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Abstract
Mix‐networks were first proposed by Chaum in the late 1970s–early 1980s as a general
tool for building anonymous communication systems. Classical mix‐net implementations
rely on standard public key primitives (e.g., ElGamal encryption) that will become
vulnerable when a sufficiently powerful quantum computer will be built. Thus, there is a
need to develop quantum‐resistant mix‐nets. This article focuses on the application case
of electronic voting where the number of votes to be mixed may reach hundreds of
thousands or even millions. We propose an improved architecture for lattice‐based post‐
quantum mix‐nets featuring more efficient zero‐knowledge proofs while maintaining
established security assumptions. Our current implementation scales up to 100,000 votes,
still leaving a lot of room for future optimisation.
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1 | INTRODUCTION

Voting is the main mechanism of public opinion polling uti-
lised, for example, in the context of general elections. Tradi-
tionally, voting has happened in a controlled location (polling
station) to ease electoral management and reduce potential
fraud.

However, by the beginning of the 21st century, peoplehave
become more mobile than ever before, so taking all the elec-
torate into one place for a short period of time has become
increasingly challenging. This challenge has been amplified by
the recent COVID‐19 outburst that has brought along the
need to avoid gathering people in small spaces.

Thus, the need for the methods of remote voting has
increased significantly. For example, during the 2020 U.S.
presidential elections, more than 65 million votes were sent in
by post. Even though there seems to be little evidence of direct
fraud, the extent of postal voting still caused a lot of contro-
versy and discussion.

Indeed, the unreliability of postal services may raise ques-
tions about what to do with late votes, voter identification of
postal votes is not particularly strong, and due to voting in an
uncontrolled environment, it is hard to guarantee voting pri-
vacy and coercion resistance.

Such problems motivate a search for alternatives, with
remote electronic (Internet) voting being one of the prime
candidates.

The votes stored on and transmitted via digital media are,
contrary to paper votes, not directly perceivable by humans.
Thus, the central problem of remote electronic voting is the
independent verifiability of all the actions. In this paper, we are
going to focus on a particular method of ensuring verifiability
of the central voting system, since this is potentially the most
critical point of failure.

What makes central server‐side verification challenging is
the need to also maintain the privacy of the votes. There are
two main approaches used to implement privacy‐preserving
verifiable electronic voting systems—homomorphic tallying
and mixing the votes before decryption [1]. There are a
number of implementations known for both of these
approaches, typically relying on some form of homomorphic
encryption, for example, the Paillier or the ElGamal
scheme [2].

However, the classical asymmetric algorithms used in these
implementations are known to become weak due to Shor's
algorithm once a sufficiently capable quantum computer will
be built [3]. Thus, looking for post‐quantum alternatives is a
necessity.
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In recent years, both post‐quantum homomorphic tallying
[4, 5] and mixing [6–8] have been studied. Mix‐networks were
first proposed by Chaum in the late 1970s–early 1980s [9] as a
general tool for building anonymous communication systems.
In this paper, we will concentrate on quantum‐resistant mix‐
nets, aiming at improving their efficiency in terms of the
number of votes they are able to shuffle in a given time period.

As the most expensive part of a cryptographic mix‐net is
the generation and verification of zero‐knowledge proofs of
correct operation, we concentrate on improving these proofs.
Technically, we build upon the recently proposed protocol by
Costa et al. [9], applying amortisation techniques for linear and
product relations described in the LANES framework [10–12]
and using a commitment scheme by Baum et al. [13].

As a result, we design a purely lattice‐based zero‐
knowledge proof of a shuffle for a lattice‐based mixing
scheme that can be scaled up to about 100,000 votes. We
instantiate the protocol with specific parameters such that the
protocol achieves 128‐bit soundness and 180‐bit post‐quantum
encryption security level. Finally, we provide a proof‐of‐
concept implementation of the proposed scheme and bench-
mark its practical performance.

The structure of this paper is as follows. In Section 2, we
specify notation and Preliminaries used in the construction of
the protocol and its security proof. The protocol itself is
presented in Section 3. Implementation and experimental re-
sults are presented in Section 4.3. Finally, Section 5 draws some
conclusions and sets directions for future work. Details of the
proofs can be found in the Appendices.

This is an extended version of paper that appeared at the
24th Annual International Conference on Information Security
and Cryptology. Compared to the conference version, the
zero‐knowledge proof of a shuffle protocol has been modified
by appending an argument that the extracted permutation
vector is indeed a vector of integers. The authors would like to
thank members of the academic community for pointing to
this shortcoming. Additionally, further analysis revealed that
some intermediate terms are committed to twice in the pro-
tocol. Removing those redundant commitments resulted in
shorter proof size, increasing the protocol efficiency especially
for larger number of voters. Also, a number of typos have been
fixed and wording has been improved in many places to
improve readability of the current journal version of the paper.

2 | PRELIMINARIES

2.1 | Notation

For a prime q, let Zq be the ring of integers modulo q, with its
elements considered in the interval

�
− q−1

2 ;
q−1
2

�
, and let Z�n

denote the group of invertible elements modulo n. ⌊x⌉ repre-
sents the closest integer to x in Zq. Vectors over Zq are denoted
as v!∈ Zm

q and matrices over Zq are denoted by regular capital
letters (e.g. A) unless explicitly stated otherwise. Letting d be a
power of two, we consider the rings R¼ Z½X�=ðXd þ 1Þ and
Rq ¼ Zq½X�=ðXd þ 1Þ. Elements of these rings are written in

bold lower‐case letters (e.g. p), and vectors with elements from
these rings will naturally be denoted as b

!
. Matrices over R or

Rq are bold upper‐case letters, for example, B. By default, all
vectors and their concatenations are column vectors. More
precisely, an element a ∈Rq can be written as column vector
Va ¼ ja0; a1;…; ad−1j

T where a¼
Pd−1

i¼0 aiX
i and ai ∈ Zq.

Especially for ring Rq, the same element can be represented as
a matrix in Zq when it is a multiplicand:

Ma ¼

�
�
�
�
�
�
�
�

a0 −ad−1 −ad−2 ⋯ −a1
a1 a0 −ad−1 ⋯ −a2
⋮ ⋱ ⋱ ⋱ ⋮
ad−1 ad−2 ad−3 ⋯ a0

�
�
�
�
�
�
�
�

:

l2 and l∞ norms are defined as usual:

kak∞ ¼max
i
jaij and kak2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja0j2 þ⋯þ jad−1j
2

q

:

These norms can naturally be extended to vectors overRq. For
w!¼ fw 1;…;w kg ∈Rk

q, we have

kw!k∞ ¼max
i
kw ik and kw!k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kw 1k
2
2 þ⋯þ kw kk

2
2

q

:

Polynomials and vectors with short norms will simply be
referred to as short.

2.2 | Splitting rings

In this work, we set q − 1 ≡ 2l mod 4l, so that Xd + 1 splits
into l irreducible polynomials of degree d/l, that is,

Xd þ 1¼ ∏
i∈Z�2l

�
Xd=l − ζi

�
mod q¼∏

l

i¼1
φi mod q;

where ζ is primitive 2lth root of unity in Zq and φi = Xd/l −
ζ2i−1. Thus, the ring Rq is isomorphic to the product of the
corresponding residue fields:

Rq ≅ Zq½X�=
�
φ1
�
�⋯� Zq½X�=

�
φl
�
:

We call a ring fully splitting when l = d.
The Number Theoretic Transform (NTT) of a polynomial

p ∈Rq is defined as

NTTðpÞ ¼

2

4
p̂0
⋮

p̂l−1

3

5 where p̂i−1 ¼ p mod φi:

By Chinese Remainder Theorem, there exists a unique
inverse transformation—Inverse NTT—such that INTT
(NTT(p)) = p. Also, NTT allows the computing of the
product of two polynomials faster and saves time in other
operations.
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ab ¼ INTTðNTTðaÞ ◦NTTðbÞÞ
NTTðaþ bÞ ¼NTTðaÞ þNTTðbÞ

Here ◦ is the component‐wise multiplication operation.

