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Abstract In this paper we introduce a set of computation rules to de-
termine the attacker’s exact expected outcome based on a multi-parameter
attack tree. We compare these rules to a previously proposed computa-
tional semantics by Buldas et al. and prove that our new semantics always
provides at least the same outcome. A serious drawback of our proposed
computations is the exponential complexity. Hence, implementation be-
comes an important issue. We propose several possible optimisations and
evaluate the result experimentally. Finally, we also prove the consistency
of our computations in the framework of Mauw and Oostdijk and discuss
the need to extend the framework.

1 Introduction

Attack tree (also called threat tree) approach to security evaluation is
several decades old. It has been used for tasks like fault assessment of
critical systems [1] or software vulnerability analysis [2,3]. The approach
was first applied in the context of information systems (so-called threat
logic trees) by Weiss [4] and later more widely adapted to information
security by Bruce Schneier [5]. We refer to [6,7] for good overviews on the
development and applications of the methodology.

Even though already Weiss [4] realised that nodes of attack trees have
many parameters in practise, several subsequent works in this field con-
sidered attack trees using only one estimated parameter like the cost or
feasibility of the attack, skill level required, etc. [3,5,8]. Opel [9] considered
also multi-parameter attack trees, but the actual tree computations in
his model still used only one parameter at a time. Even though single-
parameter attack trees can capture some aspects of threats reasonably
well, they still lack the ability to describe the full complexity of the at-
tacker’s decision-making process.

A substantial step towards better understanding the motivation of the
attacker was made in 2006 by Buldas et al. [10]. Besides considering just



the cost of the attack, they also used success probability together with
probabilities and amount of penalties in the case of success or failure of
the attack in their analysis. As a result, a more accurate model of the
attack game was obtained and it was later used to analyse the security
of several e-voting schemes by Buldas and Mägi [11]. The model was de-
veloped further by Jürgenson and Willemson [12] extending the parameter
domain from point values to interval estimations.

However, it is known that the computational semantics given in [10] is
both imprecise and inconsistent with the general framework introduced by
Mauw and Oostdijk [8] (see Section 2). The motivation of the current pa-
per is to develop a better semantics in terms of precision and consistency.
For that we will first review the tree computations of [10] in Section 2 and
then propose an improved semantics in Section 3. However, it turns out
that the corresponding computational routines are inherently exponential,
so optimisation issues of the implementation become important; these are
discussed in Section 4. In Section 5 we prove that the new semantics al-
ways provides at least the same expected outcome for an attacker as the
tree computations of [10]. We also argue that the new semantics is con-
sistent with the framework of Mauw and Oostdijk. Finally, in Section 6
we draw some conclusions and set directions for further work.

2 Background

In order to better assess the security level of a complex and heterogen-
eous system, a gradual refinement method called threat tree or attack tree
method can be used. The basic idea of the approach is simple — the ana-
lysis begins by identifying one or more primary threats and continues by
splitting the threat into subattacks, either all or some of them being ne-
cessary to materialise the primary threat. The subattacks can be divided
further etc., until we reach the state where it does not make sense to split
the resulting attacks any more; these kinds of non-splittable attacks are
called elementary or atomic attacks and the security analyst will have to
evaluate them somehow. During the splitting process, a tree is formed
having the primary threat in its root and elementary attacks in its leaves.
Using the structure of the tree and the estimations of the leaves, it is then
(hopefully) possible to give some estimations of the root node as well. In
practise, it mostly turns out to be sufficient to consider only two kinds
of splits in the internal nodes of the tree, giving rise to AND- and OR-
nodes. As a result, an AND-OR-tree is obtained, forming the basis of the



subsequent analysis. An example attack tree originally given by Weiss [4]
and adopted from [6] is presented in Figure 1.

