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Abstract. Most of the multi-party computation frameworks can be viewed as oblivious databases
where data is stored and processed in a secret-shared form. However, data manipulation in such
databases can be slow and cumbersome without dedicated protocols for certain database operations.
In this paper, we provide efficient protocols for oblivious selection, filtering and shuffle—essential tools
in privacy-preserving data analysis. As the first contribution, we present a 1-out-of-n oblivious transfer
protocol with O(log logn) rounds, which achieves optimal communication and time complexity and
works over any ring ZN . Secondly, we show that the round complexity τbd of a bit decomposition pro-
tocol can be almost matched with oblivious transfer, and that there exists an oblivious transfer protocol
with O(τbd log∗ n) rounds. Finally, we also show how to construct round-efficient shuffle protocols with
optimal asymptotic computation complexity and provide several optimizations.
Keywords. Secure multi-party computation, oblivious transfer, verifiable shuffle, oblivious filtering.

1 Introduction

Privacy issues often arise when sensitive data is gathered from individuals and organizations. Such threats are
commonly addressed with organizational and physical methods; however, on some occasions cryptographic
methods can provide better alternatives. In this paper, we will concentrate on the methods based on secret
sharing and multi-party computations. Such an approach guarantees by design that the computing parties
will have no access to the underlying data provided that the number of collaborating malicious parties is
small enough. On the other hand, such a guarantee comes with a price of increased computational complexity
and generic secure computation techniques [36, 7, 15] have a prohibitively large overhead.

However, for particular problems it is possible to design protocols that outperform the general-purpose
ones. In this paper, we will concentrate on some specific management tasks to be applied on secret shared
databases. Since the whole idea behind keeping a database in secret shared form is to prevent data leaks,
corresponding database operations should not reveal anything about the underlying dataset (except for what
can be concluded from the desired output). Our target is to develop protocols for oblivious database access,
filtering, text categorisation and encoding. We consider security in the client-server setting, i.e., the client
should obtain correct answer to the query and nothing else, whereas the database holders should not learn
anything besides the type of the query. Note that in the context of secret shared databases, client privacy is
only guaranteed if the share holders collude below the tolerated threshold.

In data analysis, one often needs to filter data according to a specific criterion. The corresponding oblivious
filtering procedure should produce a new shared database that contains only the records which satisfy the
criterion. The share holders should learn nothing beyond the number of records. In particular, they should
not learn which database rows we included. As such, the oblivious filtering allows us to reduce the database
size and thus can remarkably reduce the overall complexity of the remaining steps.

To understand the requirements for data encoding, consider the case of privacy-preserving questionnaire
analysis. It is relatively straightforward to design cryptographically secure data aggregation mechanisms for
questions with multiple choice answers, since the responses can be encoded as integers. Questions with free
text answers are much more challenging. First, secure text-processing is inherently slower than secure integer
arithmetic, since the former is built on top of the latter one. Second, the answers must often be interpreted
by human operators in order to extract relevant information. As a trade-off between privacy and efficiency,
we present a protocol for oblivious database access. The protocol assures that the human operator who reads



text entries and encodes them to standard attributes, cannot link replies to particular responders nor to
non-disclosed fields.

Related work. Even though the generic methods of secure multi-party computations have been known
for decades [36, 7, 15], practical implementations of the respective frameworks have emerged only recently,
e.g. FairPlayMP [6], VIFF [25], SEPIA [11], SecureSCM [3], VMcrypt [29], TASTY [27] and Sharemind [8].
Oblivious transfer has been commonly studied in the two-party setting [10, 4, 24] where security guarantees
are inherently computational. Existing results in the multi-party setting mostly hold for private information
retrieval [17, 5] where the database is replicated in several sites and only the secrecy of the query index i
is protected. Similarly, the secure shuffle problem has been mostly studied in computational setting. Most
solutions are given in the context of e-voting with mix-nets [16, 35] and onion-routing [12, 30]. These solutions
propagate encrypted messages through a network of servers to achieve unlinkability at the endpoint. In our
context, we need multi-party computation protocols that shuffle secret shared values. As there are no public
key operations, such protocols are much more efficient and naturally fit into the framework of share computing
environments, such as Sharemind [8] and Viff [22]. Hence, one should view our work in the long line of
works [21, 8, 11, 14] that uses addition and multiplication protocols in black-box manner to build secure
implementations for standard data processing operations.

Road map. The paper is organized as follows. In Section 2, we describe general frameworks for share
computing. Section 3 gives generic constructions for oblivious database manipulation, namely selection,
filtering and general read-write access. Differently from earlier results [21], these protocols do not assume
that the underlying message space is a field—any residue ring ZN is sufficient. This is an important extension,
since computer arithmetic in present-day computers implements only low-level ring operations, hence we can
hope for better overall performance by concentrating on rings. The described generic protocols use oblivious
shuffle as an important building block and three possible instantiations with several round-communication
complexity trade-offs for it are presented in Section 4. Further performance tweaks are discussed in Section 5.