2.3 | Ring‐LWE encryption, module SIS/
LWE

In our constructions, we will rely on hardness of Ring Learning
With Errors (Ring‐LWE, RLWE) [14] and Module Learning
With Errors (Module‐LWE, MLWE) or Module Short Integer
Solution (Module‐SIS, MSIS) [15, 16] problems.

Definition 1 [RLWEχ] In the decisional Ring‐LWE problem
with an error distribution χ overR, the probabilistic polynomial
time (PPT) adversary A is asked to distinguish ða;bÞ←$ Rq �

Rq from (a, a ⋅ s + e) for a ←$ Rq and s, e ← χ.

The corresponding search‐RLWE problem asks to find s
from several (a, b ) RLWE samples. Ring‐LWE assumption is
that search‐RLWE and/or decisional‐RLWE problem is hard
for any probabilistic polynomial time adversaries.

We implement the encryption scheme described in ref.
[14]. Let χ1 be error distribution overR where each coefficient
is sampled from { −1, 0, 1}.

� KeyGen: Given a uniformly sampled in Rq, a secret s ← χ1
and an error e ← χ1, the public key is defined as pk = (pk.a,
pk.b) = (a, a⋅s + e) and private key as s.

� Encryption: To encrypt a message z ∈R2, sample new
randomness r and error terms e1, e2 from error distribution
χ1 are used. Then the ciphertext is a pair of polynomials
(u, v) such that

u ¼ pk:a ⋅ r þ e1;

v ¼ pk:b ⋅ r þ e2 þ ⌊q2⌉z :
� Decryption: Given ciphertext (u, v), compute

v − u ⋅ s ¼ ðr ⋅ e − e1 ⋅ s þ e2Þ þ ⌊q2⌉z :
If each coefficient of the resulting polynomial is close to 0,

set the respective coefficient of the decrypted message to 0.
Otherwise, set the decrypted message as 1.

The RLWE encryption scheme defined as above is
semantically secure under RLWEχ1 assumption. To see this,
just observe that the ciphertext consists of two RLWE sam-
ples, which by the RLWEχ1 assumption are indistinguishable
from uniformly random elements. Thus, unless one can solve
the decisional‐RLWE problem, all ciphertexts look uniform
and no information can be extracted about the plaintext.

Definition 2 [MLWEn,m,χ] In the Module‐LWE problem with
parameters n, m > 0 and an error distribution χ over R, the

PPT adversary A is asked to distinguish ðA; t!Þ←$ Rm�nq �

Rmq from ðA;A s!þ e!Þ for A ←$ Rm�nq , a secret vector
s!← χn and an error vector e!← χm.

Definition 3 [MSISm,n,β] The goal in the Module‐SIS problem
with parameters n,m > 0 and 0 < β < q is to find x!∈Rm

q for
a given matrix A←$ Rn�m

q such that Ax!¼ 0
!

mod q and
0 < kx!k∞ < β.

In practical security estimations, the parameter m in Def-
initions 2 and 3 does not play a crucial role, therefore we
simply omit it and use the notations MLWEn;χ and MSISn;β.
Furthermore, we let the parameters μ and λ denote the module
ranks for MSIS and MLWE respectively.

2.4 | Challenge space

Elements of the ring Rq are not always invertible. In fact,
Lyubashevsky et al. proved a relation between the probability
of invertibility in this ring and the number of residue fields it
splits into [17, Corollary 1.2]. Their claim is that generally short
non‐zero polynomials are invertible. In lattice‐based zero‐
knowledge proofs, the verifier often samples from a chal-
lenge set such that the difference between any two elements in
that set is invertible. However, constructing such a set and
uniformly sampling from it is not a trivial task.

Therefore, Lyubashevsky et al. proposed another method
where they relaxed the invertibility requirement. They defined
the challenge space as the set of ternary polynomials
C ¼ f−1; 0; 1gd ⊂R. Coefficients of a challenge c ∈ C are
identically and independently distributed where 0 has proba-
bility 1/2 and � 1 both have probability 1/4. In ref. [10,
Lemma 3.3], it is shown that if c ← C, the distribution of
coefficients of cmod (Xd/l − ζ) is almost uniform and the
maximum probability of coefficients over Zq is bounded.
Denote this bound with p. For example, in ref. [10] it is
estimated that p = 2−31.44 for l = d = 128, q ≈ 232. An
element c in splitting ring Rq is non‐invertible when cmod
φi = 0 for any i = 1, …, l. Then the difference between† any
two challenges c ¼ c − c 0 is non‐invertible with probability at
most pd/l.

Therefore, Lyubashevsky et al. proposed another method
where they relaxed the invertiblity requirement. They defined
the challenge space as the set of ternary polynomials
C ¼ f−1; 0; 1gd ⊂R. Coefficients of a challenge c ∈ C are
identically and independently distributed where 0 has proba-
bility 1/2 and � 1 both have probability 1/4. In ref. [10,
Lemma 3.3], it is shown that if c ← C, the distribution of
coefficients of cmod (Xd/l − ζ) is almost uniform and the
maximum probability of coefficients over Zq is bounded.
Denote this bound with p. For example, in ref. [10] it is
estimated that p = 2−31.44 for l = d = 128, q ≈ 232. An
element c in splitting ring Rq is non‐invertible when cmod
φi = 0 for any i = 1, …, l. Then the difference between any
two challenges c ¼ c − c 0 is non‐invertible with probability at
most pd/l.

20 - FARZALIYEV ET AL.
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2.5 | Error distribution and rejection
sampling

Security of RLWE andMLWE problems depends on the error
distribution. The original security proofs [14, 15] assumed the
errors from discrete spherical Gaussian distribution. However,
in literature we can find different choices such as centred
binomial distribution [18, 19] or uniform distribution in a small
interval [20]. We use the former for sampling randomness in
MLWE and the latter for randomness and error terms in
RLWE.

Rejection sampling. It is a common practice to hide
secret commitment randomness r!∈Rκ

q in another vector
z! without leaking any information about r!. For this
purpose, we use uniform rejection sampling technique from
ref. [19]. In the protocol, the prover samples a ‘masking’
vector y! using uniform distribution in [−δ + 1, δ]. Upon
receiving the challenge c ←$ C by the verifier, the prover
responds with z!¼ y! þ c r!. The dependency of z! on r!

is removed if k z!k∞ < δ − β where kc r!k∞ ≤ β. Otherwise,
the prover rejects the masked vector and aborts the protocol
to start over again.

The expected number of repetitions M required by rejec-
tion sampling can be estimated by

1=M ¼
�
2ðδ − βÞ − 1

2δ − 1

�κd

≈ e−κdβ=δ:

For more details see ref. [19]. The parameter δ is typically
chosen so that the expected value of M is small (say, 2 or 3).

2.6 | Commitment scheme

In this work, we will be using a variant of BDLOP commit-

ment scheme [13]. Let, B0 ∈Rμ�ðμþλþ1Þ
q , b

!
1 ∈Rμþλþ1

q and

r!← χðμþλþ1Þd
2 . The commitment of a single message m ∈Rq

is a pair ð t!0; t1Þ where

t!0¼ B0 r!;

t 1 ¼ 〈b
!

1; r!〉þm:

It is easy to see that the commitment scheme is binding and
hiding due to MSISμ and MLWEλ assumptions respectively.

