
Creating a Decryption Proof Verifier for the Estonian Internet
Voting System

Jan Willemson
jan.willemson@cyber.ee

Cybernetica
Tartu, Estonia

ABSTRACT
This paper describes the efforts made for and lessons learnt from
creating a decryption proof verifier for the Estonian IVXV Internet
voting system. Our main conclusion is that cryptographic proto-
cols aiming at providing transparency through verifiability should
also take into account a non-functional requirement of low imple-
mentation complexity. We identify several steps of the verification
protocol that could be made easier to implement without sacrific-
ing security. A side-product of our effort is a fully functional IVXV
decryption proof verifier written in Go that we used during the
latest Estonian parliamentary elections of March 2023.

CCS CONCEPTS
• Security and privacy→ Cryptography; Software and application
security; • Applied computing→ Voting / election technolo-
gies.

ACM Reference Format:
Jan Willemson. 2023. Creating a Decryption Proof Verifier for the Estonian
Internet Voting System. In The 18th International Conference on Availability,
Reliability and Security (ARES 2023), August 29–September 01, 2023, Benevento,
Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3600160.
3605467

1 INTRODUCTION
Casting a legally binding vote over Internet has been possible in
Estonia since 2005 [10]. Originally, a simple double-envelope pro-
tocol was in use, where the role of the inner, anonymous envelope
was played by encryption under the system’s public key. The outer,
identifiable envelope was in turn implemented by signing the cryp-
togram with a voter’s electronic identity token [6]. The signed
container was sent to the Vote Collector server (VC) by the voting
application, and this was the end of the voting process from the
voter’s perspective.

This simple protocol served its purpose well until the parlia-
mentary elections of 2011 when a student demonstrated a proof-of
concept ballot-manipulating software [6]. The attack relied on the
fact that up to 2011, there was no way for the voter to establish
whether or how her vote was actually received by the VC. By the

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0772-8/23/08.
https://doi.org/10.1145/3600160.3605467

next elections in 2013, this issue was addressed by adding the indi-
vidual vote verification mechanism using an independent mobile
device [8].

In 2014, Springall et al. presented an analysis of Estonian Internet
voting, criticizing its poor system-side auditability properties [14].
In 2017, a new version of the protocol suite (code-named IVXV) was
released, enabling much better independent verifiability of several
critical system components [7].

A vote registration service was introduced, making it impossi-
ble for the VC to drop votes without detection. At the other end
of the process, non-interactive zero-knowledge proofs of correct
decryption were introduced to the vote decryption service. Also,
a shuffling re-encryption mix-net was added before decryption in
order to facilitate privacy-preserving auditing of the whole tallying
process. As a result, a significant part of the process of certifying
correct operation of the critical components was transformed from
physical observation to data analysis.

The mix-net and the vote decryption server are the two major
components in IVXV that produce independently verifiable crypto-
graphic proofs. For both of them, there are vendor-supplied verifiers
that are run by the election organizer to validate the results. How-
ever, a wider goal targeted by introducing third-party auditability
mechanisms is to allow third parties to perform this data analysis
using their own tools.

For the mix-net, IVXV uses Douglas Wikström’s Verificatum1.
Being one of the best established products in its field, there are
several projects to produce proof verifiers for it. Of course, the Ver-
ificatum software package itself provides a verification application,
and so does IVXV.

Additionally, there are several vendor-independent projects. By
far the most mature of them is the formally verified verifier by
Haines et al. [5]. There are also a few student projects with varying
degree of maturity23. None of the vendor-independent verification
applications has yet been used in the Estonian elections, but, from
the technical point of view, deploying e.g. the verifier by Haines et
al. should be relatively straightforward.

The proofs of correct decryption, however, are implemented
locally in Estonia, and the only current verifier implementation is
supplied by the vendor as a part of the IVXV software package.

Even though all of the server-side software of IVXV is open-
sourced4, the accompanying documentation has varying level of

1https://www.verificatum.org/
2https://github.com/akels/Verificatum.jl
3https://github.com/ZetaTwo/sa104x-kexjobb
4https://github.com/vvk-ehk/ivxv

https://orcid.org/0000-0002-6290-2099
https://doi.org/10.1145/3600160.3605467
https://doi.org/10.1145/3600160.3605467
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3600160.3605467
https://www.verificatum.org/
https://github.com/akels/Verificatum.jl
https://github.com/ZetaTwo/sa104x-kexjobb
https://github.com/vvk-ehk/ivxv

ARES 2023, August 29–September 01, 2023, Benevento, Italy Jan Willemson

Verification of the Decryption Proof
Let us have ciphertext c = (c_0, c_1), which is decrypted into the value d with the given public key pk over the parameters (p,g)
and with the decryption proof (a,b,s).

To check that the decryption was correct, the challenge k=H("DECRYPTION"||pk||c||d||a||b) is calculated, and where H is the
SHA-256 hash function. Then it is verified that c_0^s = a * (c_1/d)^k and g^s = b * y^k.