2 Frameworks for Share Computing

General setup. A typical privacy-preserving data analysis application involves three types of entities:
data donors, computing parties (referred to as miners), and clients. Data donors own sensitive data, miners
gather the data and clients want to find answers for various statistical questions. In such a setting, privacy
issues can be addressed with the client-server model formalized by Damg̊ard and Ishai [23]. In this model,
data donors submit their data in a secret shared form to the miner nodes, which later use share computing
protocols to carry out the computations requested by the clients. Since data is secret shared, individual
records are protected as long as the miners do not form non-tolerated coalitions, i.e., they as a group follow
the restrictions of share-computing protocols. Clients and data donors are not trusted and can arbitrarily
violate protocol specifications. Depending on the underlying primitives and protocols, the framework can
tolerate either semihonest or malicious corruption of miners.

Share computing frameworks. A typical framework for multi-party computations is based on a secret
sharing scheme and a set of protocols for manipulating the shares. A secret sharing scheme is specified by
randomised sharing and recovery algorithms. The sharing algorithm splits a secret value x ∈ ZN into shares
x1, . . . , xm that must be securely transferred to the miners P1, . . . ,Pm, respectively. To recover the shared
value, miners must together execute the reconstruction algorithm that takes in all shares and outputs the
corresponding secret value. For example, the additive secret sharing scheme splits a secret x into shares such
that the secret can be reconstructed by adding all the shares:

x ≡ x1 + x2 + · · ·+ xm mod N .
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The vector of shares (x1, x2, . . . , xm) is commonly denoted by [[x]]. Security properties of a secret sharing
scheme are defined through a list of tolerable adversarial coalitions. Let Pi1 , . . . ,Pik form a tolerable coali-
tion, then the corresponding shares should leak nothing about the secret. More formally, the distributions
(xi1 , . . . , xik) and (yi1 , . . . , yik) must coincide for any inputs x, y ∈ ZN .

Share computing protocols enable miners to perform oblivious computations with shares. For instance,
miners can obtain a valid sharing of x + y by locally adding their additive shares of x and y. Similarly,
multiplying shares of x locally by a constant α ∈ ZN gives us shares of αx. A secret sharing scheme satisfying
these two constraints is referred to as a linear secret sharing scheme. There are many linear secret sharing
schemes, such as Shamir secret sharing scheme [33]. As any function can be represented as a Boolean circuit,
it can be also decomposed into multiplication and addition operations. Thus, a share computing framework
can be built on top of a linear secret sharing scheme by specifying a protocol for multiplication. For instance,
the Viff framework [1] uses standard solution based on Shamir secret sharing [33], whereas Sharemind
uses tailor-suited multiplication protocol for additive secret sharing [8, 9].

Although protocols for secure share addition and multiplication are sufficient to achieve Turing complete-
ness, the corresponding generic constructions are not efficient enough for practical applications. Hence, it
makes sense to design specific protocols for common operations. In most cases, the effect of the network delay
is several orders of magnitudes larger than the time needed to deliver protocol messages. Thus, protocols
with minimal round complexity are the most efficient. However, the round count is not an absolute mea-
sure, as the delivery time becomes dominant for large messages. Hence, overall communication complexity
is also important. Table 1 depicts round complexity of various share computing operations implemented in
Sharemind, where ` is the bit length of modulus N . Precise description of the protocols together with em-
pirical benchmarking can be found in [8, 9]. It is worth noting that logarithmic complexity in the bit size of
the modulus N is asymptotically sub-optimal, as theoretical construction by Damg̊ard et al. [21] provides a
constant round solution. However, the corresponding round count is larger than log ` for all practical residue
rings ZN .

Operation Round count Complexity Operation Round count Complexity

Multiplication τmul O(1) Coin-tossing τct O(1)
Smaller than or equal τst O(log `) Strictly less τsl O(log `)
Equality test τeq O(log `) Bit-decomposition τbd O(log `)

Table 1. Round complexity of common share-computing operations

For binary operations, we will use a shorthand [[x]] ~ [[y]] to denote the outputs of a share computing
protocol that securely computes x~ y from the shares of x and y.

Adversarial model. For clarity, we consider only the static corruption model where adversary specifies
parties to be corrupted before the protocol starts, although most protocols can resist more advanced corrup-
tion models. Although the list of tolerated adversarial coalitions can be arbitrary, share computing systems
can achieve information theoretical security only if the condition Q2 is satisfied in the semihonest model and
the condition Q3 is satisfied in the malicious model [28]. Recall that the condition Q2 means that any union
of two tolerated adversarial coalitions is not sufficient to corrupt all parties and the condition Q3 means
that any union of three tolerated adversarial sets is not sufficient. In the case of threshold corruption, the
conditions Q2 and Q3 imply that the number corrupted parties is strictly below m

2 and m
3 , respectively.