Definition 4 Aweak opening for the commitment t!¼ t!0kt 1
consists of l polynomials c i ∈Rq, randomness vector r!⋆ over
Rq and a message m⋆ ∈Rq such that

kcik1 ≤ 2d and c i mod φi ≠ 0 for all 1 ≤ i ≤ l;
kci r!⋆k∞ ≤ 2β for all 1 ≤ i ≤ l;

B0 r!⋆ ¼ t!0;

〈b
!

1; r!⋆〉þm⋆ ¼ t1:

The BDLOP commitment scheme is proven to be binding
also with respect to the weak opening in ref. [10, Lemma 4.3].

2.7 | Generalised Schwartz‐Zippel lemma

The generalised Schwartz‐Zippel lemma is stated as follows [9,
Appendix A].

Lemma 1 Let p ∈ R[x1, x2, …, xn] be a non‐zero polynomial
of total degree d ≥ 0 over a commutative ring R. Let S be a
finite subset of R such that none of the differences between two
elements of S is a divisor of 0 and let r1, r2, …, rn be selected at
random independently and uniformly from S. Then Pr[p(r1,
r2, …, rn) = 0] ≤ d/jSj.

In general, it is not trivial to construct the set S. A poly-
nomial in Rq is a zero divisor when at least one of its NTT
coefficients is zero. Thus, the difference between two elements
is not a divisor of zero when they do not have a common NTT
coefficient. There can be at most q pairwise different modulo
degree 1 prime ideals for fully splitting rings. This strictly re-
duces soundness. However, for partially splitting rings, this
number increases to qd/l. For any random polynomial, one can
find qd/l − 1 other polynomials which do not have common
NTT coefficients and construct the set S. We fix this set to be
S ¼

�
f ∈Rq ∣ deg f < d=l

�
.

2.8 | Mix‐node security

Costa et al. [9] proposed a stronger security definition for a
mix‐node. Assume that MixVotes is a generic mixing algo-
rithm such that, given input ciphertexts and a permutation
vector, produces shuffled and re‐encrypted ciphertexts.
Moreover, let zðiAÞ and zπðjAÞ be the message before and after
running the algorithm.

Definition 5 Let J be a uniform random variable taking values
in [1, …, N]. A mix‐node given by algorithm MixVotes is said
to be secure if the advantage of any PPT adversary A over
random guess is negligible in the security parameter. That is,
∀c, ∃κ0 s.t if κ > κ0:

Adv sec
A ¼

�
�
�Pr
h
zðiAÞ ¼ zπðjAÞ

i
− Pr

h
zðiAÞ ¼ zπðJÞ

i�
�
� <

1
κc
:

3 | IMPROVED MIX‐NODE

Our proof of shuffle protocol is based on Costa et al.’s work
[9]. Assume that there are N RLWE ciphertexts (ui, vi)
encrypted with public key (pk.a, pk.b) to be shuffled. A
mixing node will generate secret random zero encryption ci-
phertexts (ui,0, vi,0) and permutation π, and output

�
u0i; v

0
i
�

such that

FARZALIYEV ET AL. - 21
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�
ui;0; v i;0

�
¼
�
pk:a ⋅ rE;i þ eu;i; pk:b ⋅ rE;i þ ev;i þ 0

�

�
u0i; v

0
i
�
¼
�
uπðiÞ þ ui;0; vπðiÞ þ v i;0

�

where rE,i, eu,i, ev,i← χ1 for all i= 1,…,N. We extend the proof
in ref. [9] for any splitting rings in Appendix 7 to show that ifπ is
a valid permutation, then for any α; β; γ ∈ S the equation

∏
N

i¼1

�
βiþ αi − γ

�
¼∏

N

i¼1

�
βπðiÞ þ απðiÞ − γ

�
ð1Þ

holds due to generalised Schwartz‐Zippel lemma with small
cheating probability. Furthermore,

XN

i¼1
αiui ¼

XN

i¼1
απðiÞ

�
u0i − ui;0

�
; ð2Þ

XN

i¼1
αiv i ¼

XN

i¼1
απðiÞ

�
v 0i − v i;0

�
: ð3Þ

One can think of (2) and (3) as two polynomials with co-
efficients in Rq evaluated at the same point α. Again, due to
generalised Schwartz‐Zippel lemma, if equality holds, then
both polynomials are equal to each other, thus their co-
efficients are the same. Moreover, the relations (1), (2) and (3)
along with proof of correct encryption are shown in ref. [9] to
be enough to argue for the correctness of a shuffle.

The protocol in ref. [9] uses a commitment scheme from
ref. [21] to prove the aforementioned arguments mainly due to
the existence of zero‐knowledge proofs for linear and multi-
plicative relations for the commitment scheme. We recap the
protocol briefly below.

First, the prover P commits to zero encryption cipher-
texts (ui,0, vi,0), sends them to the verifier V and runs
amortised zero‐knowledge proof of knowledge of small se-
cret elements that those commitments are indeed commit-
ments to encryptions of zero with valid error parameters.
Next, P commits to the permutation vector π and sends
the commitment to the verifier again. Committing to per-
mutation vector means committing to π(1), …, π(N). Then,
V samples a polynomial α from the challenge set and sends
it back to the prover. Following to that, P calculates
commitments to απ(1), …, απ(N). To show that the permu-
tation vector is chosen before challenges and is a valid
permutation, the prover runs linear and multiplicative rela-
tion proofs several times and calculates the product in ref.
(1) using the committed values. Next, again by the relation
proofs, it proves the remaining two equalities to show
shuffling is correct. During the verification phase, the veri-
fier has to verify zero‐knowledge proofs of knowledge of
small secret elements and relations (1), (2) and (3).

Costa et al. [9] mention that it is possible to use amor-
tisation techniques described in ref. [6] to reduce the
complexity and total cost of the protocol. Unfortunately, they
have not explicitly shown how to do that, nor have they

instantiated the parameters to evaluate the performance and
concrete security level of the protocol.

We solve both issues by replacing the commitment scheme
with a variant of the Module SIS/LWE based commitment
scheme from ref. [13]. This allows us to use more efficient
zero‐knowledge arguments for proving linear and product re-
lations between committed messages [10, 12]. Those protocols
are short, efficient and have no extra cost when amortised over
many relations. Besides, there is no need to repeat the protocol
several times to get desired soundness properties. Neverthe-
less, as we change the mathematical setting, there is a need for
additional careful analysis of security.

For example, another change we introduce is regarding
challenge sets. Previously, prime modulus q was required to
satisfy q ≡ 3 mod 8, which implies that the ring Rq splits only
into two residue fields. This condition is required to define a
concrete sufficiently large set of challenge polynomials of
which any of the differences between two elements in this set
is invertible. Now, we relax this restriction and allow q to split
into more than 2 residue fields. In general, if the ring Rq
splits into l levels, one can construct such a set with cardi-
nality qd/l which can be sufficiently large for some values of q,
d and l.

Now we proceed to describe our protocol.
First, let μ and λ be rank of secure MSIS and MLWE

instances, respectively, q − 1 ≡ 2l mod 4l be such that Rq is a

partially splitting ring and B0 ∈Rμ�ðμþλþηþ8Nþ2Þ
q , b

!
1; b
!

2;…

b
!

8Nþηþ2 ∈Rμþλþηþ8Nþ2
q . Furthermore, set qd/l ≈ 2256 and

β0i ¼ δi − βi − 1 for i = 1, 2.

Theorem 1 The protocol in Figure 1 is statistically complete,
computationally honest verifier zero‐knowledge under the
Module‐LWE assumption, computationally special‐sound un-
der the Module‐SIS assumption and is a computationally
secure mix‐node under RLWEχ1 and MSISμ;8dβ02 assumptions.
That is, if p is the maximum probability over Zq of the co-
efficients of cmod Xd/l − ζ, then

� For completeness, in case of non‐aborting transcript due to
rejection sampling, the honest verifier V is always convinced.