Figure 1. Example of an attack tree
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We will use the basic multi-parameter attack tree model introduced in
[10]. Let us have the AND-OR-tree describing the attacks and assume all
the elementary attacks being pairwise independent. Let each leaf Xi have
the following parameters:

– Costi – the cost of the elementary attack
– pi – success probability of the attack
– π−

i – the expected penalty in case the attack was unsuccessful
– π+

i – the expected penalty in case the attack was successful

Besides these parameters, the tree has a global parameter Gains showing
the benefit of the attacker in the case he is able to mount the root attack.
For practical examples on how to evaluate those parameters for real-life
attacks, please refer to [11] and [13].

The paper [10] gives a simple computational semantics to the attack
trees, which has further been extended to interval estimates in [12]. After
the above-mentioned parameters have been estimated for the leaf nodes, a
step-by-step propagation algorithm begins computing the same paramet-
ers for all the internal nodes as well, until the root node has been reached.
The computational routines defined in [10] are the following:



– For an OR-node with child nodes with parameters (Costi, pi, π
+
i , π−

i )
(i = 1, 2) the parameters (Cost, p, π+, π−) are computed as:

(Cost, p, π+, π−) =

{

(Cost1, p1, π
+
1 , π−

1 ), if Outcome1 > Outcome2

(Cost2, p2, π
+
2 , π−

2 ), if Outcome1 ≤ Outcome2
,

Outcomei = pi · Gains − Costi − pi · π
+
i − (1 − pi) · π

−
i .

– For an AND-node with child nodes with parameters (Costi, pi, π
+
i , π−

i )
(i = 1, 2) the parameters (Cost, p, π+, π−) are computed as follows:

Costs = Costs1 + Costs2, p = p1 · p2, π+ = π+
1 + π+

2 ,

π− =
p1(1 − p2)(π

+
1 + π−

2 ) + (1 − p1)p2(π
−
1 + π+

2 )

1 − p1p2
+

+
(1 − p1)(1 − p2)(π

−
1 + π−

2 )

1 − p1p2
.

The formula for π− represents the average penalty of an attacker, as-
suming that at least one of the two child-attacks was not successful. For
later computations, it will be convenient to denote expected expenses
associated with the node i as Expensesi = Costi +pi ·π

+
i +(1−pi) ·π

−
i .

Then it is easy to see that in an AND-node the equality Expenses =
Expenses1 + Expenses2 holds. Note that the formulae above have obvi-
ous generalisations for non-binary trees.

At the root node, its Outcome is taken to be the final outcome of the
attack and the whole tree is considered to be beneficial for a rational at-
tacker if Outcome > 0. Following the computation process it is possible to
collect the corresponding set of leaves which, when carried out, allow the
attacker to mount the root attack and get the predicted outcome. Such
leaf sets will subsequently be called attack suites.4

However, while being very fast to compute, this semantics has several
drawbacks:

1. In order to take a decision in an OR-node, the computational model of
[10] needs to compare outcomes of the child nodes and for that some
local estimate of the obtained benefit is required. Since it is very dif-
ficult to break the total root gain into smaller benefits, the model of
[10] gives the total amount of Gains to the attacker for each subattack.
This is clearly an overestimation of the attacker’s outcome.

4 Note that our terminology differs here from the one used by Mauw and Oostdijk [8].
Our attack suite would be just attack in their terms and their attack suite would be
the set of all possible attack suites for us.



2. In an OR-node, the model of [10] assumes that the attacker picks ex-
actly one descendant. However, it is clear that in practise, it may make
sense for an attacker to actually carry out several alternatives if the
associated risks and penalties are low and the success probability is
high.

3. There is a general result by Mauw and Oostdijk [8] stating which at-
tack tree computation semantics are inherently consistent. More pre-
cisely, they require that the semantics of the tree should remain un-
changed when the underlying Boolean formula is transformed to an
equivalent one (e.g. to a disjunctive normal form). Semantics given
in the [10] are not consistent in this sense. For example, lets take
two attack trees, T1 = A ∨ (B&C) and T2 = (A ∨ B)&(A ∨ C),
both having same parameters Gains = 10000, pA = 0.1, pB = 0.5,
pC = 0.4, ExpensesA = 1000, ExpensesB = 1500, ExpensesC = 1000.
Following the computation rules of [10], we get OutcomeT1

= 8000 and
OutcomeT2

= 6100, even though the underlying Boolean formulae are
equivalent.