Universal composability. As formal security proofs are rather technical, security proofs are often reduced
to the security properties of sub-protocols. More specifically, one can deduce security of a compound pro-
tocol without delving into details only if all sub-protocols are universally composable. Although the formal
definition of universal composability is rather complex, the intuition behind it is simple. Let %〈·〉 be a global
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context (often named as environment) that uses the functionality of a protocol π. Let π◦ be an idealised
implementation, where all computations are done by a trusted third party who privately gathers all inputs
and distributes the resulting outputs. Then we can compare real and ideal world protocols %〈π〉 and %〈π◦〉.
A protocol π is universally composable if for any real world adversary A there exist an adversary A◦ against
%〈π◦〉 with comparable complexity and success rate. That is, the joint distribution of all outputs in the
real and ideal world must coincide for all input distributions. As a result, a compound protocol consisting of
several instances of π◦ preserves security if we replace π◦ by π. The latter means that we combine universally
composable sub-protocols without any usage restrictions, e.g., execute them in parallel.

We refer to the standard treatments [13, 32] for further details. Achieving universal composability in
the semihonest model is rather straightforward, most share computing protocols satisfy this including the
protocols used in Sharemind and Viff [8, 1]. Theoretical constructions for malicious model do exist [22],
but these are not widely used in practical systems, yet.

3 Oblivious Database Manipulation

In this section, we describe various database operations that are often required in data analysis and show how
these can be implemented using protocols for oblivious transfer and shuffle. The objective of the random
shuffle protocol is to permute the elements of the underlying database according to a uniformly chosen
permutation π, which is oblivious to all miners. Depending on the protocol, the client can either learn the
permutation or not. We discuss how to implement the basic protocols in Sections 3.1 and 4.

3.1 Generic Construction for Oblivious Selection

Many data-mining algorithms select and later process a particular sub-sample from the entire data. In the
simplest case, the client wants to retrieve a single data record without revealing the index. This problem is
commonly referred to as oblivious transfer. More formally, let x = (x1, . . . , xn) be a database of `-bit strings
and let i be the desired index. Then miner nodes should learn nothing about the client’s input and the client
should learn nothing beyond xi. Far more often, the client is not interested in the value itself but needs
shares of xi for further processing. At the end of oblivious selection protocol, miner nodes obtain shares of
xi and neither client or miners learn anything new. Note that an oblivious selection protocol becomes an
oblivious transfer protocol if miners send the obtained shares securely to the client. Secondly, the client can
construct a sub-sample of the original database by executing several oblivious selection operations. The latter
is a rather common operation in statistical studies. For example, assume that the database entries contain
private information about individuals, however, it is public which database row belongs to which individual.
Then the client can form a group of relevant persons based on private or public information about these
individuals. With oblivious selection, the client can select only relevant rows without leaking the selected
identities.

The generic construction for oblivious selection described below works under the assumption that both
the database elements xi and indices i can be considered as elements of a ring ZN . By the definition of secret
sharing, we achieve client privacy by sharing the index i at the client side and just transferring the shares
[[i]] to the miners. Then the miners can compute the output shares as follows

[[xi]] =

n∑
j=1

([[i]] = j) · [[xj ]] (1)

where ([[i]] = j) denotes the output shares of a secure comparison protocol, see Section 5 for further details.
The result is correct as comparisons yield a zero-one indicator vector. Protocol 1 depicts the corresponding
oblivious transfer protocol, where the output shares are sent back to the client. The GenOt protocol is
as secure as the weakest sub-protocol. In particular, as sub-protocols are universally composable, so is the
GenOt protocol. If sub-protocols are secure against active corruption, so is the GenOt protocol. Since now
this is what we mean by stating that assumptions of share computing are fulfilled.
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Data-gathering phase

1. Data donors submit the shares of their inputs xi to the miner nodes.

Query phase

A client submits shares of i to the miner nodes.

Processing phase

1. For j ∈ {1, . . . , n}, miners evaluate in parallel: [[yi]]← [[xj ]] · ([[i]] = j).
2. Miners compute the shares of the reply: [[z]]← [[y1]] + · · ·+ [[yn]].

Reconstruction phase

Miners send the shares of z to the client who reconstructs and outputs z.