� For zero‐knowledge, there exists a simulator Sim that,
without access to secret information, outputs a simulation
of accepting the transcript of the protocol. Any adversary
capable of distinguishing an actual transcript from a
simulated one with an advantage ϵ also has an advantage ϵ
in distinguishing MLWEλ;χ2 within the same running time.

� For soundness, there is an extractor E with rewindable
black‐box access to a deterministic prover P⋆ that convinces
V with probability ϵ ≥ (6p)d/l + q−η, either outputting a
weak opening for commitment

t!¼ t!0ktuðiÞ0
ktvðiÞ0
ktπðiÞktαπðiÞkt 4Nþ1k…kt 8Nþ2kt g1k…kt gη

such that extracted messages satisfy equations (1), (2) and (3),
or being able to solve MSISμ;8dβ01
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� And finally, an adversary with an advantage ϵ over
random guessing has also an advantage over MSISμ;8dβ02
and/or RLWEχ1 problems with probability at least ϵ.

Proof. Completeness. Observe that in a non‐aborting transcript
vector z! is bounded by δ1 − β1. The remaining verification
equations in Figure 2 regarding v1, v2, …, v4+η are

F I GURE 1 ZK‐proof of shuffle.
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straightforward to verify. Similarly, proof of shortness protocol
is complete.

Zero‐knowledge. Zero‐knowledge property of proof of
shortness protocol is given in ref. [12]. Indeed, following the
same steps, it is possible to simulate this protocol as well.
First, sample z!←$

�
−
�
δ1 − β1

�
þ 1; δ1 − β1 − 1

�κd , which
is the distribution of z! in non‐aborting transcript. Next, due
to rejection sampling step, c r! is independent of z! and thus
the simulator chooses c ←$ C like an honest verifier. Now,
the simulator can calculate w! which is uniquely determined
by previous variables. In honest transcript, each polynomial in
h
!

is in S, hence the simulator samples η polynomials
randomly from that set. Other challenges α; β; γ; θji ∈ S are

independent of each other, thus they can also be randomly
chosen. Straightforwardly, the simulator computes t!0. The
rest of commitments can be uniformly sampled from Rq as
by the MLWE assumption they will be indistinguishable from
real MLWE samples. Finally, remaining equations of vi are
deterministic functions of t!i, z!; h

!
and c.

Soundness. The soundness relation for proof of shortness
protocol is described in detail in ref. [12] and is similar to the
proof for a protocol in Figure 1. Consider the extractor given
in ref. [10] which can extract weak openings after rewinding the
protocol l times and get r!⋆ and y!⋆, or finds MSIS8dβ1 so-
lution for B0. It can also extract messages simply from
commitment relations.

F I GURE 2 Verification equations.
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For i ¼ 1;…;N

tui;0 ¼ 〈b
!

i; r!⋆〉þmðiÞ⋆0

tvi;0 ¼ 〈b
!

Nþi; r!⋆〉þmðiÞ⋆1

tπðiÞ ¼ 〈b
!

2Nþi; r!⋆〉þmðiÞ⋆2

tαπðiÞ ¼ 〈 b
!

3Nþi; r!⋆ 〉þmðiÞ⋆3

t 4Nþi ¼ 〈b
!

4Nþi; r!⋆〉þmðiÞ⋆4

t 5Nþi ¼ 〈b
!

5Nþi; r!⋆〉þmðiÞ⋆5

t 6Nþi ¼ 〈b
!

6Nþi; r!⋆〉þmðiÞ⋆6

t 7Nþi ¼ 〈b
!

7Nþi; r!⋆〉þmðiÞ⋆7

t 8Nþ1 ¼ 〈 b
!

8Nþ1; r!⋆〉þm⋆
8Nþ1

t 8Nþ2 ¼ 〈 b
!

8Nþ2; r!⋆〉þm⋆
9

For j ¼ 1;…; η

tg j ¼ 〈b
!

8Nþ2þj; r!⋆〉þ g⋆
j

Setting z!⋆ ¼ y!⋆ þ c r!⋆, masked openings are defined
below.

For i ¼ 1;…;N

f ui;0 ¼ 〈 b
!

i; y
!⋆〉 − cmðiÞ⋆0

f vi;0 ¼ 〈b
!

Nþi; y
!⋆〉 − cmðiÞ⋆1

f πðiÞ ¼ 〈b
!

2Nþi; y
!⋆〉 − cmðiÞ⋆2

f απðiÞ ¼ 〈 b
!

3Nþi; y
!⋆〉 − cmðiÞ⋆3

f 4Nþi ¼ 〈b
!

4Nþi; y
!⋆〉 − cmðiÞ⋆4

f 5Nþi ¼ 〈b
!

5Nþi; y
!⋆〉 − cmðiÞ⋆5

f 6Nþi ¼ 〈b
!

6Nþi; y
!⋆〉 − cmðiÞ⋆6

f 7Nþi ¼ 〈b
!

7Nþi; y
!⋆〉 − cmðiÞ⋆7

f 8Nþ1 ¼ 〈b
!

8Nþ1; y
!⋆〉 − cm⋆

8Nþ1

f 8Nþ2 ¼ 〈b
!

8Nþ2; y
!⋆〉 − cm⋆

9

For j ¼ 1;…; η

f g j ¼ 〈b
!

8Nþ2þj; y
!⋆〉 − cg⋆

j

Now, let's substitute those terms to their respective places in
verification equations. After simplifications (c.f Appendix 8) and
following the argument in [10, Theorem 5.1 ], for some i,
Pr½ βmðiÞ⋆2 þmðiÞ⋆3 − mðiÞ⋆6 þ γ ≠ 0� ¼ ϵ < ð3pÞd=l . Similarly,
with the same probability bound, we get mðiÞ⋆0 mðiÞ⋆3 − mðiÞ⋆4 ≠
0; mðiÞ⋆1 mðiÞ⋆3 − mðiÞ⋆5 ≠ 0 and mðiÞ⋆6 mðiÞ⋆7 − mðiþ1Þ⋆7 ≠ 0 alto-
gether, independently

PN
i¼1u

0
im
ðiÞ⋆
3 −

PN
i¼1m

ðiÞ⋆
4 −M1 ≠ 0

and
PN

i¼1v
0
im
ðiÞ⋆
3 −

PN
i¼1m

ðiÞ⋆
5 −M2 ≠ 0; also m⋆

8Nþ1 − Π≠
0; and mð1Þ⋆7 − 1 ≠ 0; finally

PN
i¼1θijm

ðiÞ⋆
2 þ g⋆

j − hj ≠ 0.
Combining all extracted relations we obtain

∏
N

i
ðβmðiÞ⋆2 þmðiÞ⋆3 − γÞ ¼Π¼∏

N

i

�
βiþ αi − γ

�

XN

i
mðiÞ⋆3 ðu

0
i − mðiÞ⋆0 Þ ¼M1 ¼

XN

i¼1
αiui;

XN

i
mðiÞ⋆3 ðv

0
i − mðiÞ⋆1 Þ ¼M2 ¼

XN

i¼1
αiv i:

Mix‐Node Security. Once more, we refer to ref. [9] where
mix‐node security is proved using a game‐based approach. By
following exactly the same steps, and only replacing statistical
closeness of Game 0 and Game 1 with computational close-
ness under MLWE8dβ2 assumption guaranteeing shortness er-
ror terms in RLWE encryptions, it is possible to show that the
advantage of an adversary over random guessing is bounded by

ϵ¼ AdvsecA ðκÞ ≤ ϵMLWE þ ϵRLWE: □

4 | PERFORMANCE

4.1 | Non‐interactive zero knowledge proof
size and optimisations

The protocol in Figure 1 can be made non‐interactive with the
help of Fiat‐Shamir transformation. In other words, challenges
are computed by the prover by hashing all previous messages
and public information. Furthermore, instead of sending
w!; v 1;…; v 4þη which are used as inputs to the hash function to
generate challenges, the standard technique is to send the hash
output and let the verifier recompute those values from verifi-
cation equations and check that the hashes of the computed
input terms match with the prover's hash. Thus, it is enough to
send the commitment t!0kt 1k⋯kt 8Nþ2kt g1k…kt gη and vec-
tors z!; h

