programming Environments—programming
workbench

General Terms
Languages, Design

Keywords
Domain-Specific Languages

1. INTRODUCTION
Background and Motivation
A domain-specific language (DSL) is a programming lan-
guage or executable specification language that offers, through
appropriate notations and abstractions, expressive power fo-
cused on, and usually restricted to, a particular problem
domain [16]. Classical examples of DSLs are Unix Make-
files (build scripts), regular expressions (specifying text pat-
terns), HTML (describing text layout), and GraphViz (de-
scribing graphs). This paper investigates practical issues
connected to using DSLs for developing enterprise informa-
tion systems.

Before we can get into specifics, we need to define what is
an “enterprise information system” (EIS). Finding the au-
thoritative definition for this term is quite difficult (if not

impossible), but there seems to be a rough consensus that
the EIS is a system for integrating and coordinating business
processes of a (usually large) organisation. From the tech-
nical point of view, the enterprise systems are characterised
by the following properties.

• They are usually implemented using programming lan-
guages such as Java, C#, a 4GL, or a database lan-
guage (PL/SQL). The enterprise systems also make
extensive use of frameworks (such as JEE and .NET)
and middleware (application servers, enterprise service
buses etc.).

• They may consist of a set of interconnected modules
that are built upon a common architecture or on top
of a packaged enterprise system such as an Enterprise
Resource Planning (ERP) system. Often there may be
a benefit in applying the Software Product Lines [11]
approach.

• They tend to be shallow but wide. The application
code in an EIS itself does not have to be technically
complex because the complex parts are implemented
in the frameworks and application servers. Instead,
most of the application code deals with implementing
the concepts, rules and processes of the organisation.

The frameworks and middleware that are used to build the
EIS usually contain different graphical or XML-based DSLs
for configuring the components. These DSLs are often called
horizontal or technical DSLs. Additionally, there are ver-
tical or business DSLs that are concentrated on encoding
business logic for a specific business domain such as tax-
ation, banking, or medical domains. Taking advantage of
the vertical DSLs is usually technically more complex be-
cause there may not exist a suitable DSL (with suitable im-
plementation) for this particular application, and the EIS
developer herself must create the necessary DSLs. This pa-
per focuses on the second, more active type of the DSL use
where the DSLs and DSL-supporting components are devel-
oped together with the EIS.

If one adopts the DSL-based development process, the costs
of developing a new DSL must be low otherwise it is more
economical to code the business logic in a general-purpose
programming language. The DSL development can be made
more efficient by taking advantage of good tool support.
There exists a reasonable body of tools to assist in vari-
ous aspects of creating DSLs. Examples of these tools are



parser generators, code generators, transformation systems,
and IDE generators. The main question posed in this paper
is: are the existing DSL tools suitable for use in enterprise
software development?

Scope of this Work
Since the terms DSL and DSL tool can be used in quite
a wide sense, we will first make matters more concrete by
narrowing down the range of DSLs and DSL tools analysed
in this paper.

DSLs can take quite different forms and be implemented in
quite different ways (see [15] for a taxonomy). This paper
focuses on the development model where the enterprise sys-
tem is built following the language-oriented programming
method, described by Ward in [17]. With this method, a
component is divided into two parts. The first part contains
the functionality of the component, described in a DSL. The
second part contains the implementation of the DSL. This
approach can be applied recursively – the implementation of
the DSL can be written using another, lower level DSL. This
model of development assumes that the DSLs are able to
communicate with each other and that the DSL implemen-
tations are integrated into the system to allow fine-grained
control over which parts of the system are implemented us-
ing DSLs.