Protocol 1: Generic oblivious transfer protocol GenOt for the message domain ZN

We also do not provide complete security proofs, since simulator constructions for evaluating (arithmetic)
circuits are standard. Due to universal composability, each share computing protocol can be replaced with
an ideal implementation. Hence, a share-computing algorithm can be viewed as a circuit with trusted com-
ponents for operations where each signal is split into m sub-wires carrying the shares. In the semihonest
model, the adversary can eavesdrop the sub-wires corresponding to corrupted parties, whereas in malicious
model the adversary can also alter the signals in these wires. Now the security of secret sharing implies that
all eavesdropped messages can be simulated with shares of zero. For the malicious model, the underlying
secret sharing scheme must be robust and thus blocking or altering signals in ceased sub-wires has no effect
on the outcome. As a result, correctness of such circuits is sufficient for universal composability. We refer to
the manuscripts [13, 20] for further details.

Theorem 1. If the assumptions of share computing protocols are fulfilled, the GenOt protocol is secure
against malicious data donors and clients. The corresponding round complexity is τeq + τmul + 1 where τmul

and τeq are round complexities of multiplication and equality test protocols.

Proof (Sketch). For the round complexity, note that equality test can be evaluated in parallel and the addition
takes zero rounds. The protocol is secure against malicious data donors, as they can submit only elements
of ZN . Similarly, the equality tests in the first step of the processing assure that all yi = 0 if the client input
is invalid (i.e. i /∈ {1, . . . , n}) and the malicious client receives no information. ut

Remarks. First, note that miners can use any shared value as [[i]] in the protocol. In particular, same shares
can be used to select or fetch elements form different databases. As protocols can be run in parallel, we can
obliviously select database records of arbitrary format without increase in the round complexity. Moreover,
miners can also assure that the inputs are in a certain range. In particular, miners can assure that xi ∈ {0, 1}`
by setting [[xi]]← [[xi]]·([[xi]] < 2`) in the data gathering stage. Second, note that the efficiency of the protocol
depends mainly on the efficiency of equality testing. Hence, we must pay special attention to this subprotocol
and we will do so in Section 5. Third, note that the communication complexities of data donors and clients
are optimal up to a multiplicative factor (roughly m), as in the optimal non-private protocol they send and
fetch values instead of shares. The miners’ workload is linear in the database size, which is again optimal,
since each database element must be touched or otherwise information leaks about the queries.

3.2 Generic Construction for Oblivious Database Filtering

In data analysis tasks, one often needs to separate a certain sub-sample form the entire data. For instance, we
might constrain our sample to female patients who are over 65 and have high blood pressure. When the data
is secret shared due to privacy reasons, the desired sub-sample must be formed obliviously. The procedure
can be split into two phases. First, we must compute shares of an indicator vector f that is set to one when
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1. Miners apply oblivious shuffling to permute the shares of the database (x||f).
2. Miners reconstruct the permuted vector π(f) of the resulting database (π(x)||π(f)).
3. Miners keep the shares of xπ(i) for which fπ(i) = 1 as shares of y.

Protocol 2: Generic oblivious filtering protocol GenOf

the inclusion criterion is met. Standard share computing frameworks can easily handle predicates consisting
of arithmetic and comparison operators, such as the constraint ([[sex]] = 1) · ([[age]] ≥ 65) · ([[hbp]] = 1).
Second, we must perform the oblivious filtering step. Let x be the vector of database records and let f be a
zero-one indicator vector. Then during oblivious filtering protocol miners use shares of x and f to construct
a new database of shared records y such that xi is included into y iff fi = 1. Miners learn nothing except the
size of y during the protocol. The latter is unavoidable, if we want to reduce the workload in later processing
stages – gains in efficiency unavoidably leak information about the size of the sub-sample y.

For clarity, let (x||f) denote a record-wise concatenation of databases x and f consisting of pairs (xi, fi).
For any permutation π, let π(z) denote a reordered database zπ(1), . . . , zπ(n). Then Protocol 2 depicts a
generic construction that reduces oblivious filtering task to oblivious shuffling. As a consequence, efficiency
of many data analysis algorithms is determined by the efficiency of oblivious shuffling. See Section 4 for the
description of three oblivious shuffle protocols with different trade-offs between round complexity τos and
communication complexity.

Theorem 2. If assumptions of the oblivious shuffle protocol are fulfilled, the GenOf protocol is secure. The
round complexity is τos + 1 where τos is the round complexity of oblivious shuffle.

Proof (Sketch). The claim about round complexity is evident as reconstruction is a single round operation.
The protocol is correct as the shuffle protocol indeed yields shares of (π(x)||π(f)) and thus correct shares of
xi are included into the output database. The security hinges on the fact that π(f) is a random permutation
and thus the output π(f) can be easily simulated knowing the size of y. ut

3.3 Oblivious Read-Write Access

Oblivious database access is a powerful tool in data processing. For instance, we can used it for post-processing
secret shared free-text fields. Assume that a human operator obtains all the text entries so that they could
not be linked to the responders. Then the operator can extract necessary information form free-text entries
for better encoding of answers. For completing the update step, the operator must be able to obliviously
update the corresponding database fields. The latter can be achieved with the GenOwr protocol, where
(1) miners apply oblivious shuffling to permute the shares of the database x; (2) the client reads and writes
fields of the shuffled database π(x); (3) miners apply oblivious shuffling to permute the shares of the updated
database x̂. The protocol does not provide full privacy, as the client learns some database fields and can link
field updates with accessed values. However, such a level of privacy is sufficient for many practical query
processing applications, as a completely secure solution is yet practically infeasible.