The aim of this paper is to present an exact and consistent semantics for
attack trees. The improved semantics fixes all the three abovementioned
shortcomings. However, a major drawback of the new approach is the
increase of the computational complexity from linear to exponential (de-
pending on the number of elementary attacks). Thus finding efficient and
good approximations becomes a vital task. In this paper, we will evaluate
suitability of the model of [10] as an approximation; the question of better
efficient approximations remains an open problem for future research.

3 Exact Semantics for the Attack Trees

3.1 The model

In our model, the attacker behaves as follows.

– First, the attacker constructs an attack tree and evaluates the para-
meters of its leaves.

– Second, he considers all the potential attack suites, i.e. subsets σ ⊆
X = {Xi : i = 1, . . . , n}. Some of these materialise the root attack,
some of them do not. For the suites that do materialise the root attack,
the attacker evaluates their outcome for him.

– Last, the attacker decides to mount the attack suite with the highest
outcome (or he may decide not to attack at all if all the outcomes are
negative).



Note that in this model the attacker tries all the elementary attacks inde-
pendently. In practise, this is not always true. For example, if the attacker
has already failed some critical subset of the suite, it may make more
sense for him not to try the rest of the suite. However, the current model
is much more realistic compared to the one described in [10], since now we
allow the attacker to plan its actions with redundancy, i.e. try alternative
approaches to achieve some (sub)goal.

3.2 Formalisation

The attack tree can be viewed as a Boolean formula F composed of the
set of variables X = {Xi : i = 1, . . . , n} (corresponding to the elementary
attacks) and conjunctives ∨ and &. Satisfying assignments σ ⊆ X of this
formula correspond to the attack suites sufficient for materialising the root
attack.

The exact outcome of the attacker can be computed as

Outcome = max{Outcomeσ : σ ⊆ X , F(σ := true) = true} . (1)

Here Outcomeσ denotes the expected outcome of the attacker if he de-
cides to try the attack suite σ and F(σ := true) denotes evaluation of the
formula F , when all of the variables of σ are assigned the value true and
all others the value false. The expected outcome Outcomeσ of the suite σ

is computed as follows:

Outcomeσ = pσ · Gains −
∑

Xi∈σ

Expensesi , (2)

where pσ is the success probability of the attack suite σ.
When computing the success probability pσ of the attack suite σ we

must take into account that the suite may contain redundancy and there
may be (proper) subsets ρ ⊆ σ sufficient for materialising the root attack.
Because we are using the full suite of σ to mount an attack, those ele-
mentary attacks in the σ \ ρ will contribute to the success probability of
pρ with (1 − pj). Thus, the total success probability can be computed as

pσ =
∑

ρ⊆σ

F(ρ:=true)=true

∏

Xi∈ρ

pi

∏

Xj∈σ\ρ

(1 − pj) . (3)

Note that the formulae (1), (2) and (3) do not really depend on the
actual form of the underlying formula F , but use it only as a Boolean



function. As a consequence, our framework is not limited to just AND-
OR trees, but can in principle accommodate other connectives as well.
Independence of the concrete form will also be the key observation when
proving the consistency of our computation routines in the framework of
Mauw and Oostdijk (see Proposition 1 in Section 5).

3.3 Example

To explain the exact semantics model of the attack trees, we give the
following simple example. Lets consider the attacktree with the Boolean
formula T = (A ∨ B)&C with all elementary attacks (A,B,C) having
equal parameters p = 0.8, Cost = 100, π+ = 1000, π− = 1000 and
Gain = 10000. That makes Expenses = 1100 for all elementary attacks.
When we follow the approximate computation rules in the [10], we get the
OutcomeT = 4200.