Figure 1: Official specification of the IVXV decryption proof

detail. Among other components, the specification for the verifi-
cation of the decryption proof is literally just four lines long (see
Figure 1).5

We contacted the development team of IVXV asking for more
detailed specifications. It appears that at the time of this writing
(late 2021 – early 2023), an updated version of the documentation
has already been in preparation.We requested a preliminary version
of this documentation and used it as a basis for our implementation
of the first independent decryption proof verifier for IVXV.

This paper summarizes our main lessons learned in the process.
We will also propose several improvements to the decryption proof
generation that would simplify development of the verification
application. Essentially, we will be adding a new non-functional
requirement to the development of e-voting systems – the crypto-
graphic proofs must be as easy to verify as possible. The rationale
behind such a requirement is that verification simplicity would
hopefully encourage a larger number of independent verifications,
which would in turn hopefully increase public trust in the correct-
ness of the election result. Also, conceptually simple verification
makes it easier to sort out possible discrepancies between indepen-
dently developed verification applications.

2 IVXV VOTE ENCRYPTION AND ZERO
KNOWLEDGE PROOF OF CORRECT
DECRYPTION

In order to allow for efficient mixing and decryption proofs, Esto-
nian installation of IVXV uses ElGamal encryption in the group
of residues over a prime modulus 𝑝 . To achieve at least 10 years
of confidentiality horizon, the recommended length for 𝑝 is 3072
bits [2]. Thus, Group 15 from RFC3526 was selected [9]. RFC3526
sets

𝑝 = 23072 − 23008 − 1 + 264 · ([22942 · 𝜋] + 1690314) .

The way 𝑝 has been chosen guarantees that it is a safe prime, i.e.
𝑞 =

𝑝−1
2 is a prime as well (we will discuss the details of this choice

further in Section 4.1). RFC3526 also sets a generator 𝑔 = 2 which
yields a subgroup of quadratic residues of order 𝑞. All the algebraic
computations will take place in this subgroup.

Another observation useful for our analysis is that 𝑝 is relatively
close to 23072. More precisely, 23072 > 𝑝 > 23072 − 23008, and we
obviously also have 23071 > 𝑞 > 23071 − 23007.

5https://github.com/vvk-ehk/ivxv/blob/master/Documentation/en/protocols/11-
audit.rst

In the setup phase, the election organizer selects a random pri-
vate exponent 𝑥 ∈ Z𝑞 and publishes the corresponding public key
ℎ = 𝑔𝑥 by bundling it with the voting client application.6

The vote is represented as a mod-𝑝 quadratic residue 𝑚. The
voting client generates the encryption randomness 𝑟 ∈ Z𝑞 and
computes the corresponding ElGamal cryptogram as

𝑐 = (𝑢, 𝑣) = (𝑔𝑟 ,𝑚 · ℎ𝑟) .
The decryption server, possessing the private key 𝑥 , decrypts the

message as 𝑣 · 𝑢−𝑥 . In order to prove that the decryption was per-
formed correctly and using the correct private key, the decryption
server essentially presents a Chaum-Pedersen proof of equality of
two discrete logarithms made non-interactive using the Fiat-Shamir
construction.

More concretely, the decryption server picks a random 𝑡 ∈ Z𝑞
and computes a message commitment 𝑎 = 𝑢𝑡 together with a key
commitment 𝑏 = 𝑔𝑡 .

Next, the transcript of the protocol this far is serialized as a
seed for a custom hash function (implementing the oracle call),
and its output is used as a challenge 𝑘 . The decryption server then
computes 𝑠 = 𝑘 · 𝑥 + 𝑡 mod 𝑞 as a response, and outputs (𝑎, 𝑏, 𝑠) as
the complete proof. The verifier accepts by checking the equations

𝑢𝑠 = 𝑎 · (𝑣/𝑚)𝑘 ,

𝑔𝑠 = 𝑏 · ℎ𝑘 .

3 IMPLEMENTING AN INDEPENDENT
DECRYPTION PROOF VERIFIER

The idea of enabling independent cryptographic proof verifiers
does not serve its purpose well if it is done just for satisfying a
formal requirement. We argue that an important non-functional
requirement is the ease of implementation of such a tool. This
includes both the time spent on development and clarity of the
resulting code so that it could be easily inspected by external parties.

Of course, the simplicity of verification must be balanced out
against other, possibly conflicting requirements. For example, if
there were no decryption proofs, no effort would need to go into
verifying them either, but such a solution would have consider-
ably weaker integrity guarantees. Thus, our aim is to make the
proofs as easily verifiable as possible, while still retaining the full
cryptographic strength of the solution.