Theorem 3. The overhead of the GenOwr protocol is 2τos where τos is the round complexity of the oblivious
shuffle protocol. If the assumptions of the oblivious shuffle protocol are fulfilled and the client does not access
the same field twice for reading or writing, the miners learn only the number of read and write operations
and which operations were performed on the same database record. The client learns the values of accessed
database fields and can link updates of database entries with the values of accessed database fields.

Proof (Sketch). If the oblivious shuffle protocol is secure, miners cannot link shares corresponding to x,
π(x) and x̂. Consequently, the view of corrupted miners can be simulated knowing only the database access
pattern in the second step. If the assumptions hold, the pattern can be correctly reconstructed given only
the information enlisted in the theorem. As the corrupted miners cannot alter the end result, the joint
distribution of outputs coincide in the real and ideal world. The second security claim holds, as the protocol
hides the ordering of database entries form the client. The simulation is straightforward, since the client has
read and write access of the database π(x) in the idealised implementation. ut
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Remarks. The default implementation of GenOwr protocol produces the database where the entries are
shuffled. The original order can be restored if the second shuffle implements the inverse of π, or if we add the
shared row numbers to the original database and open them after the second shuffle. As another extension,
note that the GenOwr protocol can be used for implementing adaptive oblivious transfer, where the client
wants to retrieve several elements from a database, given that the client learns the permutation π. After the
database is shuffled, the client can use π to query the required elements, whereas the miners will not know
the correspondence. Hence, a single shuffle is sufficient for adaptive oblivious transfer of many elements. If
clients do not query the same element more than once, miners will learn only the number of queries and
nothing else. The same construction is valid for oblivious selection. As a result, we can significantly save
computational time in algorithms that require massive parallel oblivious read-write access.

4 Protocols for Oblivious Shuffle

In the following, we describe three oblivious shuffle protocols. The first protocol presented in Section 4.1 based
on permutation matrices has constant round complexity. However, the communication complexity is rather
high (Θ(n3) or Θ(n2) depending on the variation). The resharing-based solution presented in Sections 4.3
and 4.4 achieves communication complexity asymptotically optimal in database size (Θ(n log n)), but is
exponential with respect to the number of miners. In many applications this is not a major issue, since the
number of miners is usually very limited (e.g. three for the current implementation of Sharemind). However,
for larger requirements we can propose a good sorting-based trade-off in Section 4.2, as its communication
complexity is Θ(npolylog n) and it scales well to a larger number of miners.

Figure 1 shows the expected performance of all three protocols from two aspects. Round complexity
depicted on the vertical axis characterises the performance for small database sizes. For large databases, the
running time is approximately linear to the communication complexity between individual miners. Hence,
the comparison of communication complexities displayed on the graph lines is more relevant in practice.

logn

Round complexity

So
rt

sh
uffl

e

O
(n

lo
gn

)
co

m
m

.

2m
Resharing shuffle

O(2mn logn) comm.

2m

m
Matrix shuffle, O(mn2) comm.

m
logm

Matrix shuffle, O(mn3) comm.

logm

Fig. 1. Performance comparison of oblivious shuffle protocols

All three protocols are composed of consecutive shuffling phases which are designed to hide permutations
from different sets of miners. In the first and the second protocol, only a single miner knows the permutation
of each phase and thus O(m) phases are sufficient for security. In the third protocol, the permutation is
known to a large set of miners and thus Θ(2m/

√
m) phases are needed in the worst case.

Similarly to oblivious transfer, we only consider the case where all database elements belong to ZN . As
any collection of records can be represented as a matrix where each column is either a data field or part
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of it, a vector shuffle protocol is sufficient provided that several protocol runs can share the same hidden
permutation. It is easy to see that all protocols presented in this section have this property.

4.1 Oblivious Shuffle based on Permutation Matrices

Recall that for any n-element permutation π there exists a zero-one matrix Mπ such that π(x) = Mπx for all
vectors x of size n. Hence, if a miner Pi generates and shares a permutation matrix Mπi , the database can be
shuffled by multiplying it with Mπi

. As none of the miners should know the permutation, miners must execute
several such shuffle phases. More precisely, let t be the maximal size of a tolerated adversarial coalition. Then
it is sufficient if t + 1 miners permute the database, as at least one permutation remains oblivious to the
adversarial coalition. Also, note that the final outcome is indeed a shuffle, as at least one permutation is
chosen uniformly. As each permutation phase can be implemented with Θ(n2) multiplications and t = Θ(m)
in standard multiparty frameworks, the resulting shuffle protocol contains O(mn2) multiplications, which
can be performed in O(mτmul) rounds. The number of rounds can be reduced to O(log2mτmul) with the cost
of O(mn3) multiplications if miners first compute the matrix product Mπ1

· · ·Mπt+1
in a balanced manner.