By following the computation rules in this article, we have the attack
suites σ1 = {A,C}, σ2 = {B,C}, σ3 = {A,B,C}, which satisfy the ori-
ginal attack tree T . The outcome computation for attack suites σ1 and σ2

is straightforward and Outcomeσ1
= Outcomeσ2

= 4200. The Outcomeσ3

is a bit more complicated as there are three subsets ρ1 = {A,C}, ρ2 =
{B,C}, ρ3 = {A,B,C} for the suite σ3, which also satisfy the attack tree
T . Therefore we get the pσ3

= pApBpC + pApC(1− pB) + pBpC(1− pA) =
0.768 and Outcomeσ3

= 4380. By taking the maximum of the three out-
comes, we get OutcomeT = 4380.

As the Cost parameters in this example for elementary attacks A and
B were chosen quite low and the success probability pA and pB of these
attacks were quite high, it made sense for an attacker to mount both of
these subattacks and get bigger expected outcome, even though the attack
tree would have been satisfied as well by only one of them.

4 Implementation

The most time-consuming computational routine among the computa-
tions given in Section 3.2 is the generation of all the satisfiable assign-
ments of a Boolean formula F in order to find the maximal outcome by
(1). Even though the computation routine (3) for finding pσ formally also
goes through (potentially all) subsets of σ, it can be evaluated in linear
time in the number of variables n. To do so we can set pi = 0 for all
Xi 6∈ σ and leave all the pi for Xi ∈ σ untouched. Then for each internal
node of the tree with probabilities of the child nodes being pi1 , pi2 , . . . , pik



we can compute the probability of the parent node to be

k
∏

j=1

pij or 1 −
k

∏

j=1

(1 − pij)

depending on whether it is an AND or an OR node. Propagating through-
out the tree, this computation gives exactly the success probability pσ of
the suite σ at the root node.

The routine (1) can be optimised as well by cutting off hopeless cases
(see Theorem 1), but it still remains worst-case exponential-time. Thus
for performance reasons it is crucial to have an efficient implementation
of this routine. We are using a modified version of DPLL algorithm [14]
to achieve this goal. The original form of the DPLL algorithm is only
concerned about satisfiability, but it can easily be upgraded to produce
all the satisfying assignments as well. Note that all the assignments are
not needed at the same time to compute (1), but rather one at a time.
Hence we can prevent the exponential memory consumption by building
a serialised version, obtaining Algorithm 1.

Algorithm 1 works recursively and besides the current Boolean formula
F it has two additional parameters. The set S contains the variables of
which the satisfying assignments should be composed from. The set A on
the other hand contains the variables already chosen to the assignments
on previous rounds of recursion. As a technical detail note that the sat-
isfying assignments are identified by the subset of variables they set to
true.

The computation starts by calling process satisfying assignments(F , X ,

∅). Note that Algorithm 1 does not really produce any output, a processing
subroutine is called on step 1 instead. This subroutine computes Outcomeσ

for the given assignment σ and compares it with the previous maximal
outcome.

4.1 Optimisations

Even with the help of a DPLL-based algorithm, the computations of (1)
remain worst-case exponential time. In order to cut off hopeless branches,
we can make some useful observations.

When we consider a potential attack suite σ and want to know, whether
it is sufficient to materialise the root attack, we will set all the elements of
σ to true, all the others to false and evaluate the formula F corresponding
to the attack tree. In the process, all the internal nodes of the tree get
evaluated as well (including the root node, showing whether the suite is



Algorithm 1 Processing all the satisfying assignments of a formula
Procedure process satisfying assignments(F , S, A)
Input: Boolean CNF-formula F , a subsets S of its variables and a subset A ⊆ X \ S

1. If F contains true in every clause then

– Process the assignment A ∪ T for every T ⊆ S; return

2. If F contains an empty clause or S = ∅ then return #no output in this branch
3. If F contains a unit clause {X}, where X ∈ S then

– Let F ′ be the formula obtained by setting X = true in F
– process satisfying assignments(F ′, S \ {X}, A ∪ {X})
– Return

4. Select a variable X ∈ S

5. Let F ′ be the formula obtained by setting X = true in F
6. process satisfying assignments(F ′, S \ {X}, A ∪ {X})
7. Let F ′′ be the formula obtained by deleting X from F
8. process satisfying assignments(F ′′, S \ {X}, A)
9. Return

sufficient). In Section 3, we allowed the suites σ to have more elements
than absolutely necessary for materialising the root node, because in OR-
nodes it often makes a lot of sense to try different alternatives. In AND
nodes, at the same time, no choice is actually needed and achieving some
children of an AND node without achieving some others is just a waste of
resources.

