
Robots Find a Better Way: A Learning Method for Mobile 
Robot Navigation in Partially Unknown Environments 

 
Kristo Heero1       Jan Willemson1       Alvo Aabloo2      Maarja Kruusmaa2 

kristo@math.ut.ee  jan@math.ut.ee          alvo@ut.ee         maarjakr@ut.ee 
 
1Dept. of Computer Science, Tartu University, Liivi 2, Tartu, Estonia 
2Institute of Technology, Tartu University, Vanemuise 21, Tartu, Estonia 

 
Abstract 

 
This paper represents a method for mobile robot navigation in environments where 
obstacles are partially unknown. The method uses a path selection mechanism that 
creates innovative paths through the unknown environment and learns to use routes 
that are more reliable. This approach is implemented on Khepera robot and verified 

against shortest path following by wave transform algorithms. Based on the 
experimental data, we claim that robot’s trajectory planned by wave transform 

algorithms is very difficult to predict and control unless the environment is 
completely modeled and the localization errors are small. We show that even small 

unmodeled obstacles can cause large deviation from the preplanned path. Our 
complementary approach of path selection decreases the risk of path following as well 

as increases the predictability of robot’s behaviour.  
 
 

1. Introduction 
 

Mobile robots, operating in human inhabited environments are expected to 
navigate safely as well as optimize their energy consumption and travel time. Since 
real-world environments are complex, often unstructured and dynamic, it is 
impossible to build a complete model of robot’s surrounding and keep it up to date. At 
the same time, we expect the robot to operate as efficiently as possible with a rather 
limited amount of information.  

Until now, the research in mobile robot path planning has focused on finding 
optimal routes from start to goal. The optimality is usually measured in terms of 
traveled distances [4].  Other measures are also used, e.g. confidence value [3]. For 
planetary rovers the efficiency of path is often expressed in terms of slope or 
roughness of the surface [1][2]. 

To navigate in partially unknown environments, robots use local replanning. Local 
re-planners use only local information to negotiate unexpected obstacles and since 
they do not use global knowledge, the behaviour of the robot is not globally 
optimized. Salich and Moreno have referred to this problem as the dilemma of 
authority vs. freedom [5]. The dilemma rises from that classic planners produce rigid 
orders while the behaviour of local reactive planners is unpredictable. Some 
researchers try to overcome this problem by incorporating global information to local 
decision making [7].   

Path planners used in robotics have been proven to give a globally optimal 
solution in globally known static environments. Their efficiency in complex, dynamic 
and partially unknown environments during long periods of time is not investigated. 
Our experimental data suggests, that the dilemma local vs. global decision making is 



not so important as it is anticipated e.g. in [6]. It rather appears that if the global 
planner does not have all the global information about the environment, it anyway 
fails to create globally optimal plans.  

We conclude, based on our experimental data that the environment has a much 
more significant effect on the behaviour of the robot than the algorithm used. Even if 
the robot always replanns globally and always uses all the global knowledge 
available, it has a very little effect on the total outcome unless the environment is 
completely modeled. Our tests also show that robot’s trajectory is very difficult to 
predict and control. Small unmodeled obstacles can considerably deviate the robot 
from its globally planned path.  

A good characteristic of a learning system is the predictability of its behaviour. 
The better the system can predict the outcome of its future actions the better it has 
learned its environment. A mobile robot can predict its behaviour when it knows its 
position with a great certainty after a certain period of time. The ability to predict the 
future outcome makes it possible to optimize the robot’s behaviour (e.g. travel time, 
energy consumption etc.).  

The problem we try to solve is thus how to optimize the behaviour of the robot in 
partially an unknown environment during a long period of time. There are two 
complementary approaches to increasing the predictability of robot’s behaviour. On 
the one hand, it is possible to gather more information about the environment to plan 
paths that can be more certainly followed. But since our experiments show that even 
small imprecision in data or noise can considerably affect the robots trajectory, we 
have chosen an opposite approach. Instead of trying to model the environment we 
look for trajectories in a partially unmodeled environment that can be followed with a 
great precision. 