In the malicious model, miners have to additionally verify that each Mπi
is a permutation matrix, i.e.,

all entries are either zeroes or ones and the sums of all the rows and columns of Mπi are ones. Each such test
can be expressed as a share computing procedure yielding one if the input Mπi is correct. Moreover, these
additional zero-knowledge proofs do not change the complexity estimates. As a result, security follows from
the correctness and universal composability of share computing protocols.

4.2 Oblivious Shuffle Based on Sorting

Let y1, . . . , yn ∈ ZN be a random permutation of the set {1, . . . , n}. Then we can implement shuffle by
obliviously sorting the pairs (xi, yi) according to the second element. In such a shuffle phase, a miner Pi
generates and shares values y1, . . . , yn and then all miners use a modified sorting network consisting of
compare-exchange gates

CompEx((xi, yi), (xj , yj)) =

{
(xi, yi), (xj , yj) if yi ≤ yj ,
(xj , yj), (xi, yi) if yi > yj ,

for oblivious relocation of elements. The CompEx-gate can be securely implemented by combining secure
multiplication and comparison operations, e.g. we can define the first output element as

([[yi]] ≤ [[yj ]]) · [[xi]] + ([[yi]] > [[yj ]]) · [[xj ]] .

As a result, each CompEx block can be executed by doing O(τst+τmul) rounds. Similarly to the first protocol,
several shuffle phases are needed to hide the permutation from potentially adversarial miners.

The efficiency of the resulting shuffle protocol depends on the complexity of the sorting network. For
instance, randomised shell sort [26] has O(log n) layers and O(n log n) CompEx blocks. Thus, the shuffle
protocol has Θ(m(τmul+τsl) log n) rounds and communication complexity Θ(mnpoly(log n)), where the term
poly(log n) captures the asymptotic growth of communication in base protocols.

There are alternative methods for generating shares of y1, . . . , yn. In particular, note that the modified
sorting network provides a random shuffle also when y1, . . . , yn are randomly chosen form ZN and there are
no collisions yi = yj for i 6= j. If n <

√
N , the probability of such collisions is less than 1

2 by the birthday
bound. The generation of random elements is straightforward. Each miner has to generate n random elements
form ZN and after that miners can sum the shares of respective elements locally.

Näıve detection of collision requires Θ(n2) comparisons and thus does not reduce communication com-
plexity. However, if we first sort y1, . . . , yn and then only compare the adjacent elements in the resulting
vector y′1, . . . , y

′
n, the communication complexity can be reduced to O(n log n). Also, note all test results

[[y′i]] = [[y′i+1]] can be public. If all tests are negative then the combination is valid and we can proceed. If
some test is positive then information is leaked about y, but then we must anyway restart the procedure.
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Inputs: A database of shares [[x1]], . . . , [[xn]] and a potential adversarial coalition A ( {P1, . . . ,Pm}.
Output: A database of shares [[xπ(1)]], . . . , [[xπ(n)]] for a random permutation π unknown to the coalition A.
Clarifying remark: Steps starting with ⊗ should be omitted in the semihonest setting.

Mixing phase. Let C = {P1, . . . ,Pm} \ A be the complement group and let [[xk]]i denote the ith share of xk.

1. Each miner Pi ∈ A additively secret shares its share vector between the miners of C,
i.e., each miner Pj ∈ C gets a share ukj such that the shares (ukj)j∈C sum up to [[xk]]i for k ∈ {1, 2, . . . , n}.

⊗ Pi commits (uij)j∈C to all. CTP, CMP and CSP are executed to verify correctness and consistency.
2. All miners in the group C locally compute additive shares for the database elements x1, . . . , xn,

i.e., each miner Pj ∈ C holds a share vkj for element xk, s.t. shares (vkj)j∈C sum up to xk for k ∈ {1, 2, . . . , n}.
⊗ All miners use linearity to compute locally commitments to (vkj)j∈C .
3. All miners in the group C agree on a random permutation π and reorder their shares according to π.
4. Each miner Pj ∈ C uses original secret sharing to share the shuffled shares between all miners,

i.e., miners obtain a matrix of shares ([[vπ(k),j ]])j∈C,k∈{1,2,...,n} at the end of this step.
⊗ Zero-knowledge proofs for shuffle correctness are run to verify that all parties Pi ∈ C followed the protocol.
⊗ CSP are executed to restore commitments to the shares of (vπ(k),j)j∈C,k∈{1,2,...,n}.
5. All miners locally add shares ([[vπ(k),j ]])j∈C to obtain [[xπ(1)]], . . . , [[xπ(n)]].