We decided to validate the decryption proof specification of IVXV
and its ease of implementation by developing a proof-checking tool
6We are omitting most of the technical details not directly relevant to the topic of this
paper, for example private key management techniques.

https://github.com/vvk-ehk/ivxv/blob/master/Documentation/en/protocols/11-audit.rst
https://github.com/vvk-ehk/ivxv/blob/master/Documentation/en/protocols/11-audit.rst

Creating a Decryption Proof Verifier for the Estonian Internet Voting System ARES 2023, August 29–September 01, 2023, Benevento, Italy

in Go.7 Go was selected because of its speed, easy multi-threading,
relatively good readability and excellent standard library including
all the necessary tools e.g. for ASN.1 parsing and long integer
arithmetic. Also, the vendor-supplied proof checker was developed
in Java, and we learned that a proof-of-concept implementation
in Python was underway as well by the vendor as a part of the
specification update effort. Hence, we did not want to use either of
those languages.

During the development process, we found several aspects of
the verification protocol that could be improved in order to make
the verifier implementation simpler and more robust.

The most fragile component of the whole specification is gener-
ation of the challenge 𝑘 from the seed. Formally, the seed is defined
to be the DER encoding of the following ASN.1 structure:

SEQUENCE ::= {
NIPROOFDOMAIN GENERAL STRING,
pubkey SubjectPublicKeyInfo,
ciphertext encryptedBallot,
decrypted OCTET STRING,
msgCommitment INTEGER,
keyCommitment INTEGER

}

where the value of the field NIPROOFDOMAIN is defined to be the
string “DECRYPTION” (without quotes).

The next step is to convert this seed into a challenge value𝑘 ∈ Z𝑞 .
IVXV uses a custom challenge function for that, targeting crypto-
graphic strength and a uniform distribution of 𝑘 in Z𝑞 (even though
this is not really necessary for the Fiat-Shamir heuristic when used
in zero-knowledge proofs [3]). A central building block in the chal-
lenge function implementation is a component that can be viewed
as a deterministic pseudo-random number generator (PRNG).

Just running the seed through a PRNG and taking the output
modulo𝑞 would introduce amodular bias. Hence, IVXV implements
a rejection sampling step. First, a pseudo-random value 𝑦 from Z2ℓ
is generated (where ℓ is the bit length of 𝑞), and it is accepted if
𝑦 < 𝑞. Otherwise, the process starts over, requesting new bits from
the PRNG.

A good candidate for the PRNG would be an extendable output
function from the SHA3 family; say, Shake256. However, back in
2016-2017 when the design decisions for the current IVXV system
were taken, SHA3 was still a fresh standard. The libraries imple-
menting all its parts (including Shake256) were not yet readily
available for the major software development platforms. Thus, a
decision was taken by the software architects of IVXV to develop a
customized PRNG based on the SHA2-256 hash function.

More precisely, the output stream of the IVXV PRNG is defined
to be

𝐻 (0𝑥0000000000000001| |𝑠𝑒𝑒𝑑) | |𝐻 (0𝑥0000000000000002| |𝑠𝑒𝑒𝑑) | |...,

where 𝐻 is the SHA2-256 hash function and the seed is prepended
with 64-bit big-endian sequential numbers 1, 2, 3,

This PRNG outputs bits in batches of 256. Since, in general, 𝑞
can not be expected to have length multiple to 256, there also has
to be a masking step. As we saw earlier, the length of 𝑞 in the
current implementation of IVXV is 3071 bits, so 12 · 256 = 3072 bits

7https://go.dev/

are queried at a time, and the top bit is masked off to produce the
candidate 𝑦.

As a result, we get Algorithm 1.

Algorithm 1: Rejection sampling for the challenge
Data: 𝑞 > 0, 𝑠𝑒𝑒𝑑 , hash function block length 𝑏, the bit

length ℓ of 𝑞
Result: 𝑦 uniformly distributed in Z𝑞

1 PRNGInit(𝑠𝑒𝑒𝑑)
2 while 𝑡𝑟𝑢𝑒 do
3 𝑦′ ← PRNGRead(𝑏 · ⌈ ℓ

𝑏
⌉ bits)

4 𝑦 ← ℓ lower bits of 𝑦′

5 if 𝑦 < 𝑞 then
6 return 𝑦

We have 2ℓ−1 < 𝑞 < 2ℓ , so the probability that the inequality
𝑦 < 𝑞 holds on line 5 of Algorithm 1 is

𝑞

2ℓ
>

2ℓ−1

2ℓ
=

1
2
.

Thus, the expected number of rejections is no more than 2.
For the current choice of 𝑞 in IVXV, we have ℓ = 3071, and as

noted in Section 2, inequality 𝑞 > 2ℓ − 2ℓ−64 actually holds. Hence,
for this particular 𝑞 we get that the inequality 𝑦 < 𝑞 in Algorithm 1
holds with probability

𝑞

2ℓ
>

2ℓ − 2ℓ−64
2ℓ

= 1 − 2−64 .