We propose a method of covering a rectangular grid-based map with sub-optimal 
paths. In [8] we have described the method in detail and proven that the number of 
possible trajectories grows linearly with a small constant when the size of the map is 
increased. Therefore the method can be used even in large-scale environments. The 
robot will then try to follow these paths and memorize them until it finds some that is 
sufficiently stable and easy to follow.  

In our previous work, reported in [9] we have tested or approach in a totally 
unknown changing environment. The results show that the robot is able to adapt to the 
changes when the unknown obstacles are frequently replaced and learns to use 
trajectories that take it safer to the goal. 

In this paper we report a series of test to investigate the robots behaviour in a 
partially known environments. The environment is static to show the cause-effect 
relationship between the model of the environment and the robots behaviour. It allows 
us to draw a conclusion that the behaviour is influenced by the environmental model 
and the path planning algorithm but not by the robot’s ability (or inability) to adapt to 
the changes.  

Our paths selection algorithm is verified against shortest path following by a wave 
transform algorithm of [10] with global replanning. 

When planning the experiments, our hypothesis was that the efficiency of our 
method decreases when the environment is better known and when the unknown 
obstacles are smaller. We estimated that the shortest path following with global 
replanning would soon outperform our method. The tests did not confirm that 
hypothesis. On the contrary, the experimental data shows that wave transform 
algorithms are very sensitive to small imprecisions in an environmental model. Even 



small unknown obstacles (or possibly sensor noise) can cause large deviation from the 
originally planned path.  

Our method of path selection has two limits. First, it assumes that the robot will 
repeatedly traverse between two entry points. This assumption makes it possible to try 
several alternative trajectories. Fortunately there are plenty of mobile robot 
implementations (e.g. transportation, surveillance, convoying ) that presume repeated 
traversal between specified target points.  

Second, the robot needs a fairly precise positioning system to follow the 
trajectories it has planned. In our tests we use an overhead camera to determine the 
robot’s pose. We therefore suggest that the method works equally well with a satellite 
or pseudolite-based navigation. Since we test our approach in an environment where 
some static obstacles are modeled, it is principally possible to use these objects as 
landmarks. Yet we do not have any experience on how the robot would behave when 
the localization errors are large, like it often happens with landmark based navigation. 

In the next section we state the problem and list the assumptions we have made. 
We then describe briefly our path selection mechanism. After that, we describe the 
experiments and draw conclusions based on the experimental data. 

 
2. Problem statement 
 

It is further assumed that: 
1. The environment is dynamic and large. It is not possible or feasible to model it 

precisely or keep the model constantly updated.  
2. The environment contains obstacles with unknown size and location. 

Traversing this environment implies risk of colliding with these obstacles, 
being delayed when maneuvering around them or ending up in a deadlock. 

3. Sensorial capabilities of the robot are insufficient to distinguish between static, 
dynamic and semi-dynamic obstacles (e.g. between pillars and people, steady 
and replaced furniture). 

4. Mapping, path planning and localization are not the main objectives of the 
robot.  They are presumptions that make it possible to successfully complete a 
mission. Therefore they cannot take all of the time and computational 
recourses. 

5. The robot is expected to fulfill its mission as fast and safely as possible. 
6. The localization errors are small and do not accumulate and it is therefore 

possible to follow a preplanned path rather precisely.  
The assumptions 1 and 3 seem to contradict with the experimental design where the 
environment is actually kept static. However, a static environment is not the necessary 
precondition of the approach. The environment is kept static only to find out the 
causal relation between an environmental model and the behaviour of the robot. 

The problem we aim at solving is the following: find reliable paths between 
previously determined target points so that following them minimizes risk of 
collisions and speeds up the mission. 

Our approach to the problem is based on the following observation. In a dynamic 
environment with an unknown obstacle distribution, the best path to the goal is not 
necessarily the shortest. Depending on the nature of the environment, there may exist 
routes that are longer but easier to follow. By introducing a path generation algorithm, 
the robot can test several alternatives to reach the goal. By remembering its path 
following experiences, it can learn to follow paths that save time and reduce risk. As 



the environment changes, the robot will reevaluate its past experience and adapts to 
use new easily traversable paths.  

 
3. Path selection 
 
Theoretically, the number of different paths on a grid-based map is overwhelming. 