Language-oriented programming is a general method that
can be realised by means of DSLs embedded in a general-
purpose programming language (internal DSL). In this way,
the various DSLs can be integrated by means of the host pro-
gramming language. However, mainstream general-purpose
programming languages commonly used for developing en-
terprise systems do not offer features needed for creating
high-quality internal DSLs (e.g. unobtrusive syntax, ability
to define new control structures). In addition, internal DSLs
are often difficult to use for non-programmers because the
details of the host language often interfere with the DSL (for
example, in the case of error messages). Therefore, this pa-
per focuses on external DSLs that are implemented using es-
pecially crafted parser and that can offer syntax and seman-
tics that does not depend on the host language. When build-
ing an external DSL, one can use either textual or graphical
syntax. Both have different strengths and weaknesses and
choosing between them is mostly a matter of taste and avail-
ability of tools, competence, etc. Existing tools for develop-
ing textual DSLs have different characteristics compared to
those for developing visual DSLs. It would be beyond the
scope of one paper to analyse both categories of toolsets.
Accordingly, in this paper we focus on textual DSLs.

DSL tools are considered to be software programs that sim-
plify some aspects of creating DSLs (such as parser genera-
tors, code generators, and IDE generators) and that are ad-
vertised as DSL tools. Many software tools (including all the
general-purpose programming languages) can, in principle,
be used to implement DSLs. Parser libraries in high-level
languages, such as Haskell or Prolog, can achieve the result
comparable to using specialised parser generators [8]. In or-
der to compare the tools on a more equal footing, this paper
only looks at tools that are specifically aimed at developing
DSLs.

Previous work
Published comparisons of DSL/DSM tools [14, 12, 10] have
mostly discussed available functionality and ease of use. In
particular, the set of tools included in comparison by Pfeiffer
and Pichler [14] is similar to this paper. However, this paper
differs from the Pfeiffer and Pichler paper in two important
aspects. First, this paper only reviews tools that are suitable
for industrial-strength software development. This excludes
pure research prototypes and inactive open source projects.
Additionally, this comparison includes tools that do not pro-
vide IDE functionality but can nevertheless be used to create
a working DSL implementation. Second, Pfeiffer and Pichler
are mainly concerned by general characteristics of the tools
(type of metamodel, type of code generator, etc.), whereas
this paper targets the technical properties that are impor-
tant when using the DSL tools for enterprise development.

Den Haan [3] describes the development model and the roles
that are involved in DSL-based software development. This
model is reused in this paper as the basis for terminology
related to roles in the DSL-based software development.

2. INTEGRATING DSLS INTO EIS
In general, all the functionality of an enterprise informa-
tion system cannot be expressed by a single DSL program.
The EIS contains several concerns (persistence, distribution,
business logic) that each are best handled using a separate
DSL. For example, the Java Enterprise platform includes
several XML-based technical DSLs. Additionally, different
parts of business logic (workflows, state machines, verifica-
tion rules) are often best expressed using different DSLs.
Following that logic, a DSL-based EIS would typically con-
sist of components written in different DSLs and glued to-
gether by code manually written in a general-purpose lan-
guage, such as Java. Therefore, one important question is
how the DSL code can be called from the rest of the EIS.
This section lists different scenarios for integrating the DSL
implementation into the EIS.

The biggest factor influencing the options for integrating
DSL code and “glue” code is whether the DSL is interpreted
or compiled. In this paper, the line between interpretation
and compilation is drawn according to whether the DSL
interpreter is part of the application code or part of the
environment (language runtime, hardware)1.

The integration options listed in this section mostly dif-
fer in the point of time when the DSL program is pack-
aged/compiled and loaded into the system. From the DSL
user’s point of view the main difference between the options
is the versioning model of the DSL program. For example,
if the DSL program is packaged with the rest of the source
code of the system then the DSL program should be ver-
sioned together with the rest of the source code.

1For example, an application can be written in the Python
language and the DSL program translated to Python (or
Python bytecode), which is then loaded into Python run-
time. We consider this approach to be compilation, because
the code is interpreted by the environment (Python run-
time). However, if the DSL program is translated to a form
that is interpreted by the Python code in the application
itself, then we consider it to be interpretation.



There are two principal ways of deploying DSL programs
that use interpretation.