Thus, in the current protocol, rejection almost never happens.
This has unexpected consequences from the software develop-

ment point of view. If the PRNG produces good pseudo-random
output, it becomes impossible to prepare test vectors that would
trigger rejection. Of course, tests for the PRNG component in isola-
tion can be written, but in the integration phase, all the rejection
steps will become “dead functionality”. This includes behaviour of
the non-standard PRNG beyond the first call.

Severity of this problem in practice is a subject of debate. On
one hand, in order to fully correspond to the specification, the logic
of rejection should be implemented, including the PRNG. On the
other hand, since rejection can almost never happen, the developer
may skip it, or implement it incorrectly not realizing that this
functionality is not covered by the test vectors.

Of course, with the current choice of parameters, potential im-
plementation issues are unlikely to manifest themselves. But on the
other hand, the flexibility to support other parameters (e.g. different
values for 𝑞) was designed into the Algorithm 1.

If a new 𝑞 is selected some time in the future and an independent
auditor comes to run checks with the same version of the tool he
used previously, there is a risk of incompatible output. Of course,
this risk can be detected with updated tests, and the problem can be
attributed to programming errors. However, verifying the proofs is
a public event meant to increase trust in the final tally. Any issues
during this process have a potential to undermine this trust. It
would be best if the protocol would be designed in a way that its
implementation would leave as few ambiguous points as possible.

https://go.dev/

ARES 2023, August 29–September 01, 2023, Benevento, Italy Jan Willemson

4 SIMPLIFYING PROOF VERIFICATION
There are a few relatively simple adjustments that would make the
specification easier to implement and test.

4.1 Rejection sampling
First of all, as uniform distribution is not really needed for the
Fiat-Shamir challenges, the whole rejection sampling process is not
necessary and can be removed.

The second adjustment is also straightforward – use a standard
extensible output hash function like Shake256 instead of a hand-
tailored PRNG. As of 2022, stateful implementations of Shake256
are available for a variety of development platforms, including
Go8, Python9, Java10, etc. This means that requiring independent
verification applications to implement non-standard PRNG-s is no
longer justified.

If rejection sampling is still targeted, the interplay between rejec-
tion sampling and the primes 𝑝 and 𝑞 should be addressed. Masking
off the excess bits on the line 4 of Algorithm 1 is introduced with a
good idea – to make the check on the line 5 more efficient. However,
when 𝑞 is very close to 2ℓ , this check becomes too efficient so that
it almost never triggers, resulting in a chunk of dead, hard-to-test
code.

There are several possible approaches to this problem.
First, we may say that the failure probability of 2−64 is small

enough to be ignored, and that wewill only be using values of𝑞 very
close to 2ℓ . This means that we can ignore all rejection sampling
and masking, and simply read ℓ first bits from the PRNG.

The main question here is whether suitable alternative values
for 𝑞 can be selected in case e.g. its length needs to be extended in
order to meet updated security requirements in the future. Luck-
ily, RFC3526 has also standardized 4096-, 6144- and 8192-bit safe
primes that all have the same structure, i.e. that their 64 highest
bits are equal to 1. In case even 8192-bit modulus becomes inse-
cure, we probably anyway have to consider changing the whole
cryptosystem (e.g. to resist attacks by quantum computers).

We are actually not limited to the primes given in RFC3526, but
can generate our own ones. All theMODP groups in RFC3526 follow
the same pattern. A prime modulus of bit length 𝑏 is defined for in
the form

𝑝 = 2𝑏 − 2𝑏−64 − 1 + 264 · ([2𝑏−130 · 𝜋] + 𝑖) , (1)

where 𝑖 is the smallest positive integer such that 𝑝 is a safe prime
(i.e. 𝑝−1

2 is also a prime). The 64 highest and 64 lowest bits of 𝑝
are set to 1 to allow for efficient modular computations (see [12,
Appendix E] for the rationale of these choices).

The number 𝑖 can be determined by inspecting 𝑖 = 1, 2, . . ., and it
is typically in the order of magnitude from a few hundred thousands
to a few millions.

Say, we want to account for the fact that Shake256 outputs only
full bytes, so in order to get 3071 bits wewould still need to use some
masking. In order to get rid of this, we may want to have 𝑞 of length
3072 and 𝑝 accordingly of length 3073 bits. It is straightforward to

8https://pkg.go.dev/golang.org/x/crypto/sha3#ShakeHash
9https://pycryptodome.readthedocs.io/en/latest/src/hash/shake256.html
10https://javadoc.iaik.tugraz.at/iaik_jce/current/iaik/security/md/
SHAKE256InputStream.html

verify that 265656 is the smallest value for 𝑖 gives a prime number
with the desired properties.

If the failure probability of 2−64 is still too large, we can replace
64 by 128 (and 130 by 258) in (1) to find that 𝑖 = 2655344 gives rise
to a suitable 3073-bit safe prime with the probability of rejection
less than 2−128.