Thus, intuitively we can say that it makes no sense to have AND-nodes
with some children evaluating to true and some children to false. Formally,
we can state and prove the following theorem.

Theorem 1. Let F be a Boolean formula corresponding to the attack tree
T (i.e. AND-OR-tree, where all variables occur only once) and let σ be
its satisfying assignment (i.e. an attack suite). Set all the variables of σ

to true and all others to false and evaluate all the internal nodes of T . If
some AND-node has children evaluating to true as well as children eval-
uating to false, then there exists a satisfying assignment σ′ ⊂ σ (σ′ 6= σ)
such that Outcomeσ′ ≥ Outcomeσ.

Proof. Consider an AND-node Y having some children evaluating to true

and some evaluating to false. Then the node Y itself also evaluates to
false, but the set of variables of the subformula corresponding to Y has a
non-empty intersection with σ; let this intersection be τ . We claim that
we can take σ′ = σ \ τ . First it is clear that σ′ ⊂ σ and σ′ 6= σ. Note
also that σ′ is a satisfying assignment and hence σ′ 6= ∅. Now consider the



corresponding outcomes:

Outcomeσ = pσ · Gains −
∑

Xi∈σ

Expensesi ,

Outcomeσ′ = pσ′ · Gains −
∑

Xi∈σ′

Expensesi .

Since σ′ ⊂ σ, we have

∑

Xi∈σ

Expensesi ≥
∑

Xi∈σ′

Expensesi ,

as all the added terms are non-negative.
Now we claim that the equality pσ = pσ′ holds, which implies the

claim of the theorem. Let

Rσ = {ρ ⊆ σ : F(ρ := true) = true}

and define Rσ′ in a similar way. Then by (3) we have

pσ =
∑

ρ∈Rσ

∏

Xi∈ρ

pi

∏

Xj∈σ\ρ

(1 − pj) ,

pσ′ =
∑

ρ′∈Rσ′

∏

Xi∈ρ′

pi

∏

Xj∈σ′\ρ′

(1 − pj) .

We claim that Rσ = {ρ′∪ τ ′ : ρ′ ∈ Rσ′ , τ ′ ⊆ τ}, i.e. that all the satisfying
subassignments of σ can be found by adding all the subsets of τ to all
the satisfying subassignments of σ′. Indeed, the node Y evaluates to false

even if all the variables of τ are true, hence the same holds for every subset
of τ due to monotonicity of AND and OR. Thus, if a subassignment of
σ satisfies the formula F , the variables of τ are of no help and can have
arbitrary values. The evaluation true for the root node can only come from
the variables of σ′, proving the claim.

Now we can compute:

pσ =
∑

ρ∈Rσ

∏

Xi∈ρ

pi

∏

Xj∈σ\ρ

(1 − pj) =
∑

ρ=ρ′∪τ ′

ρ′∈Rσ′ ,τ ′⊆τ

∏

Xi∈ρ

pi

∏

Xj∈σ\ρ

(1 − pj) =

=
∑

ρ′∈Rσ′

∑

τ ′⊆τ

∏

Xi∈ρ′∪τ ′

pi

∏

Xj∈σ\(ρ′∪τ ′)