I.1. DSL program can be packaged with the application
source code as a text resource. For example, this op-
tion is used in the Java Enterprise platform for various
configuration and manifest files. With this approach,
the life-cycle (deployment schedule, versioning policy)
of the DSL program will match the life-cycle of the
other application code. Changing the DSL program
involves redeploying of the whole application. There-
fore, this approach is mainly suitable for technical DSL
programs that change with the application code.

I.2. DSL program can be loaded at runtime and stored in
a file or a database. The program can either be in
the source form, or it can be compiled to some kind
of bytecode. The application can also provide environ-
ment for editing, testing and debugging the DSL pro-
grams. Because changing the DSL program does not
involve changing or redeploying the rest of the appli-
cation code, this approach is suitable for non-technical
DSL programs that capture fast-changing business re-
quirements.

For deploying compiled DSLs, there are three options for
packaging and loading the DSL programs (see figure 1).

C.1. The DSL program can be compiled during the build
process of the system. The compiled DSL program is
then packaged and deployed together with the rest of
the system. Processes for changing and deploying the
DSL program are exactly the same as for changing and
deploying rest of the application code. The DSL pro-
gram thus becomes integral component of the system
that is integrated with other, possibly hand-written
components. This approach is suitable for technical
DSLs (essentially programming at higher level of ab-
straction).

C.2. The DSL program can be compiled separately and loaded
into the system at run time (e.g. as a dynamically
loaded plugin). The DSL program can be managed
separately from the application code and can be used
for describing business logic that changes more often
than the application code. This option requires cre-
ating a special tool or a build system that is able to
compile the DSL program and package it for deploy-
ment.

C.3. The DSL program can be loaded into the running ap-
plication and compiled by the application code. The
compiling can be done in several steps, for example by
first generating Java source code and then invoking the
Java compiler. The compiled DSL program is stored
in a file or a database and loaded at run time. Using
this option requires packaging the DSL compiler with
the application software. As with the previous option,
the life-cycle of the DSL program is not tied to the
life-cycle of the application code.

The main difference between the last two options is the envi-
ronment where the DSL compiler is run. The option C.3 can

be somewhat more complicated to implement because the
runtime environment must also contain all the development
tools and libraries needed for compiling the DSL programs.
Also, invoking the DSL compiler from the application code
can be complicated and resource-consuming. However, em-
bedding the DSL compiler into the application software can
offer several benefits. First, it lowers the requirements for
the working environment of the business engineer2. If the
application software includes a web-based DSL editing tool,
the business engineer can create DSL programs using only
a web browser. Second, if the DSL program comes from un-
trusted sources (e.g., end users customising their user expe-
rience) then it is possible to analyse the DSL program before
compiling to ensure it meets the requirements. If the DSL
program is compiled before loading into the system, then
the analysis becomes more difficult as it becomes necessary
to reverse engineer the compiled code.

3. EVALUATION CRITERIA
This section presents the criteria that will be used in the next
section for evaluating the DSL tools. The main question
is, whether the DSL tools support the integration scenarios
described in the previous section. Each criterion is given a
short code that will be used to refer to it in later text.

[sep wb] If the DSL tool contains an IDE builder, then it
is possible to use the generated DSL IDE sepa-
rately from the DSL tool. The user of the DSL
IDE cannot change the language definition. Ful-
filling this requirement makes it possible to sepa-
rate the work of of the language engineer/trans-
formation specialist3 and the business engineer.

[build] It is possible to integrate the DSL compiler into
the build process of the system. In particular,
this means that the DSL compiler must be able
to operate in non-interactive environments, e.g.
when called by a build script or when used in an
automated build server. Fulfilling this require-
ment makes it possible to implement scenario
C.1.

[system] It is possible to integrate the DSL compiler into
the system. In particular, this means that the
DSL compiler can be deployed as a library that
can directly called from the application code.
This criterion is stricter than the criterion [build].
In principle, if the tool can be invoked from the
build system, then it is possible to invoke it from
the system as an external program. However, the
criterion [system] means that the DSL compiler
can be invoked without the overhead of creat-
ing another process. Fulfilling this requirement
makes it possible to implement scenario C.2.