An alternative solution to the dead functionality problem is not
to mask off the highest bit(s) in line 4 of Algorithm 1. As we saw in
Section 3, this would lead to about two rounds of rejection compu-
tation in case of the current parameters of IVXV. This would enable
creating test vectors for rejection sampling, whereas the compu-
tational overhead to the whole process would be negligible since
the computation time is still mostly determined by the modular
exponentiation.

4.2 Encoding the cryptographic material
In order to process the algebraic values defined in the protocol spec-
ification, they have to be encoded somehow on the bit level. There
are a few alternatives for such an encoding. Verificatum mix-net
for example uses its own byte tree data structure [1]. However, this
is a non-standard structure, with no implementation used outside
Verificatum.

IVXV uses JSON to wrap a list of proofs into one file, and ASN.1
DER to represent the actual cryptographic values. The choice of
ASN.1 is pragmatic as it is one of the oldest and best-established
byte-level serialization methods, being supported by a number of
existing tools and libraries. This included the tool of our choice, Go,
that provided all the required functions for base64 decoding and
ASN.1 DER parsing as parts of standard library.

On the other hand, ASN.1 does add another layer of complexity,
and it should only be used when really necessary, i.e. when the data
needs to travel between loosely connected components.

One example of such a need is distribution of the system’s public
encryption key. This key is used e.g. by the voting client, individual
verification application, mix-net and decryption server (together
with the proof verifiers). It makes sense to distribute the key in a
standard format, and ASN.1 is a good choice for that.

However, the actual cryptographic values that the decryption
server outputs (i.e. 𝑢, 𝑣 , 𝑎, 𝑏 and 𝑠) are only meant to be used
by the proof verification applications. Out of these, 𝑢 and 𝑣 are
actually obtained from the mix-net output in the byte tree format,
re-packaged into ASN.1, and the corresponding ASN.1 structure
is encapsulated into the JSON file. Similarly, the 𝑎, 𝑏 and 𝑠 values
obtained during the proof generation are packaged into an ASN.1
structure which is then saved into a field in the JSON file.

We argue that such extra packaging is redundant. There is no
reason not to export the𝑢, 𝑣 , 𝑎, 𝑏 and 𝑠 directly as fields of the JSON
structure, removing the need for ASN.1 parsing as a part of the
decryption proof verification altogether.

Of course, the need to parse the public key still remains. However,
note that since the group used in IVXV is standard, the modulus 𝑝
and the generator 𝑔 are fixed anyway, and the only varying part is
the value ℎ = 𝑔𝑥 . But ℎ is also just a number which can be extracted
from the ASN.1 structure using any available tool like asn1parse
or openssl, and hard-coded into the source.

https://pkg.go.dev/golang.org/x/crypto/sha3#ShakeHash
https://pycryptodome.readthedocs.io/en/latest/src/hash/shake256.html
https://javadoc.iaik.tugraz.at/iaik_jce/current/iaik/security/md/SHAKE256InputStream.html
https://javadoc.iaik.tugraz.at/iaik_jce/current/iaik/security/md/SHAKE256InputStream.html

Creating a Decryption Proof Verifier for the Estonian Internet Voting System ARES 2023, August 29–September 01, 2023, Benevento, Italy

A problem with the IVXV public encryption key is that it is not
distributed in a well-communicated manner. It is compiled into the
voting application, but the latter is not open source. The public key
is also needed during individual verification, and the verification
application obtains it from a respective configuration file. The file
is actually accessible to anyone online11, but the link is not clearly
communicated to the potential auditors. On the positive side, note
that such a distribution mechanism helps to convince the auditor
that the public key used during the elections and the public key
provided for decryption proof auditing are actually the same.

5 SUPPORTING PROCESSES AND PRACTICAL
DEPLOYMENT

Even though the IVXV infrastructure has been built with indepen-
dent auditing in mind, the existing processes around it do not yet
enable auditing to be set up and run smoothly.

The first issue is availability of the specification for the IVXV
decryption proof verification. Even though we were able to obtain
a version of it directly from the IVXV development team for the
purposes of pur project, it has not yet been officially released by the
time of this writing (March 2023). In order for the zero knowledge
proofs to verify successfully, the application has to work correctly
to the last bit. Achieving this is impossible without a comprehensive
and up-to-date specification.

Another major problem is the lack of processes for invoking in-
dependently developed auditing applications. On one hand we want
such applications to be put forward as this helps to increase trans-
parency of the whole system. On the other hand, these applications
should be subjected to strict quality control as incorrectly reporting
a verification failure may cause a lot of unjustified distrust.

Thus, the first step in engaging independent auditing solutions
should be developing a set of acceptance criteria and test vectors.
These should cover all the possible errors and exceptional situ-
ations, as well as provide enough data for stress testing. For our
development, we got one file with 4 zero knowledge proofs from the
developer of IVXV and one file with 69 proofs that were obtained
while testing the system for March 2023 parliamentary elections
of Estonia. Based on the latter, we built a file copying each of the
proofs 4,000 times in order to have 276,000 proofs for stress test-
ing our application. However, we had no guarantee that these test
files would cover all the possible situations that might occur while
checking the proofs.