(1 − pj) =



=
∑

ρ′∈Rσ′

∑

τ ′⊆τ

∏

Xi∈ρ′

pi

∏

Xi∈τ ′

pi

∏

Xj∈σ′\ρ′

(1 − pj)
∏

Xj∈τ\τ ′

(1 − pj) =

=
∑

ρ′∈Rσ′

∏

Xi∈ρ′

pi

∏

Xj∈σ′\ρ′

(1 − pj)
∑

τ ′⊆τ

∏

Xi∈τ ′

pi

∏

Xj∈τ\τ ′

(1 − pj) =

=
∑

ρ′∈Rσ′

∏

Xi∈ρ′

pi

∏

Xj∈σ′\ρ′

(1 − pj)
∏

Xi∈τ

[pi + (1 − pi)] =

=
∑

ρ′∈Rσ′

∏

Xi∈ρ′

pi

∏

Xj∈σ′\ρ′

(1 − pj) = pσ′ ,

since σ \(ρ′∪τ ′) = (σ′ \ρ′)∪̇(τ \τ ′). The claim of the theorem now follows
easily. �

Note that Theorem 1 really depends on the assumption that F is an
AND-OR-tree and that all variables occur only once. Formulae (1) and
(3) together with Algorithm 1 can still be applied if the structure of the
formula F is more complicated (say, a general DAG with other connectives
in internal nodes), but the optimisation of Theorem 1 does not necessarily
work.

This theorem allows us to leave many potential attack suites out of
consideration by simply verifying if they evaluate children of some AND-
node in a different way.

4.2 Performance

We implemented Algorithm 1 in Perl programming language and ran it on
500 randomly generated trees. The tests were ran on a computer having
3GHz dual-core Intel processor, 1GB of RAM and Arch Linux operating
system.

The tree generation procedure was the following:

1. Generate the root node.
2. With probability 50% let this node have 2 children and with probab-

ility 50% let it have 3 children.
3. For every child, let it be an AND-node, an OR-node or a leaf with

probability 40%, 40% and 20%, respectively.
4. Repeat the steps number 2 and 3 for every non-leaf node until the tree

of depth up to 3 has been generated and let all the nodes on the third
level be leaves.

5. To all the leaf nodes, generate the values of Cost, π+ and π− as in-
tegers chosen uniformly from from the interval [0, 1000), and the value
of p chosen uniformly from the interval [0, 1).



Figure 2. Performance test results
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6. Generate the value of Gains as an integer chosen uniformly from the
interval [0, 1000000).

Thus, the generated trees may in theory have up to 27 leaves. That par-
ticular size limit for the trees was chosen because the running time for
larger trees was already too long for significant amount of tests.

Performance test results showing the average running times and the
standard deviation of the running times of the algorithm depending on
the number of leaves are displayed in Figure 2. Note that the time scale is
logarithmic. The times are measured together with the conversion of the
attack tree formula to the conjunctive normal form. In Figure 2 we have
included the trees with only up to 19 leaves, since the number of larger
trees generated was not sufficient to produce statistically meaningful res-
ults. The number of the generated trees by the number of leaves is given
later in Figure 3.



5 Analysis

In this Section we provide some evaluation of our tree computations com-
pared to the ones given by Buldas et al. [10] and within the framework of
Mauw and Oostdijk [8].

5.1 Comparison with the semantics of Buldas et al.

Our main result can be shortly formulated as the following theorem.

Theorem 2. Let us have an attack tree T . Let the best attack suites found
by the routines of the current paper and the paper [10] be σ and σ′ re-
spectively. Let the corresponding outcomes (computed using the respective
routines) be Outcomeσ and Outcomeσ′ . The following claims hold:

1. If σ = σ′ then Outcomeσ = Outcomeσ′ .

2. Outcomeσ ≥ Outcomeσ′ .

Proof.

1. We need to prove that if σ = σ′ then

Outcomeσ′ = pσ · Gains −
∑

Xi∈σ

Expensesi .