[vcs] The DSL tool supports version control of the
DSL programs. If the DSL uses human-readable

2Business engineer is the person who describes solutions to
business problems with DSL program. See [3] for a full tax-
onomy of the roles in DSL-oriented development.
3The language engineer creates the language description and
the transformation specialist creates the language implemen-
tation.



Figure 1: Options for deploying compiled DLSs

textual syntax, this is very easy because storing
and merging text files is supported by all the
popular version control systems. However, if the
DSL program is stored in some internal format
(e.g. serialised XML representation), then the
DSL tool must include explicit support for ver-
sion control. Fulfilling this requirement makes it
possible to implement scenarios I.1 and C.1.

[custom] The DSL tool supports creating customisable DSL
implementations that contain basic functional-
ity and offer extension points where application-
specific customisations can be applied. Exam-
ples of these customisations are set of objects
that can be manipulated by the language and op-
erations that can be applied to the objects. Cus-
tomisation can also be achieved if it is possible to
divide the language implementation into smaller
modules or fragments and then reuse these frag-
ments in different combinations. Creating cus-
tomisable DSLs and composing a DSL from sev-
eral language modules may be needed if the EIS
is built as a software product line.

4. EVALUATION RESULTS
This section evaluates five DSL tools with respect to the
criteria defined in section 3.

Because this paper focuses on tools for industrial software
development, we restrict our evaluation to tools that are rea-
sonably mature, are supported by a community or a com-
pany and are available to the public. These criteria are
elaborated below.

• Maturity. The tool should have a history of practical
use for several years. It should have a stable current
release that can be used for developing production-
level code. There should be cases of using the tool in
several production systems (this requirement excludes
pure research tools that have been developed and used
only once or twice). The tool should be documented

reasonably well and work without crashing or malfunc-
tioning.

• Support. The tool should currently be in active main-
tenance and new releases (or bug fixes) should appear
periodically, in reasonable time intervals. There should
be an active user community that supports the tool
via mailing lists or user forums. Alternatively, there
should be a company providing support for the users
of the tool.

• Availability. The tool should be available to general
public under a reasonable licence. Open source licences
are preferable because they lower the risks caused by
e.g. insufficient documentation or community support.

Furthermore, to ensure that the selected DSL tools are rep-
resentative, we classified existing DSL tools into three cate-
gories and selected one or two tools in a given category. The
categories and selected tools are described below.

Standalone Tools
This group contains tools that do not depend on any IDE.
In general, they contain a parser generator and some kind
of code generation facility (e.g. a template engine). Because
they do not depend on an IDE, the [sep wb] criterion is not
applicable for them. As standalone tools, they can easily
be called from the build system (criterion [build]). Because
DSL programs are stored as plain text files, they can be
version-controlled using any VCS, thus satisfying criterion
[vcs].

ANTLR and StringTemplate
ANTLR4 [13] is primarily a parser generator. It takes as
input a description of a DSL’s syntax and produces a parser
that recognises the DSL. By adding actions to the parser, it
is possible to build a translator or an interpreter. ANTLR
offers facilities for parsing the DSL program into its abstract

4Available online at http://www.antlr.org/



syntax tree and then performing operations on the tree (us-
ing tree grammars to navigate the tree). StringTemplate5 is
a templating engine that works well with ANTLR and can be
used for generating code from the DSL program. Together
with ANTLR, it is possible to create a complete implemen-
tation (parser and code generator) for a simple DSL.

ANTLR generates code and provides APIs for several pop-
ular programming languages. Therefore, in most cases it is
possible to integrate the ANTLR-based compiler or inter-
preter directly with the target system, thus satisfying the
[system] criterion. ANTLR’s support for customisable lan-
guages (criterion [custom]) is quite limited. There is a mech-
anism for grammar inheritance, but this only supports some
specific cases of reuse and parametrisation.