Currently there is also no clear process for actually invoking the
independent auditing applications. There are a few possible options
for this. First, it is possible to hand over the decryption proofs on a
removable media during the tallying or tally verification stages. The
auditors could then run their applications on their own computers
and report back the results. As the votes are re-encrypted and
mixed before decryption, the proof files should contain no personal
information that would leak voters’ preferences and thus enable
coercion attacks.

However, this only holds true for the correctly formatted votes.
An incorrect vote may still carry information useful e.g. in the coer-
cion scenarios. In the simplest case, the attacker can force a victim
to submit an invalid vote (e.g. using a custom voting client [4]) in

11https://www.valimised.ee/verify/config.json

an attempt to disenfranchise them. Detecting the respective invalid
vote in the decrypted output assures the attacher that his attack
was successful. It is also possible to use the invalid vote side chan-
nel to leak secret information [15]. In 2022, Mueller proposed an
attack that allows encoding several votes into what appears as an
incorrectly encoded ballot [11].

Currently, incorrect ballots are not included in the zero knowl-
edge proof file produced by the decryption application, but this
comes with a power for the decryption application to declare some
votes as invalid without proving this statement. As pointed out
in [11], one possible solution would be including proofs of plaintext
correctness into the vote submission protocol of IVXV. In any case,
invalid ballot attacks need to be mitigated before the decryption
proof file can be handed over to the independent auditors without
any restrictions. On the other hand, once mitigating measures are
put in place, the zero knowledge proofs of correct decryption can
in principle made available to everyone online.

Another possible approach would be requiring the authors of
the independent verification applications to put the source code up
for prior inspection. First, this would allow for standardized quality
control procedures as both the election organizers and general
public would be able to look at the code and test the applications
beforehand. Second, such an approach would enable automated
execution of the verification applications without much human
involvement. Third, a public repository like GitHub would also
retain publicly visible update log, helping to ensure that the publicly
audited version was actually the one that was executed during the
auditing procedure.

The last process that is also currently missing in Estonia is that
of dispute resolution. Even after careful testing, it is still possible
that different auditing applications give different outputs. A simple
programming error is the most likely cause for this, but such a
situation should nevertheless be carefully studied. Clear guidelines
for resolving the mismatch should be established beforehand.

We tested our application during the 2023 Estonian parliamen-
tary elections. We released the first version of the software publicly
on February 23rd, i.e. 4 days before the period for electronic vote
casting started.12

Even though all the above-mentioned procedures were not in
place, we approached the Estonian Election Management Body
(EMB) with a request to receive the actual decryption proof file,
and our request was granted.

At the first run, our application successfully loaded proofs for
all the 312181 electronic votes given. As an output, the application
reported 312180 successful and 0 failed proof verifications. The
mismatch of one was easily traced back to incorrect mutex handling
during the multi-threaded processing of the proofs. After this bug
was fixed, the application consistently reported 312181 successful
verifications. The whole verification process took about 50 minutes
on an AMD Ryzen 7 5700U processor having 8 cores and supporting
16 threads.

In retrospect, we feel that the mismatch of one during the initial
run underlines our point made above. The independent auditing
and verification applications have to undergo stringent quality
control before they can be run on the real input during something

12https://github.com/janwil123/IVXVDecryptionProofVerifier

https://www.valimised.ee/verify/config.json
https://github.com/janwil123/IVXVDecryptionProofVerifier

ARES 2023, August 29–September 01, 2023, Benevento, Italy Jan Willemson

as important as parliamentary elections. The respective quality
control processes must be established and clearly communicated
by the EMB in advance.

Compared to the original four-line specification, our Go imple-
mentation of the decryption proof verifier is 333 lines long (includ-
ing empty lines and comments for better readability). A significant
amount of this length is due to packing and parsing various values
to and from ASN.1 DER encoding. While being relatively straight-
forward to read, this length could be reduced if the values required
for proof verification would be included in the JSON file directly
(see Section 4.2).

According to our subjective assessment, the least readable step
of the whole verifier source is the seed generation using the non-
standard SHA256-based PRNG, followed by the rejection sampling.
As discussed in Section 4.1, neither of these complications is really
necessary and can be avoided by simplifying the specification.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we reviewed the specification of verification of zero-
knowledge proofs of correct decryption implemented in the IVXV
Internet voting system. In order to validate completeness of the
specification, we created an implementation of the verifier in the
Go programming language.

In this process, we received support from the IVXV development
team both in the form of in-progress specification and answers to
specific technical questions. In retrospect, we can say that com-
pleting the implementation would not have been possible without
access to these answers. On one hand this means that even the in-
progress specification was not yet detailed enough for a complete
implementation. On the other hand, we hope that our effort also
gave feedback to the IVXV development team helping to improve
the specification.