!
. For the latter term, it is enough to send only first d/l

coefficients for each component. A polynomial in Rq consists
of d coefficients less than q, so it takes d⌊ log q⌋ bits at most.
t!0 and z! consist of μ and λ + μ + 8N + 2 + η polynomials
respectively. There are η polynomials in h

!
, therefore it is

enough to send ηd⌊ log q⌋/l bits. The full cost of shortness
proof is analysed in Appendix 9. Combining all of these, the size
of accepting transcript for our protocol is

ðμþ 8N þ 2þ ηÞd⌊log q⌋þ ðλþ μþ 8N þ 2þ ηÞd⌊log q⌋þ

þ η
d
l

⌊log q⌋þ 256þ ð2λþ 10NÞ
d2

l
⌊log q⌋þ

þ ðλþ 2μþ 7Þd⌊log q⌋þ 256¼
�

16þ
10d
l

�

Nd⌊log q⌋þ

þ ð2λð1þ d=lÞ þ 4μþ 11þ ηð2þ 1=lÞÞd⌊log q⌋þ 512:

Overall, the size of the proof of shuffle protocol is linearly
dependent on the number of ciphertexts (i.e. votes in the
voting scenario). However, the number of public variables,
such as commitment keys, is increasing quadratically. A
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possible optimisation method is to choose a common shared
seed and derive all the public polynomials using that seed.

Another possible place for optimisation is to choose public
variables in a specific format such as B0 ¼

�
IμjB00

�
where

B00 ∈Rμ�ðλþ8Nþ2þηÞ
q and vectors b

!
i ¼ 0
!

μk e
!

ikb
!
0
i where e!i

is the ith standard basis vector of length 8N + 2 + η and

b
!
0
i ∈Rλ

q as suggested in ref. [12], so that total number of
uniform polynomials will be linear in N. (This optimisation is
already taken into account in the size of shortness proof
transcript in Appendix 9.)

4.2 | Choosing parameters

We want to instantiate the protocol parameters in a way that the
protocol achieves 128 bit classical soundness, and post‐quantum
encryption security of RLWE is at least that much. For Module
SIS security, 8d

�
δ1 − β1 − 1

�
¼ 8dβ01 < q and 8d

�
δ2 − β2 − 1

�

¼ 8dβ02 < q. Coefficients of secret key and error terms used in
RLWE encryption are sampled uniformly in { − 1, 0, 1}, that is,
χ1 ¼ Uðf−1; 0; 1g

d
Þ. Similarly, distributionC and χ2 are defined

on the same set: Pr(x= 1)= Pr(x= −1) and Pr(x= 0)= 1/2 inC
and Pr(x= 0)= 6/16 in χ2. We find that for q≈ 232, mixing node
is secure up to 10 voters which is insufficient. For this reason and
in order to easily represent coefficients with primary data types,
we choose q ≈ 263. Then, using LWE and SIS security estimator
script1 we get that for β1 = β2 = d = 4096, λ = μ = 1 and
δ1 = δ2 = 245 (M ≤ 2 for N < 105 voters) Hermite factor for
MLWEλ;χ2 with ternary noise is 1.0029 and MSIS8dβ01;2 has root
Hermite factor 1.003. Finally, by Lemma 3 in ref. [10], p ≈ 2−62,
which implies that d/l = 2 is enough for the desired soundness
level. However, following the analysis in Appendix 7 we set
d/l = 4 and η = 2.

4.3 | Implementation and benchmarks

We can estimate the performance of proof of shuffle protocol in
terms of expensive operations. Sampling challenges uniformly
random from C, χ1 or in interval [−δ1 + 1, δ1] is not complex.
Thus, the only expensive operation is polynomial multiplication
in Rq. When the ring is fully splitting, multiplication can be
handled in the NTT domain in a linear number of steps. But,
due to the large soundness error, we avoid using such rings. In
ref. [17], authors show the performance of NTT‐based poly-
nomial multiplication in partially splitting rings. We believe that
their optimised implementation can further improve overall
protocol running time. In Figure 1, we see that the protocol uses
O(N2) multiplication operations due to 16N inner products
between vectors of length λ + μ + 8N + 2 + η. However,
applying the optimisation trick in Section 4.1, this dependency
becomes linear in N. Because the complexity of polynomial

multiplication depends only on the ring structure, it can be
assumed to be constant. Thus, the time complexity of the
protocol becomes linear in the number of voters.

As a proof of concept, the proposed scheme is imple-
mented in C language and made publicly available.2 The
polynomial operations are borrowed from Kyber/Dilithium
reference implementations and modified afterwards for chosen
parameters. SHAKE128 is used as a hash function for gener-
ating challenges. In Table 1, the average runtime to generate
and verify the proof of shuffle protocol is given. Tests are run
on 8th generation Intel i5‐8250u CPU with 3.4 GHz maximum
clock speed and 16 GB RAM.

Relying on the numbers shown in Table 1, in case the
number of voters is 100,000, we can expect the proofs to take
about 152,000 s (approximately 42.2 h) and the proof size to be
about 1.34 TB, which is still manageable. We note that our
implementation has not been heavily optimised. In order to go
beyond the 100,000 order of magnitude, further optimisations
are needed.

In the existing literature, a few other lattice‐based e‐voting
protocols are proposed aiming at practical performance.
EVOLVE [6] performs about 10 times faster than our
implementation using a highly optimised mathematical library.
Correctness, privacy and consistency of EVOLVE scheme are
based on only hardness of MLWE and MSIS problems which
is also the case for our protocol. However, EVOLVE is a
homomorphic tally‐based protocol, limiting its potential usage
scenarios. The decryption mix‐net‐based voting solution by
Boyen et al. [22] avoids using Non‐Interactive Zero‐knowledge
proofs and bases security claims on trusted public audits. As a
result, their proposed system achieves very fast results, but they
need to trust the auditors is a significant restriction. To the best
of our knowledge, the fastest fully lattice‐based proof of cor-
rect shuffle is presented in ref. [23] where the authors use the
shuffle of known values technique. The problem here is that
the shuffle server can break the privacy of voters if the ballot
box, decrypted ballots and shuffle proofs are made public. The
proposed verifiable shuffle protocol is 5 times faster (33 ms per
voter) than EVOLVE scheme benchmarked on an almost two
times more powerful CPU.

Recently, a follow‐up paper [24] was published by the same
authors, presenting a verifiable shuffle protocol on BGV ci-
phertexts without decrypting. While their shuffle proof is
significantly smaller than ours, it takes almost the same amount
of time to generate the proof with their highly optimised
implementation, whereas our implementation still allows for
significant performance improvements. The advantage of their

TABLE 1 Performance table of our implementation of the protocol
in Figure 1

Shortness proof Shuffle proof Whole proof Proof size

Per voter 1.52 s/1. 5 s 17 ms/13 ms 1.54 s/1.51 s 14 MB

1
https://github.com/pq‐crystals/security‐estimates

2
https://github.com/Valeh2012/ilmx
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scheme is that it takes much less time to verify the produced
proofs.

All the considered protocols and their respective properties
are summarised in Table 2.