Stratego/XT
Stratego/XT6 [1] is a language and a tool set for program
transformation. The toolkit provides facilities for defining
the concrete syntax of the DSL (parser generator) and ap-
plying transformations to the abstract representation of the
DSL program. The transformations are expressed in terms
of rewriting rules that can be controlled by programmable
strategies. The Stratego/XT toolkit can be used for imple-
menting interpreters, compilers or program transformation
tools (type checker, model checker, etc.). In addition, there
is an IDE creation toolkit Spoofax/IMP7 [9] (based on the
IMP toolkit discussed below) that can generate Eclipse plu-
gins for Stratego-based DSLs.

The Stratego/XT toolkit is written in C and generates na-
tive code. Integration into the EIS therefore means invoking
an external program or using a foreign function interface. In-
tegration as an external program is acceptable for invoking
a compiler, but can add considerable overhead when invok-
ing a frequently-called interpreter. Stratego has Java-based
runtime that can run Stratego programs in the Java vir-
tual machine, although with severely reduced performance.
Therefore, the Stratego does not fully support the [system]
criterion. On the other hand, Stratego allows creating highly
modular and customisable DSL implementations and there-
fore satisfies the [custom] criterion.

Eclipse-Based Tools
This group contains tools that include Eclipse-based IDE
builders. In general, the DSL implementation is deployed as
an Eclipse plugin, which can be distributed separately from
the DSL tool. This satisfies the [sep wb] criterion. Both
tools in this group store DSL programs as plain text files,
therefore fulfilling the [vcs] criterion.

Xtext
Xtext8 [7] is an Eclipse-based framework for creating tex-
tual DSLs. It integrates with the Eclipse Modelling Frame-
work (EMF) and uses the Ecore metamodel for describing
the abstract representation of the DSL program. Based on

5Available online at http://www.stringtemplate.org/
6Available online at http://strategoxt.org/
7Available on-line at http://strategoxt.org/Stratego/
Spoofax-IMP
8Available online at http://www.eclipse.org/Xtext/

the grammar description Xtext creates the parser, the meta-
model and the Eclipse-based IDE. The generated IDE can be
customised (e.g. by adding checks or specifying non-default
rules for outlining a DSL program) by writing Java code.
Xtext includes templating engine Xpand that can be used
for simple code generation tasks.

Xtext is quite tightly integrated with the Eclipse and EMF
in particular. It is possible to build an Xtext-based DSL
from a command line and satisfy the [build] criterion. How-
ever, the amount of dependencies to various Eclipse compo-
nents can make it difficult to integrate an Xtext-based lan-
guage implementation into an EIS, although the parser and
the code generator can be called from the Java. Therefore,
Xtext fulfils the [system] criterion partially. Xtext provides
support for modular grammars and the language services
can also be modular, thus satisfying the [custom] criterion.

IMP
IMP9 [2] is primarily an Eclipse-based IDE builder. It comes
with the LPG parser generator, but can also use other parsers.
When compared to Xtext, the IMP offers more flexibility in
creating a DSL implementation. The cost of this flexibility
is increased complexity: compared to the Xtext, the IMP
requires more programming to create an IDE for a simple
DSL.

The IMP does not offer much support for creating non-visual
parts of a DSL implementation and therefore does impose
significant restrictions. The LPG parser generator can gen-
erate Java code that can be directly called by the system.
Thus, IMP satisfies both the [build] and the [system] cri-
teria. The IDE generated by the IMP can be made quite
customisable, but the LPG parser generator does not sup-
port creating modular grammars. Therefore, the IMP fulfils
the [custom] criterion partially.

Language Workbenches
Language workbenches [5] represent a different approach to
DSL development than the previous groups. This approach
uses a mix of techniques from the textual and the graphical
DSLs. The DSL program is displayed on screen as text,
but the user directly edits the abstract representation of the
program. This technique is called projectional editing [6]
and has been typically used for editing graphical DSLs.