There are too many alternatives to travel between two points and the robot could 
never try them all. In addition, most of those paths are unfeasibly long, crooked and 
difficult to follow. So the aim of the path selection algorithm is to: 

• generate paths that are easy to follow if free from obstacles; 
• generate paths that are as much different from each other as possible to let the 

robot find out as many innovative solutions as possible; 
• provide a mechanism that in practice is able to discover virtually all possible 

alternatives; 
• cover the whole space of innovative solutions with as few alternatives as 

possible in order to maintain the robot's ability to generalize and keep the memory 
constrained. 

We propose a method that works by dividing the grid into paths segments and 
then generating paths that cover all these segments. Full description of the method and 
its formal analysis is presented in [8].  

 
 

 
Figure 1: Cover of a 3 × 4 grid. 
 
Figure 1 illustrates one possible cover of a 3 × 4 grid. The paths selected by the 

robot are limited to those not having back turns and covering all the grid segments of 
length 2. In practice, paths relaxation is used to smoothen the paths and the zig-zags 
will be straightened.  

It is proven in [8] that for a grid of the size m × n, the cardinality of the minimal 
cover is 2m+2n-2 paths. It means that the number of different paths is very small and 
grows linearly with a small constant, which makes it well scalable for very large 
domains. 

 
4. Experimental Design 
 
The experiments are conducted using a mini-robot Khepera. It is a differential 

drive miniature circular robot (with radius 26 mm) equipped with IR sensors for 
collision avoidance and it can be connected to a PC over a serial link.  

The localization system is presented in Figure 2. A video camera is mounted to 
the ceiling to recognize the position of the robot. The PC processes the camera image 
to find robot's position and a computer algorithm controls the robot over a serial link. 



In this way the localization errors are rather small (usually comparable to the size of 
the robot). 

 

 
 
Figure 2. Localization system. 
 
The size of our test environment is 1860 mm × 1390 mm. It is represented in Figure 3 
to the left. The picture in the middle represents the same environment as shown from 
the overview camera. The picture to the right in Figure 3 is the graphical interface of 
the computer program that controls the robot and monitors its behavior.  
 

   
 
Figure 3. The test environment (to the left), the same environment seen through the overview 
camera (in the middle) and as modeled by the control program (to the right). 
 
To test our path selection mechanism, the robot traverses repeatedly between the 
lower left corner and upper right corner of the environment in Figure 2. The physical 
environment for all test runs is the same. To determine how much the environmental 
model affects the results, we run the tests with 3 different maps represented in  
Figure 4. 
 

     
 
Figure 4. Environmental models used in experiments: a fully known environment (to the left), 
environment with large obstacles modeled (in the middle) and with small obstacles modeled (to 
the right). 
 
The map to the left of Figure 4 is the precise model of the environment, containing the 
precise location of all obstacles. The map in the middle models only large obstacles 



while the location of small obstacles in unknown. The map to the right models only 
small obstacles while the large obstacles are unknown.  
We compare our path selection method to shortest path following by wave transform 
algorithm with global replanning. Table 1 shows the number of trials with every 
environmental model with both path planning algorithms, shortest path planning vs. 
path selection. The number of trials depends on how fast the process stabilizes. 
 

Nr. of trials Environmental model 
Path selection Shortest path 

  1.All obstacles known  10 
2.Large obstacles known 20 50 
3.Small obstacles known 20 50 

 
Table 1. Number of trials 
 
The efficiency of the path planning algorithm is characterized by four parameters: 
number of replannings, travel time, travel distance and the deviation from the 
originally pre-planned path.  
One trial means planning a path from the lower left corner of the test environment to 
the upper right (or back again), following this path, replanning when an unknown 
obstacle is detected and recording the data when the robot reaches the goal. 
The shortest path planning algorithm is the following: 

1. Plan off-line a path from current start to current goal. This path is the shortest 
path to the goal calculated by a distance transform method [10]. 