First note that the attack suite output by the routine of [10] is min-
imal in the sense that none of its proper subsets materialises the
root node, because only one child is chosen in every OR-node. Hence,
pσ =

∏

Xi∈σ pi. Now consider how Outcomeσ′ of the root node is com-
puted in [10]. Let the required parameters of the root node be p′,
Gains′ and Expenses′. Obviously, Gains′ = Gains. By looking at how
the values of the attack success probability and the expected expenses
are propagated throughout the tree, we can also conclude that

p′ =
∏

Xi∈σ

pi = pσ and Expenses′ =
∑

Xi∈σ

Expensesi ,

finishing the first part of the proof.

2. Since σ′ is a satisfying assignment of the Boolean formula underlying
the tree T , we can conclude that σ′ is considered as one of the attack
suite candidates in (1). The conclusion now follows directly from the
first part of the proof. �



Figure 3. Precision of the computational routine of Buldas et al. [10]
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Theorem 2 implies that the exact attack tree computations introduced in
the current paper always yield at least the same outcome compared to
[10]. Thus, the potential use of the routine of [10] is rather limited, be-
cause it only allows us to get a lower estimate of the attacker’s expected
outcome, whereas the upper limit would be of much higher interest. We
can still say that if the tree computations of [10] show that the system is
insufficiently protected (i.e. Outcomeσ′ > 0) then the exact computations
would yield a similar result (Outcomeσ > 0).

Following the proof of Theorem 2, we can also see that the semantics
of [10] is actually not too special. Any routine that selects just one child
of every OR-node when analysing the tree would essentially give a similar
under-estimation of the attacker’s expected outcome.

Together with the performance experiments described in Section 4.2
we also compared the outcome attack suites produced by the routines of
the current paper and [10] (the implementation of the computations of
[10] was kindly provided by Alexander Andrusenko [15]). The results are
depicted in Figure 3.



The graphs in Figure 3 show the number of the generated trees by the
number of leaves and the number of such trees among them, for which
the routine of [10] was able to find the same attack suite that the exact
computations introduced in the current paper. Over all the tests we can
say that this was the case with 17.4% of the trees.

5.2 Consistency with the framework of Mauw and Oostdijk

Working in a single parameter model, Mauw and Oostdijk [8] first define
a set V of attribute values and then consider an attribute function α :
C → V , where C is the set of elementary attacks (called attack compon-
ents in [8]). In order to extend this attribution to the whole tree, they
essentially consider the tree corresponding to the disjunctive normal form
of the underlying Boolean formula. To obtain the attribute values of the
conjunctive clauses (corresponding to our attack suites), they require a
conjunctive combinator △ : V × V → V , and in order to get the value
for the whole DNF-tree based on clause values they require a disjunctive
combinator ▽ : V × V → V . Mauw and Oostdijk prove that if these
combinators are commutative, associative and distributive, all the nodes
of the tree in the original form can also be given attribute values and
that the value of the (root node of the) tree does not change if the tree
is transformed into an equivalent form. This equivalence is denoted as
≡ and it is defined by the set of legal transformations retaining logical
equivalence of the underlying Boolean formulae (see [8]). The structure
(α,▽,△) satisfying all the given conditions is called distributive attribute
domain.

Even though the semantics used in [10,12] formally require four differ-
ent parameters, they still fit into a single parameter ideology, since based
on the quadruples of the child nodes, similar quadruples are computed for
parents when processing the trees. However, it is easy to construct simple
counterexamples showing that the computation rules of [10,12] are not
distributive, one is given in the Section 2.

The computation rules presented in the current paper follow the frame-
work of Mauw and Oostdijk quite well at the first sight. Formula (1) es-
sentially goes through all the clauses in the complete disjunctive normal
form of the underlying formula F and finds the one with the maximal
outcome. So we can take V = R and ▽ = max in the Mauw and Oostdijk
framework. However, there is no reasonable way to define a conjunctive
combinator △ : V × V → V , since the outcome of an attack suite can
not be computed from the outcomes of the elementary attacks; the phrase
“outcome of an elementary attack” does not even have a meaning.