Meta Programming System
The Meta Programming System10 (MPS) [4] is not as ma-
ture as the other tools reviewed in this paper, but it serves
as a good example of the language workbench approach.
MPS offers tools to cover all the aspects of creating a DSL,
including explicit support for defining constraints and type
systems.

MPS does not allow deploying the DSL IDE separately from
the main workbench. However, it is possible to export the
DSL as a read-only package to prevent its accidental modi-
fication by the business engineer. Because the deployed lan-
guage is not well encapsulated, MPS does not fully satisfy
the [sep wb] criterion.

9Available online at http://www.eclipse.org/imp/
10Available online at http://www.jetbrains.com/mps/



Feature Stratego ANTLR Xtext IMP MPS

sep wb N/A N/A Yes Yes Partial
build Yes Yes Yes Yes No

system Partial Yes Partial Yes No
vcs N/A N/A N/A N/A Yes

custom Yes Partial Yes Partial Yes

Table 1: Tool comparison matrix

A DSL implementation (even the type checker and code
generator) created with MPS is tightly integrated with the
MPS’s graphical workbench and the underlying IntelliJ IDEA.
According to a comment from an MPS developer11, this is a
limitation of the current architecture of MPS and there are
no plans to change it. Because of this, a MPS-based DSL
compiler cannot be invoked from the command line or from
the system, and MPS does not satisfy the criteria [build]
and [system].

MPS provides excellent support for creating modular and
extensible DSLs. It is possible to extend a DSL with new
constructs or to combine several DSLs. The MPS therefore
satisfies the criterion [custom]. Unlike the previous tools,
the MPS stores DSL programs as structured XML files. It
therefore needs explicit support for version control opera-
tions. MPS inherits VCS support from the IntelliJ IDEA,
which supports all the major VCS systems, thus satisfying
[vcs].

5. CONCLUSIONS
Table 1 summarises the evaluation results. When looking
at functionality, the Xtext and the MPS are the two tools
that cover all the aspects of creating a DSL: parsing, code
generation, validation, and IDE generation. However, with
these tools it is difficult to implement the integration scenar-
ios listed in section 2. The non-visual parts of these tools
(parser, code generator, program validator) depend on the
IDE framework. On the one hand, this makes the IDE part
simpler and more powerful because the DSL program is ex-
pressed in a format most suitable for implementing the IDE
services. On the other hand, this architecture makes it dif-
ficult to use tool in combination with other tools or outside
the original IDE environment.

The other evaluated tools have a more specific focus. ANTLR
and Stratego focus on parsing and code generation; IMP is
mainly an IDE generator. Although Stratego can be used
with the Spoofax/IMP IDE generator and IMP comes bun-
dled with the LPG parser generator, the interface between
the visual and non-visual parts of the DSL implementation
is clearly defined and the non-visual part does not have de-
pendencies that would prevent it from functioning as a com-
ponent of a larger system.

To sum up the evaluation results, the users of DSL tools
seem to have a choice between a conveniently packaged end-
to-end solution and the ability to integrate parts of the DSL
toolchain into an EIS. This is unfortunate because techni-
cally there are no strong reasons why the two cannot be
combined. The author wishes to make a point that a DSL

11http://www.jetbrains.net/devnet/thread/283315

tool is often not an end in itself but rather a part in a larger
system. Thus, the developers of DSL tools should consider
making the tools modular so that they can easily be com-
bined with other tools and embedded into larger systems.

The main contributions of this paper are: (i) the discussion
of scenarios of how a DSL can be integrated into an EIS; (ii)
list of criteria for evaluating whether a DSL tool can support
the integration scenarios; and (iii) evaluation of representa-
tives of different types of DSL tools against these criteria.
The paper provides a perspective about what is required in
order to successfully use DSLs in developing enterprise in-
formation systems. This is useful to enterprise developers
for selecting a suitable tool; and to DSL tool developers for
making their tools usable in the context of EIS.