2. Follow the path. 
3. If an obstacle is detected plan a new path from its current position to the goal 

by a distance transform algorithm. 
4. Repeat steps 2 and 3 until goal is reached. 
5. Record travel time, travel distance, number of obstacles detected and deviation 

from the path planned at step 1. 
The path selection algorithm is the following: 

1. At the first trial select a sub-optimal path planned by the method described in 
Section 3. 

2. Follow the path. 
3. If an obstacle is detected plan a new path from its current position to the goal 

by a distance transform algorithm. 
4. Repeat steps 2 and 3 until goal is reached. 
5. Smoothen the actually followed path to remove cycles, zig-zags and gaps 

caused by localization errors. 
6. Store the smoothened path together with the travel time, distance, number of 

replannings and deviation. 
7. At next trial check if there is a stored path with acceptably low number of 

replannings. If yes, follow this path. If no, choose a new path by using a 
method described in Section 3. 

8. Repeat steps 2 to 7. 
 
5. Experimental Results 
 
All data about the experiments, including recorded parameters at every trial,  
snapshots of every followed path and code of the control program are available at 



http://math.ut.ee/~kristo/khepera/. We here represent only some general 
statistics to compare the path planning strategies described above. 
Table 2 represents data on shortest path planning. Table 3 represents data on path 
planning with path selection.  The efficiency of the path selection mechanism in case 
of a small number of trials depends largely on how fast the robot finds a sub-optimal 
path that is easy to follow. While running the test in the 3rd environment (with small 
obstacles known) the robot found an easy-to-follow sub-optimal path at the first trial. 
For the sake of an unbiased interpretation we also represent data of another 
experiment that shows the worst case we have encountered. The robot had to try 4 
sub-optimal paths before it found one that was good enough. The last row of Table 3 
therefore gives two figures for every parameter, the best result vs. the worst result. 
 

Environmental model Nr. of 
replannings 

Travel time Travel 
distance 

Deviation 
from the 

preplanned 
path 

1.All obstacles known 0.3 104 2555.0 43.8 
2.Large obstacles known 12.7 123.3 2697.3 114.7 
3.Small obstacles known 14.8 134.3 2768.0 107.0 

 
Tabel 2. Results of shortest path planning  
 

Environmental model Nr. of 
replannings 

Travel time Travel 
distance 

Deviation 
from the 

preplanned 
path 

1.All obstacles known     
2.Large obstacles known 0 104.1 2584.6 29.2 
3.Small obstacles known 0/5.7 129.8/123.5 2534.2/2805.5 29.2/145.0 

 
Table 3. Results of planning with path selection 
 
6. Discussion and conclusions 
 
The first trials test the shortest path following strategy in a completely known 
environment (the first row in Table 2). This case is the ideal case where globally best 
paths are planned with all available information. A closer look to the statistical data 
(available at the website) shows that the behaviour of the robot is predictable and 
stable. It means that we are able to control the robot with the great precision.  
Localization errors, imprecision of mechanical linkages and sensor noise have no 
significant effect to the test results. Now, keeping all other things equal and changing 
only the environmental model or the path planning algorithm we can claim that the 
changes in experimental results are caused by one of the latter reasons.  
Next we have verified the behaviour of the robot using two path planning strategies. 
Speaking in terms of decision-making theory, in case of shortest path planning, the 
robot can be described as a rational utility maximizing agent. It always tries to find 
the shortest path to the goal considering all information available. In the case of path 
selection, the robot can be described as an explorative agent. It randomly tries sub-
optimal solutions to escape the local minimum and find a globally best solution.  



The results show that by and all, the explorative agent is more successful. The 
advantage is apparent despite that the number of trials is quite low. Since the 
environment is static, larger number of trials would simply increase the advantages of 
the path selection mechanism since the robot would use the already found good 
solutions. 
Another conclusion that can be drawn from the experimental data is that as soon as 
the environment becomes partially unknown, the trajectory of the robot is very 
difficult to predict and control. Table 2 shows that small obstacles can cause large 
deviation than large ones. The path selection algorithm represented here is one 
possibility to find reliable trajectories that increase the predictability of robot’s 
behaviour. 
Finally, we conclude that optimal (shortest) path planning is not a relevant problem in 
partially unknown environments. As soon as the robot does not have all global 
knowledge available, sub-optimal solutions give at least as good results as the optimal 
one. In order to increase the reliability of mobile robot applications, much more 
importance should be paid on modeling the environment and its changes. 
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