4.4 | Post‐quantum security

Post‐quantum security of Fiat‐Shamir transform has not been
fully proven in the quantum random oracle model (QROM) yet.
Several works in this research area restricted definitions for se-
curity properties. For example, computationally binding
commitment schemes can be insecure against quantum attacks,
as shown in ref. [25]. Collapse‐binding is a stronger security
property that allows to the construction of a quantum argument
of knowledge [26]. The BDLOP commitment scheme used in
our protocol has not been shown to satisfy the collapse‐binding
property. But because SIS hash functions are collapse‐binding
[27], hopefully one can prove for Module‐SIS based BDLOP
commitments as well. Another main challenge is to prove the
security of mutli‐round Fiat‐Shamir [28] in the QROM. Until
these problems are solved, unfortunately, we cannot claim full
post‐quantum security of the non‐interactive protocol described
in Section 4.1. An alternative solution is Unruh transform [29],
but applying it will result in reduced performance.

However, the interactive protocol in Figure 1 will be
potentially post‐quantum secure. In the online voting context,
election auditors can be assumed to be honest verifiers. They
can be restricted to have access to the powerful quantum de-
vice during the mixing procedure in order to prevent them
obtain the secret permutation vector. After the successfully
verified mixing phase is over, RLWE ciphertexts can be pub-
licly shared at no risk due to the post‐quantum security level of
chosen parameters.

5 | CONCLUSIONS AND FURTHER
WORK

In this work, we have presented an improved lattice‐based
proof of shuffle protocol for secure mix‐nets. The resulting
scheme has linear memory cost and time complexity. As a
result, we can potentially handle mixing up to 100,000 values.
This is a significant landmark considering our motivating
example case of mixing electronic votes.

The performance of the protocol can be improved even
further with the help of parallel programming approaches. For
example, with OpenMP SIMD [30] computations can be
distributed to multiple processors, and at each of them, eight
polynomial coefficients can be processed at a time on 512‐bit
wide registers using AVX512 instruction set. Another approach
is to use GPUs as they are much faster than CPUs in matrix
calculations [15]. We expect the effect of such optimisations to
be approximately one or two orders of magnitude, but estab-
lishing the exact amount will remain the subject for future
work.
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APPENDIX
Analysis of ∏N

i¼1
�
βiþ αi − γ

�
¼∏N

i¼1
�
βπðiÞ þ απðiÞ − γ

�

Assume that the challenges α, β, γ are uniformly sampled
from S. Also, let mi and m0i be extracted messages from
commitments to i and αi for i = 1, …,N. We want to prove that

∏
N

i¼1

�
βiþ αi − γ

�
¼∏

N

i¼1

�
βmi þm0i − γ

�
ð4Þ

⇒ mi ¼ πðiÞ ð5Þ

and m0i ¼ απðiÞ ð6Þ

for permutation vector π that was determined before
commitments.

The product of polynomials in (4) can be considered as a
polynomial with roots in Rq evaluated at γ. Due to Schwartz‐
Zippel lemma, if two polynomials are equal at a random point,
with probability higher than 1 − N/qd/l they are equal
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everywhere, that is, they are the same polynomial. But, their
roots are not necessarily equal unless Rq½X� is a unique fac-
torisation domain, which is not the case. So,

�
βiþ αi

�
i¼1;…;N

and
�

βmi þm0i
�
i¼1;…;N are sets of roots of those polynomials.

We want to prove that these two sets contain the same ele-
ments with permuted order.

Choose any root βj + αj for some j = 1, …, N. Because, it
is one of roots, we have

∏
N

i¼1

�
βmi þm0i −

�
βj þ αj

��
¼ 0:

And for any prime ideal φk, we have

∏
N

i¼1

�
βmi þm0i −

�
βj þ αj

��
≡ 0 mod φk :

The last equality is a kth coefficient of NTT transform of
the product. Let �β; �mi; �m0i;�j; �αj be kth NTT coefficients of
respective variables. We rewrite last equality in the NTT
domain:

∏
N

i¼1

�
�β �mi þ �m0i − ð�β�j þ �αjÞ

�
¼ 0:

Because, multiplication and addition are performed over
the field Zq½X�=

�
φk

�
, it can only be 0 if at least one of mul-

tiplicands is zero. Set the index i = ijk when �β �mijk þ
�m0ijk −

ð�β�j þ �αjÞ ¼ 0. In the beginning we assumed that challenges are
sampled after commitments. Then, rewriting the previous
equation,

�βð �mijk −�jÞ þ ð �m0ijk − �αjÞ ¼ 0 mod q

has solution �β¼ ð �mijk −�jÞ−1ð�αj − �m0ijkÞ if �mijk ≠ jmod q.
Otherwise, �mijk ¼

�j which means for every j, there exists mi
that has kth NTT coefficient equal to �j for some k. If we
can show that for fixed j, i is same for all k, then applying
inverse NTT, we get mi = j, and it follows m0i ¼ αj . Indeed,
in the protocol, construction of h1, …, hη polynomials
ensure that every committed polynomial mi has degree less
than d/l, therefore its NTT coefficients are equal to each
other.

We have proven that, with some cheating probability, for
some j, βj + αj is included in

�
βmi þm0i

�
i¼1;…;N. Also, recall

that both i and j run from 1 to N, and as for two different j ≠
j0, ij ≠ i0j , we conclude that both sets of roots contain same
elements. Then, denoting j = π(i) we get (4).

Now, we would like to bound the cheating probability. If in
at least one prime ideal �mijk ≠ jmod q, then mi is no more a
constant polynomial. No matter what is its value, one cannot
retrieve mi = π(j). By construction, probability of �β to be some
value is equal to 1/qd/l. We found at most N2 different so-
lution in one prime ideal. Then, Pr½ �mijk ≠ �j� ≤ N2

qd=l . Finally,

Pr½mi ≠ j� ≤ lN2

qd=l which is negligible when N = 220 ≈ 106,

d/l = 4 and q ≈ 264.

Soundness proof
In the proof of Theorem 1, it has already been described how
to extract masked openings f u

ðiÞ
0 ; f v

ðiÞ
0 ; f πðiÞ; f απðiÞ ; f 4Nþi;

f 5Nþi; f 6Nþi; f 7Nþi; f 8Nþi and f9N+1 for i = 1, …, N.
First, we simplify the verification equation for v1:

XN

i¼1

ϵi
�

βf πðiÞ þ f απðiÞ − f 6Nþi þ cγ
�
¼ v 1

⇒
XN

i¼1
ϵi
�

β〈b
!

2Nþi; y
!⋆〉þ 〈b

!
3Nþi; y

!⋆〉 − 〈 b
!

6Nþi; y
!⋆〉

�

þ

þ c
XN

i¼1
ϵi
�

γ − βmðiÞ⋆2 − mðiÞ⋆3 þmðiÞ⋆6

�
¼ v 1

Because all ϵi are uniformly random,
PN

i¼1ϵiðγ − βmðiÞ⋆2 −
mðiÞ⋆3 þmðiÞ⋆6 Þ is also uniformly random.Either c happens to be
such that the whole expression becomes equal to v1 that is
known to the verifier before sending the challenge with proba-
bility pd/l, or the relation βmðiÞ⋆2 þmðiÞ⋆3 − γ ¼mðiÞ⋆6 holds.

Next, for v2

〈b
!

8Nþ2; y
!⋆〉þ

XN

i¼1
ϵNþi

�
f 6Nþif 7Nþi þ cf 7Nþiþ1

�
þ

þ
XN

i¼1

ϵ2Nþi
�
f απðiÞ f u

ðiÞ
0 þ cf 4Nþi

�
þ

þ
XN

i¼1

ϵ3Nþi
�
f απðiÞ f v

ðiÞ
0 þ cf 5Nþi

�
þ f 8Nþ2 ¼ v 2

⇒ 〈 b
!

8Nþ2; y
!⋆〉þ

XN

i¼1
ϵNþi

�
〈 b
!