This work has looked at a subset of all available DSL tools.
First, we have considered only tools that are specifically tar-
geted for DSL creation, as opposed to general-purpose pro-
gramming languages that can also be used to create DSL
implementations. Second, we have looked at external DSLs
that use textual syntax. Third, there was a preference for
open source tools that have substantial amount of freely
available documentation. One of the goals of our future
research is to lift these restrictions and verify the conclusion
of this paper against more classes of DSL tools, including
visual DSL tools.

Acknowledgements
The author wishes to thank Marlon Dumas and the anony-
mous reviewers for their feedback on earlier versions of this
paper. This research was supported by the Estonian Doc-
toral School in Information and Communication Technology.

6. REFERENCES
[1] Martin Bravenboer, Karl Trygve Kalleberg, Rob

Vermaas, and Eelco Visser. Stratego/XT 0.17. A
language and toolset for program transformation.
Science of Computer Programming, 2008. Special issue
on Experimental Systems and Tools.

[2] Philippe Charles, Robert M. Fuhrer, and Stanley M.
Sutton, Jr. Imp: a meta-tooling platform for creating
language-specific ides in eclipse. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, pages 485–488, New York, NY, USA,
2007. ACM.

[3] Johan den Haan. Roles in Model Driven Engineering.
http://www.theenterprisearchitect.eu/archive/

2009/02/04/roles-in-model-driven-engineering, 4
February 2009.

[4] Sergey Dmitriev. Language Oriented Programming:
The Next Programming Paradigm. http://www.
onboard.jetbrains.com/is1/articles/04/10/lop/,
November 2004.

[5] Martin Fowler. Language Workbenches: The
Killer-App for Domain Specific Languages?
http://www.martinfowler.com/articles/

languageWorkbench.html, May 2005.

[6] Martin Fowler. Projectional Editing.
http://www.martinfowler.com/bliki/

ProjectionalEditing.html, January 2008.



[7] Peter Friese, Sven Efftinge, and Jan Köhnlein. Build
your own textual DSL with Tools from the Eclipse
Modeling Project.
http://www.eclipse.org/articles/article.php?

file=Article-BuildYourOwnDSL/index.html, 18
April 2008.

[8] Graham Hutton and Erik Meijer. Monadic parsing in
haskell. Journal of Functctional Programming,
8(4):437–444, 1998.

[9] Lennart C. L. Kats, Karl Trygve Kalleberg, and Eelco
Visser. Domain-specific languages for composable
editor plugins. In T. Ekman and J. Vinju, editors,
Proceedings of the Ninth Workshop on Language
Descriptions, Tools, and Applications (LDTA 2009),
Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, April 2009.

[10] Benôıt Langlois, Consuela elena Jitia, and Eric
Jouenne. DSL Classification. In The 7th OOPSLA
Workshop on Domain-Specific Modeling, October
2008.

[11] Linda M. Northrop and Paul C. Clements. A
Framework for Software Product Line Practice,
Version 5.0. Technical report, Software Engineering
Institute, July 2007.

[12] Turhan Özgür. Comparison of Microsoft DSL Tools
and Eclipse Modeling Frameworks for Domain-Specific
Modeling in the context of Model-Driven
Development. Master’s thesis, Blekinge Institute of
Technology, 22 January 2007.

[13] Terence J. Parr and Russell W. Quong. Antlr: A
predicated-ll(k) parser generator. Software Practice
and Experience, 25:789–810, 1994.

[14] Michael Pfeiffer and Josef Pichler. A Comparison of
Tool Support for Textual Domain-Specific Languages.
In The 8th OOPSLA Workshop on Domain-Specific
Modeling, 19 October 2008.

[15] T. Sloane, M. Mernik, and J. Heering. When and how
to develop domain-specific languages. Technical
Report SEN-E0309, CWI, 2003.

[16] Arie van Deursen, Paul Klint, and Joost Visser.
Domain-specific languages: An annotated
bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[17] Martin P. Ward. Language-oriented programming.
Software - Concepts and Tools, 15(4):147–161, 1994.