Another possible approach is to take V = [0, 1] × R
+ and to inter-

pret the first element of α(X) as the success probability p and the second
element as Expenses for an attack X. Then the disjunctive combinator
can be defined as outputting the pair which maximises the expression
p · Gains − Expenses. This combinator has a meaning in the binary case
and as such, it is both associative and commutative, giving rise to an
obvious n-ary generalisation. For the conjunctive combinator to work as
expected in the n-ary case, we would need to achieve

△Xi∈σα(Xi) = (pσ, ΣXi∈σExpensesi) .

However, it is easy to construct a formula and a satisfying assignment
σ such that constructing pσ from success probabilities of the descendant
instances using a conjunctive combinator is not possible. For example, we
can take the formula F = X1 ∨X2&X3, where X1,X2,X3 are elementary
attacks with success probabilities p1, p2, p3, respectively. Let α1 denote
the first element of the output of α and let △1 denote the combinator △
restricted to the first element of the pair (so △1(Xi) = pi, i = 1, 2, 3).
Then for σ = {X1,X2,X3} we would need to obtain

(p1△1p2)△1p3 = (α1(X1)△1α1(X2))△1α1(X3) = pσ = p1 +p2p3−p1p2p3

for any p1, p2, p3 ∈ [0, 1], which is not possible. Indeed, taking p3 = 0 we
have (p1△1p2)△10 = p1. In the same way we can show that (p2△1p1)△10 =
p2, which is impossible due to commutativity of △1 when p1 6= p2.

All of the above is not a formal proof that our computations do not
form a distributive attribute domain, but we can argue that there is no ob-
vious way to interpret them as such. Additionally, if we had a distributive
attribute domain then Theorem 3 with Corollary 2 of [8] would allow us
to build a linear-time value-propagating tree computation algorithm, but
this is rather unlikely.

However, we can still state and prove the following proposition.

Proposition 1. Let T1 and T2 be two attack trees. If T1 ≡ T2, we have
Outcome(T1) = Outcome(T2).

Proof. It is easy to see that the formulae (1), (2) and (3) do not depend on
the particular form of the formula, but use it only as a Boolean function.
Since the tree transformations defined in [8] keep the underlying Boolean
formula logically equivalent, the result follows directly. �

In the context of [8], this is a somewhat surprising result. Even though
the attribute domain defined in the current paper is not distributive (and



it can not be easily turned into such), the main goal of Mauw and Oostdijk
is still achieved. This means that the requirement for the attribute domain
to be distributive in the sense of Mauw and Oostdijk is sufficient to have
semantically consistent tree computations, but it is not really necessary.
It would be interesting to study, whether the framework of Mauw and
Oostdijk can be generalised to cover non-propagating tree computations
(like the one presented in the current paper) as well.

6 Conclusions and Further Work

In this paper we introduced a computational routine capable of finding
the maximal possible expected outcome of an attacker based on a given
attack tree. We showed that when compared to rough computations given
in [10], the new routine always gives at least the same outcome and mostly
it is also strictly larger. This means that the tree computations of [10] are
not very useful in practise, since they strongly tend to under-estimate at-
tacker’s capabilities. We also proved that unlike [10], our new semantics of
the attack tree is consistent with the general ideology of the framework of
Mauw and Oostdijk, even though our attribute domain is not distributive.
This is a good motivation to start looking for further generalisations of
the framework.

On the other hand, the routines of the current paper are computation-
ally very expensive and do not allow practical analysis of trees with the
number of leaves substantially larger than 20. Thus, future research needs
to address at least two issues. First, there are some optimisations possible
in the implementation (e.g. precomputation of frequently needed values),
they need to be programmed and compared to the existing implement-
ations. Still, any optimisation will very probably not decrease the time
complexity of the algorithm to a subexponential class. Thus the second
direction of further research is finding computationally cheap approxima-
tions, which would over-estimate the attacker’s exact outcome.

As a further development of the attack tree approach, more general
and realistic models can be introduced. For example, the model presented
in the current paper does not take into account the possibility that the
attacker may drop attempting an attack suite after a critical subset of
it has already failed. Studying such models will remain the subject for
future research as well.
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