We also evaluated the decryption proof protocol from the view-
point of verifier implementation simplicity. We argue that this
simplicity is an important (even though often overlooked) non-
functional requirement when designing zero-knowledge proofs.
Recall that the ultimate goal of all the voting-related ceremonies
and protocols is to increase public trust in the election result. Cryp-
tographic proofs, while being instrumental in achieving advanced
security properties, are at the same time also some of the most
complex components in the electronic voting schemes.

This makes the role of cryptographic proofs somewhat contro-
versial. On one hand they are designed to reduce the need to blindly
trust the key components like the vote decryption service. On the
other hand, if the complexity of verification routines required to
assess the correctness of these components reaches beyond certain
threshold, the number of people who are actually able to perform
this verification becomes too low to support public trust.

Whereas good knowledge of algebra and programming is un-
avoidable, there are still a few details in the current zero-knowledge
proof protocols that can be tuned to make implementing the proof
verifiers easier or more robust. In case of IVXV, for example, a
part of complexity can be avoided if the unnecessary property of
uniform distribution of Fiat-Shamir challenges is not targeted in
the first place.

If this property is still desired, a possible trade-off can be accept-
ing a little bit lower performance. In case of IVXV, for example,
we can change the parameters so that the rejection sampling step
would actually trigger with 50% probability, making it possible to
cover the implementation with complete integration test vectors.
The price to pay would be 12 hash function evaluations per re-
jection. This performance penalty can be lowered even further if
Shake256 would be used, replacing separate hash function calls
with one sponge squeeze.

Another layer of potential complexity is added by the need to
encode algebraic values to bit-level representations. There exist
standard encoding schemes (like ASN.1 DER plus base64) that are
commonly used to provide interoperability between different com-
ponents or even systems, e.g. for encapsulating public keys. How-
ever, there is no need to utilize extra encoding for values used only
within one protocol. Dropping unneeded encoding and decoding
steps can also make the code easier to write, test and audit.

We argue that the requirement of easy comprehension and verifi-
cation should be taken into account already when starting to design
cryptographic zero-knowledge proof protocols. On one hand, zero-
knowledge is not an overly complicated concept [13]. The challenge,
however seems to be doing it efficiently so that the proofs would
scale to, say, millions of instances – an order of magnitude required
by the voting protocols. Still, continuous advances in computer
hardware should make it possible to find trade-offs and allow better
explainable protocols for the price of some performance drop. This
is an open question for future research and development.

As a by-product of our evaluation effort, we created a fully func-
tional decryption proof verification utility which we used in prac-
tice during the Estonian parliamentary elections of 2023. We were
able to independently verify all the zero-knowledge proofs, but a
minor bug in the initial version of our tool underlines the need
to have clear and reliable procedures for quality control of the
independently developed verification applications.

We conclude that it is not sufficient just to create an option for
external data auditors to enter the scene. One must also prepare for
the scenario when the results of competing auditing tools do not
agree. Several options are conceivable here, ranging from prior test-
ing to on-site code review. In the latter case, the reviewwill be easier
to conduct if the algorithm to be implemented for verification is as
simple as possible. This observation once more confirms the main
point of the current paper and motivates future zero-knowledge
proof designers to pay more attention to the simplicity of proof
verification.

ACKNOWLEDGMENTS
This paper has been supported by the Estonian Research Council
under the grant number PRG920. The author is grateful to Sven
Heiberg and Ivo Kubjas for helpful discussions and feedback during
the development process.

Creating a Decryption Proof Verifier for the Estonian Internet Voting System ARES 2023, August 29–September 01, 2023, Benevento, Italy

REFERENCES
[1] 2022. User Manual for the Verificatum Mix-Net. Version 3.0.4, https://www.

verificatum.org/files/vmnum-3.1.0.pdf.
[2] Michel Abdalla, Tor Erling Bjørstad, Carlos Cid, Benedikt Gierlichs, Andreas

Hülsing, Atul Luykx, Kenneth G. Paterson, Bart Preneel, Ahmad-Reza Sadeghi,
Terence Spies, Martijn Stam, Michael Ward, Bogdan Warinschi, and Gaven Wat-
son. 2018. Algorithms, Key Size and Protocols Report. https://www.ecrypt.eu.
org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf.