Protocol 3: Verifiable shuffle protocol VerShf that is oblivious for a coalition A

As y consists of random values noting is leaked about the inputs (the failures can be adequately simulated).
For n <

√
N , testing k candidates gives us one collision-free permutation with probability at least 1− 1

2k
. As

all candidate sequences can be generated and tested in parallel, the number of rounds is independent of k.
Finally, note that comparison results in the algorithm can be cached so that final run of the modified sorting
network requires only multiplication operations.

4.3 Resharing Based Oblivious Shuffle for Semihonest Setting

The suffle phase can be viewed as a hide and seek game, where the aim of the hider set C is to shuffle the
database in a such way that the seeker set A learns nothing about the permutation. Protocol 3 depicts a
setting where the seekers first transfer their shares to the hiders so that the database is secret shared only
between the members of C. Next, hiders agree on a permutation π and reorder their shares accordingly.
Then the secret sharing is extended to all miners. The protocol is secure and achieves its goal provided that:
(a) corrupted parties in the hider set C cannot recover secrets; (b) shares are extended so that seekers learn
nothing about shared values. By repeating this shuffle phase for every maximal tolerable adversarial coalition
A, we get a secure oblivious shuffle provided that all sub-protocols remain secure.

Lemma 1. Let A be such a coalition that the complement set cannot be corrupted. If assumptions of secret
sharing are fulfilled, then the protocol VerShf is secure in the semihonest model.

Proof (Sketch). As the complement group cannot be entirely corrupted, the first step in the mixing phase
reveals no information and can be easily simulated. The second, third and fifth step create no communication
and thus are trivial to simulate. The fourth step is simulatable due to the properties of the original secret
sharing. The claim follows, as the output is guaranteed to be correct in the semihonest model. ut

Theorem 4. If a secret sharing scheme satisfies the Q2 condition, there exists a secure oblivious shuffle
protocol with O(2m/

√
m) rounds and communication complexity O(2mm3/2n log n) in the semihonest model.

Proof. Let us repeat the VerShf protocol sequentially for each maximal adversarial coalition A. Then each
protocol instance is secure as the condition Q2 guarantees that the complement of A cannot be corrupted.
As at least one permutation remains hidden from an adversarial coalition, the protocol indeed implements
oblivious shuffle. The round complexity estimate follows from the consideration that maximal adversarial
coalitions form an antichain in the partially ordered set of all the subsets of the m-element set of miners.
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Sperner’s classical result from 1928 states that there are up to
(

m
bm/2c

)
elements in such an antichain, and on

the other hand it is known that
(

m
bm/2c

)
= Θ(2m/

√
m). The claim concerning the communication complexity

follows, since each sub-protocol requires Θ(n) resharing operations and O(n log n) bits to generate a random
permutation and each resharing operation requires O(m2) communication for fixed N . ut

The protocol described above is asymptotically optimal if we consider only the asymptotic dependency
on the database size. Sampling a random permutation requires Θ(n log n) bits and thus the communication
cannot be decreased further. Moreover, for small number of parties, say m ≤ 10, the protocol is very efficient
as there are no expensive multiplication and comparison operations.

Efficiency tweaks and implementation results. The first possible optimization can be obtained noting
that it is not always necessary to consider the full complement of an adversary set as the set of hiding
miners. For example, consider the threshold adversary setting, where the maximal adversary coalitions have
t members with m strictly larger than 2t+1. In this case it is enough to select hiding sets having t+1 elements
which would then work against several different adversary sets, allowing us to achieve a reduced number of
rounds. For example, if we have t = 2 then with m = 5 miners we would need 10 phases of computations. At
the same time, increasing the number of miners to m = 6, six phases are sufficient, since the hider sets can
be chosen to be {P1,P2,P4}, {P2,P3,P5}, {P3,P4,P6}, {P4,P5,P1}, {P5,P6,P2}, {P6,P1,P3}. It is easy to
verify that for no adversary set of up to two elements they have access to all of the permutations and that
6 active sets (i.e. 6 phases) is the minimum achievable for t = 2 and m = 6. Finding optimal round and
communication complexity for any t,m remains an open combinatorial problem.