6Nþi; y
!⋆〉〈 b

!
7Nþi; y

!⋆〉
�
þ

þ
XN

i¼1
ϵ2Nþi

�
〈b
!

uðiÞ0
; y!⋆〉〈b

!
απðiÞ ; y
!⋆〉

�
þ

þ
XN

i¼1

ϵ3Nþi
�
〈 b
!

vðiÞ0
; y!⋆〉〈 b

!
απðiÞ ; y
!⋆〉

�
þ

þ c
�XN

i¼1

ϵNþi
�
〈b
!

7Nþiþ1; y
!⋆〉 − mðiÞ⋆7 〈b

!
6Nþi; y

!⋆〉 −

− mðiÞ⋆6 〈 b
!

7Nþi; y
!⋆〉

�
þ
XN

i¼1
ϵ2Nþið〈 b

!
4Nþi; y

!⋆〉 −

− mðiÞ⋆3 〈 b
!

uðiÞ0
; y!⋆〉 − mðiÞ⋆0 〈b

!
απðiÞ ; y
!⋆〉

�
þ

þ
XN

i¼1
ϵ3Nþi

�
〈b
!

5Nþi; y
!⋆〉 − mðiÞ⋆3 〈b

!
vðiÞ0
; y!⋆〉 −

− mðiÞ⋆1 〈 b
!

απðiÞ ; y
!⋆〉

�
− m⋆

9

�
þ

þ c2

 
XN

i¼1

ϵNþi
�
mðiÞ⋆6 mðiÞ⋆7 − mðiþ1Þ⋆8

�
þ

þ
XN

i¼1

ϵ2Nþi
�
mðiÞ⋆0 mðiÞ⋆3 − mðiÞ⋆4

�
þ

þ
XN

i¼1
ϵ3Nþi

�
mðiÞ⋆1 mðiÞ⋆3 mðiÞ⋆5

�
!

¼ v 2
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The last equality is a quadratic equation in c. According to
[10], the probability of choosing c as one of solutions is less than
(3p)d/l. Therefore, with cheating probability (3p)d/l, mðiÞ⋆6

mðiÞ⋆7 ¼mðiþ1Þ⋆7 mðiÞ⋆0 mðiÞ⋆3 ¼mðiÞ⋆4 mðiÞ⋆1 mðiÞ⋆3 ¼mðiÞ⋆5 .
Then, for v3

ϵ4Nþ1
�XN

i¼1

u0if
απðiÞ −

XN

i¼1

f 4Nþi þ cM1

�
þ

þ ϵ4Nþ2
�XN

i¼1
v 0if

απðiÞ −
XN

i¼1
f 5Nþi þ cM2

�
¼ v 3

⇒ ϵ4Nþ1
�XN

i¼1

u0i〈 b
!

απðiÞ ; y
!⋆〉 −

XN

i¼1

〈 b
!

4Nþi; y
!⋆〉

�
þ

þ ϵ4Nþ2
�XN

i¼1
v 0i〈b
!

απðiÞ ; y
!⋆〉 −

XN

i¼1
〈b
!

5Nþi; y
!⋆〉

�
þ

þ c
�

ϵ4Nþ1
�
M1 −

XN

i¼1
u0im

ðiÞ⋆
3 þ

XN

i¼1
mðiÞ⋆4

�
þ

þ ϵ4Nþ2
�
M2 −

XN

i¼1

v 0im
ðiÞ⋆
3 þ

XN

i¼1

mðiÞ⋆5

��
¼ v 3

Therefore, with probability 1 − pd/l, M1 ¼
PN

i¼1u
0
im
ðiÞ⋆
3 −

PN
i¼1m

ðiÞ⋆
4 and M2 ¼

PN
i¼1v

0
im
ðiÞ⋆
3 −

PN
i¼1m

ðiÞ⋆
5 .

Finally, for v4

ϵ4Nþ3
�
f 9N þ cΠ

�
þ ϵ4Nþ4

�
f 7Nþ1 þ c

�
¼ v 4

⇒ ϵ4Nþ3
�

〈b
!

9N ; y
!⋆〉

�

þ ϵ4Nþ4
�

〈b
!

7Nþ1; y
!⋆〉

�

þ

þ c
�

ϵ4Nþ3
�
Π − mðNÞ⋆8

�
þ ϵ4Nþ4

�
1 − mð1Þ⋆7

��
¼ v 4

which means, as before, with the same probability, Π¼mðNÞ⋆8
and mð1Þ⋆7 ¼ 1.

For v4+j we have to do a different analysis. Even though,
corresponding verification equations are correct except
with probability pd/l, the prover still have chance to pass those
equations with invalid committed values yet obtain hj in cor-
rect distribution, that is, first d/l coefficients will be zero. Thus,
actual cheating probability is Pr½ð

PN
i¼1θjimi⋆

2 þ g⋆
j Þμ −

hj;μ ¼ 0� ¼ 1=q for any μ > d/l coefficient of hj. Moreover, as
1/q is not satisfactory, we decrease that bound by having η of
such hj limiting the cheating probability to be 1/qη.

In the end, mðiÞ⋆0 mðiÞ⋆3 ¼mðiÞ⋆4 ⇒ M1 ¼
PN

i¼1u
0
im
ðiÞ⋆
3 −

PN
i¼1m

ðiÞ⋆
0 mðiÞ⋆3 ¼

PN
i¼1m

ðiÞ⋆
3

�
u0i − mðiÞ⋆0

�
. Similarly, mðiÞ⋆1

mðiÞ⋆3 ¼mðiÞ⋆5 ⇒ M2 ¼
PN

i¼1v
0
im
ðiÞ⋆
3 −

PN
i¼1m

ðiÞ⋆
1 mðiÞ⋆3 ¼

PN
i¼1m

ðiÞ⋆
3

�
v 0i − mðiÞ⋆1

�
.

Finally, we show how to restore relation (1). There are N
extracted message triplets mðiÞ⋆6 mðiÞ⋆7 ¼mðiþ1Þ⋆7 . Also,
βmðiÞ⋆2 þmðiÞ⋆3 þ γ ¼mðiÞ⋆6 ,mð1Þ⋆7 ¼ 1 andΠ¼m⋆

8Nþ1. Then,

mð2Þ⋆7 ¼mð1Þ⋆7 mð2Þ⋆6 ¼mð1Þ⋆7 mð1Þ⋆6 mð2Þ⋆6 . Continuing this

pattern, Π¼m⋆
8Nþ1 ¼mð1Þ⋆7 ∏N

i¼1m
ðiÞ⋆
6 ¼∏N

i¼1

�
βmðiÞ⋆2 þ

mðiÞ⋆3 þ γ
�
.

Overall, the malicious prover may convince the honest
verifier with probability at most (6p)d/l + 1/qη.

Shor tness proof
Here, we present a simple way to prove the correctness of
RLWE zero encryptions. More precisely, we have to show that
all error terms are sampled from χ1, that is, all coefficients are
in {−1, 0, 1} and the plaintext is 0.

If an RLWE keypair is (pk.a, pk.b), the zero‐encryption
ciphertext is a pair of two polynomials as below:

u0 ¼ pk:a ⋅ rE þ eu;

v 0 ¼ pk:b ⋅ rE þ ev þ 0 ⋅ ⌊
q
2
⌉¼ pk:b ⋅ rE þ ev;

where rE, eu, ev ← χ1.
Because only the mixing node has access to zero‐

encryptions, one cannot use the usual zero‐knowledge proof
of plaintext knowledge. Instead, the public verifier has access
to the commitments to ciphertexts:

t 1 ¼ 〈b
!

1; r!〉þ u0;

t2 ¼ 〈b
!

2; r!〉þ v 0;

where b
!

1; b
!

2 ∈Rμþλþ2
q and r!← χðμþλþ2Þd

2 .
Substituting the ciphertext defined as above:

t 1 ¼ 〈b
!

1; r!〉þ pk:a ⋅ rE þ eu;

t2 ¼ 〈 b
!