[3] Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. 2021. Does Fiat-Shamir
Require a Cryptographic Hash Function?. In Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part IV (Lecture Notes in Computer Science,
Vol. 12828), Tal Malkin and Chris Peikert (Eds.). Springer, 334–363. https://doi.
org/10.1007/978-3-030-84259-8_12

[4] Valeh Farzaliyev, Kristjan Krips, and Jan Willemson. 2021. Developing a Personal
Voting Machine for the Estonian Internet Voting System. In SAC ’21: The 36th
ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Republic of Korea,
March 22-26, 2021, Chih-Cheng Hung, Jiman Hong, Alessio Bechini, and Eunjee
Song (Eds.). ACM, 1607–1616. https://doi.org/10.1145/3412841.3442034

[5] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. 2021. Did you mix me? For-
mally Verifying Verifiable Mix Nets in Electronic Voting. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
1748–1765. https://doi.org/10.1109/SP40001.2021.00033

[6] Sven Heiberg, Peeter Laud, and Jan Willemson. 2011. The Application of I-Voting
for Estonian Parliamentary Elections of 2011. In E-Voting and Identity - Third
International Conference, VoteID 2011, Tallinn, Estonia, September 28-30, 2011,
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7187), Aggelos
Kiayias and Helger Lipmaa (Eds.). Springer, 208–223. https://doi.org/10.1007/978-
3-642-32747-6_13

[7] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan Willemson. 2016. Improving
the Verifiability of the Estonian Internet Voting Scheme. In Electronic Voting -
First International Joint Conference, E-Vote-ID 2016, Bregenz, Austria, October 18-21,
2016, Proceedings (Lecture Notes in Computer Science, Vol. 10141), Robert Krimmer,
Melanie Volkamer, Jordi Barrat, Josh Benaloh, Nicole J. Goodman, Peter Y. A.
Ryan, and Vanessa Teague (Eds.). Springer, 92–107. https://doi.org/10.1007/978-

3-319-52240-1_6
[8] Sven Heiberg and Jan Willemson. 2014. Verifiable internet voting in Estonia.

In 6th International Conference on Electronic Voting: Verifying the Vote, EVOTE
2014, Lochau / Bregenz, Austria, October 29-31, 2014, Robert Krimmer and Melanie
Volkamer (Eds.). IEEE, 1–8. https://doi.org/10.1109/EVOTE.2014.7001135

[9] Mika Kojo and Tero Kivinen. 2003. More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE). RFC 3526. https://doi.org/10.
17487/RFC3526

[10] Ülle Madise and Tarvi Martens. 2006. E-voting in Estonia 2005. The first Practice
of Country-wide binding Internet Voting in the World. In Electronic Voting 2006:
2nd International Workshop, Co-organized by Council of Europe, ESF TED, IFIP WG
8.6 and E-Voting.CC, August, 2nd - 4th, 2006 in Castle Hofen, Bregenz, Austria (LNI,
Vol. P-86), Robert Krimmer (Ed.). GI, 15–26.

[11] Johannes Mueller. 2022. Breaking and Fixing Vote Privacy of the Estonian E-
Voting Protocol IVXV. In Workshop on Advances in Secure Electronic Voting 2022.
http://hdl.handle.net/10993/49442.

[12] Hilarie K. Orman. 1998. The OAKLEY Key Determination Protocol. RFC 2412.
https://doi.org/10.17487/RFC2412

[13] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis Guillou, Marie Annick Guillou, Gaïd Guillou, Anna Guillou,
Gwenolé Guillou, and Soazig Guillou. 1990. How to Explain Zero-Knowledge
Protocols to Your Children. In Advances in Cryptology — CRYPTO’ 89 Proceedings,
Gilles Brassard (Ed.). Springer New York, New York, NY, 628–631.

[14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J. Alex Halderman. 2014. Security Analysis of the
Estonian Internet Voting System. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, Scottsdale, AZ, USA, Novem-
ber 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 703–715.
https://doi.org/10.1145/2660267.2660315

[15] Douglas Wikström, Jordi Barrat, Sven Heiberg, Robert Krimmer, and Carsten
Schürmann. 2017. How Could Snowden Attack an Election?. In Electronic Voting -
Second International Joint Conference, E-Vote-ID 2017, Bregenz, Austria, October 24-
27, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10615), Robert Krim-
mer, Melanie Volkamer, Nadja Braun Binder, Norbert Kersting, Olivier Pereira,
and Carsten Schürmann (Eds.). Springer, 280–291. https://doi.org/10.1007/978-3-
319-68687-5_17

https://www.verificatum.org/files/vmnum-3.1.0.pdf
https://www.verificatum.org/files/vmnum-3.1.0.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1145/3412841.3442034
https://doi.org/10.1109/SP40001.2021.00033
https://doi.org/10.1007/978-3-642-32747-6_13
https://doi.org/10.1007/978-3-642-32747-6_13
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1109/EVOTE.2014.7001135
https://doi.org/10.17487/RFC3526
https://doi.org/10.17487/RFC3526
http://hdl.handle.net/10993/49442
https://doi.org/10.17487/RFC2412
https://doi.org/10.1145/2660267.2660315
https://doi.org/10.1007/978-3-319-68687-5_17
https://doi.org/10.1007/978-3-319-68687-5_17

	Abstract
	1 Introduction
	2 IVXV vote encryption and zero knowledge proof of correct decryption
	3 Implementing an independent decryption proof verifier
	4 Simplifying proof verification
	4.1 Rejection sampling
	4.2 Encoding the cryptographic material

	5 Supporting processes and practical deployment
	6 Conclusions and future work
	Acknowledgments
	References