2; r!〉þ pk:b ⋅ rE þ ev:

Or, rewriting as a matrix equation

�
�
�
�
t 1
t 2

�
�
�
�¼

�
�
�
�
�

b
!

1;1 … b
!

1;n0 pk:a 1 0
b
!

2;1 … b
!

2;n0 pk:b 0 1

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

r!1

⋮
r!n0

rE
eu
ev

�
�
�
�
�
�
�
�
�
�
�
�

;

where n0 = μ + λ + 2. Observe that the last equation has
form A s!¼ u!. Proving that s! is short in this equation
also proves that the commitment is a commitment to valid
encryption of zero polynomial with the given public key.
Unfortunately, there is no practical exact proof of short
solution to a structured linear equation in Rq. However, one
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can transfer the equation into a better understood Zq
domain almost at no cost. Then it is possible to use proof
of knowledge of a ternary solution to an unstructured linear
equation over Zq described in [11]:

�
�
�
�
Vt1
Vt2

�
�
�
�¼

�
�
�
�
�
�
�

M
b
!

1;1
… M

b
!

1;n0
Mpk:a Id 0d

M
b
!

2;1
… M

b
!

2;n0
Mpk:b 0d Id

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

V
r!1

⋮
V

r!n0

VrE
Veu
Vev

�
�
�
�
�
�
�
�
�
�
�
�
�

u!¼ A s!

u!∈ Z2d
q s!∈ Zn

q A ∈ Z2d�n
q n¼ ðn0 þ 3Þd

Now, suppose there are N such zero‐encryption cipher-
texts. Proving the shortness of secret values for each ciphertext

individually is not cost‐effective. The main reason is that
proving shortness of r! will be repeated for each ciphertext.
One would look for amortised or batch‐proofs to solve the
problem. However, it is also possible to reconstruct A s!¼ u!

relation in a way that for N = 1 it will give exactly the same
equation as above.

This can be done by adding additional rows and columns
to matrix A. We have to change index notation a bit. Let ti,u,
ti,v be commitments for u0 and v0 of ith ciphertext respec-
tively. Similarly, letb

!
i;u and b

!
i;v be polynomial vectors used in

those commitments. ri,E, ei,u and ei,v are parameters of each
zero‐encryption we want to prove that they are short. Then,
final matrix will look like as in (7).

There, I2N is a 2N � 2N identity matrix with diagonal
elements being polynomial 1. Moreover, we can transfer
the equation (7) from Rq to Zq domain and get
equation (8)

�
�
�
�
�
�
�
�
�
�
�
�
�
�

t1;u
t1;v
t2;u
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The equality in (8) has the form A s!¼ u!, too. This time,
n0 = λ + μ + 2N and n = (n0 + 3N)d, so that
u!∈ Z2Nd

q s!∈ Zn
q A ∈ Z2Nd�n

q .
Finally, we employ the optimisation technique described in

Section 4.1 and set commitment vectors as b
!
¼ 0
!

μk e
!

ikb
!
0

where e!i are 2N dimensional standard basis vectors and
b
!
0 ∈Rλ

q. Changing rows and simplifying (8), we get
equation (9).

As multiplying with zero matrix does not affect the result,
without loss of generality it can be removed from equation (9).
Then, first μ polynomials from commitment randomness
should also be removed. The final form is the equation (10). In
that equation, n0 = λ + 2N and as before n = (n0 + 3N)d.

Protocol

Esgin et al. [11] proposed an efficient lattice‐based zero‐
knowledge proof system proving knowledge of a vector s!

with coefficients in { − 1, 0, 1} solution to a linear equation
A s!¼ u! in Zq. Their work is generally based on fully splitting
rings, which we avoid for high soundness error. However, by
applying transformations described in ref. [12, Appendix A.4],

it is possible to work with rings that are not necessarily fully
splitting. We merge the product argument from [11] to prove
that the secret is a ternary vector, and the linear argument to
show A s!¼ u! in Zq from ref. [12, Appendix A.4] into a final
scheme depicted in Figure 3.
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According to the NTT definition, coefficients of NTT
transform are polynomials of degree less than d/l that can also

be viewed as elements of Fd=lq . Define Sq ¼
n
p0 þ p1Xd=l þ⋯

þ pl−1Xd−d=l ∈Rq

o
and π : Zl�d=l → Zl , where

π
� �
s1;1;…; s1;d=l

�
;…;

�
sl;1;…; sl;d=l

��
¼
�
s1;1;…; sl;1

�
:

Let us show, that s ∈ Sq if and only if all vectors in NTT(s)
can have only first coordinate nonzero, therefore
πðNTTðsÞÞ ∈ Zl

q ⊂ Flqd=l . Necessity part follows from NTT
transform definition. For sufficiency, we fix s and NTT(s) with

our assumptions. Then, there must exist constants s1, …, sl
such that si ≡ s ≡ π(NTT(s))i modXd/l − ζi. Denote

ni ¼ Xd=l − ζi; n¼∏
l

i¼1
ni; mi ¼ n=ni:

It's clear from definition ofmi, thatmimod ni is a constant
term. Also, for i ≠ j we have that gcd (Xd/l − ζj, Xd/l − ζi) = 1,
as both of them are irreducible. Therefore mi ≠ 0 mod ni must
hold, as otherwise gcd (Xd/l − ζj, Xd/l − ζi) = ni and deg
(ni) > 1. Therefore we can take the inverse of the constant
term as in Zq and denote ki ¼m−1

i mod ni. We claim, that

F I GURE 3 ZK‐proof of shortness.
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s ≡
Pl

i¼1 sikimi in Rq and
Pl

i¼1 sikimi ∈ Sq. First, notice that
for all j ∈ {1, …, l}, we have

Xl

i¼1

sikimi ≡ nj ⋅
Pl

i¼1;i≠j

�

siki
n
ninj

�

þ sjkjmj

≡ 0 ⋅
Pl

i¼1;i≠j

�

siki
n
ninj

�

þ sj ⋅ 1

≡ sj

≡ s mod
�
Xd=l − ζj

�
:

From Chinese Remainder Theorem, it follows that
s ≡
Pl

i¼1 sikimi in Rq. On the other hand, ki, si are constant
terms and mi a polynomial in Sq for every i. First two claims
follow from definitions, one can verify the last one by multi-
plying out all of the brackets in

mi ¼ ∏
l

j¼1;j≠i

�
Xd=l − ζj

�
:

Since Sq is a subring, it is closed under multiplication and
addition. Hence si; ki;mi ∈ Sq for i ∈ {1, …, l} implies thatPl

i¼1 sikimi ∈ Sq.

Therefore, NTT transform of si ∈ Sq encodes l co-

efficients of s!i ∈ Zl
q. Then, for s!¼

�

s!1;…; s!n

�

∈ Znl
q

there exists n polynomials in Sq such that s!¼
NTTðs1Þk…kNTTðsnÞ.

Let A ∈ Zml�nl
q ; s!∈ Znl

q and A s!¼ u!. Divide A into
submatrices Ai;j ∈ Zl�l

q

A¼

�
�
�
�
�
�

A1;1 … A1;n
⋮ ⋱ ⋮
Am;1 … Am;n

�
�
�
�
�
�
:

Using standard Fiat‐Shamir technique and optimisations,
communication cost of the non‐interactive version of the
proof in Figure 3 is (n/l + µ + 3)d⌊ log q⌋ + (λ + μ +
n/l + 3)d⌊ log q⌋ + d⌊ log q⌋ + 256. Substituting n with
(n0 + 3N)d = (λ + 2N + 3N)d = (λ + 5N)d, the proof
size is

ð2λþ 10NÞ
d2

l
⌊log q⌋þ ðλþ 2μþ 7Þd⌊log q⌋þ 256:

The success probability of the cheating prover is bounded
by ϵ < q−d/l, see ref. [12].
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