In practice, communication channels between miner nodes are commonly implemented using authenti-
cated encryption and thus information-theoretical security is unachievable. Hence, the security level does not
decrease if the group C agrees on a short random seed and later uses a secure pseudorandom generator to
stretch locally into O(n log n) bits needed for a random permutation. In particular, we can generate an array
fsk(1), . . . , fsk(n) by applying a pseudorandom permutation f indexed by a seed sk. By sorting the array, we
get a permutation that is computationally indistinguishable from a random permutation. We implemented
the corresponding shuffle protocol for three miners by using 128-bit AES as f . For each mixing phase, Pa
and Pb forming the group C exchanged 128-bit random sub-keys ska and skb and set sk ← ska ⊕ skb. The
protocol was implemented into Sharemind framework using C++ programming language. The computing
parties and the controller node ran on servers having two Intel Xeon X5670 2.93GHz processors and 48GB of
RAM each. The servers were using Debian OS and were connected by gigabit Ethernet. Figure 2 shows the
times required for oblivious shuffle of databases consisting of 103, . . . , 107 additively shared 32-bit integers.

103 104 105 106 107

102

103

104

Number of database elements

T
im

e
(m

s)

70
102

312

2543

24535

Fig. 2. Performance of oblivious shuffle in three-party setting
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4.4 Resharing Based Oblivious Shuffle for Malicious Setting

The protocol described above can be used also in the malicious model provided that we can force universal
consistency checks: (a) all resharing steps are correct; (b) the permutation π is indeed randomly sampled;
(c) hiders permute their shares according to the permutation. To achieve such kind of protection, we follow
the standard two-level secret sharing technique [19], where all original shares are secret shared. That is, any
share [[x]]i owned by Pi is always secret shared between all miners. Such a setup simplifies zero-knowledge
correctness proofs, since Pi can more easily prove that he or she computed output shares [[v]]i from the
input shares [[u]]i. The second level secret sharing is commonly referred to as commitment, as it satisfies
both perfect binding and hiding properties. As shown in [19], security against an active adversary can be
achieved with three auxiliary protocols: commitment transfer protocol (CTP), commitment sharing protocol
(CSP) and commitment multiplication protocol (CMP). CTP allows to transfer a commitment of a secret
from one party to another, CSP allows to share a committed secret in a verifiable way such that the parties
will be committed to their shares, and CMP allows to prove that three committed secrets a, b and c satisfy
the relation c = ab. In order to achieve security against active adversaries, share computing frameworks use
two-level secret sharing by default. Moreover, for any robust secret sharing scheme, the second layer can
be added on demand. Miners just have to commit their shares. Although a maliciously corrupted miner Pi
can provide incorrect sharings of [[x]]i, the number of correctly shared shares is sufficient to correctly recover
the original secret x. If needed, miners can emulate recovery procedure with commitments to detect which
shares were incorrectly committed.

Correctness proofs for the resharing steps. As Pi commits values (ukj)j∈C in the first step of Pro-
tocol 3, miners can compute [[xk]]i −

∑
j∈C [[ukj ]] and open it. If the result is zero, the shares were correctly

formed. The result leaks no information, as the output is always zero for honest miners. By employing CTP,
these commitments can be transferred to the intended recipients who are forced to correctly recommit ukj .
Verification of the second step is straightforward, since the reconstruction coefficients are public and all
parties can locally manipulate shares of shares to get shares of the corresponding linear combinations.

Unbiased sampling of randomness. As the condition Q3 is not satisfied for the set C, hiders cannot
agree on the random permutation without outsiders. Hence, all miners must engage in a secure coin-tossing
protocol to generate necessary random bits for the permutation π. For instance, a random element of ZN can
be generated if all parties share random elements of ZN and the resulting shares are added together. Next,
everybody broadcasts their shares to the set of hiding participants C. To sample a random permutation, the
same protocol can be run in parallel to generate enough random bits.

Correctness proof for the local shuffle step. The correctness proof hinges on the fact that miners
have commitments to all shares of Pj . After the second step, miners obtain commitments to additive shares
v1j , . . . , vnj and during the fourth step miners receive commitments to permuted shares vπ(1)j , . . . , vπ(n)j .
Hence, if all miners Pj ∈ C prove that the shares were indeed obtained by applying the permutation π, the
CSP protocol assures that the resulting double-level sharing of vπ(1)j , . . . , vπ(n)j is also correct.

Protocol 4 depicts a zero-knowledge protocol for a slightly abstracted setting where Pj has to prove that
he or she has secret shared databases x and y so that y = π(x) for a permutation π known to the hider
set C. At the end of the protocol, honest parties from both sets learn whether the sharing was correct or
not. The soundness error of the ZkShf protocol can be efficiently amplified: any soundness error ε can be
achieved by running dlog2 1/εe instances of the protocol in parallel as the protocol is universally composable.

Theorem 5. Let A be a maximal adversarial set. If a secret sharing scheme satisfies the Q3 condition then
the protocol ZkShf is a perfect five round zero-knowledge proof with soundness error 1

2 .

Proof (Sketch). The protocol has five rounds, since each protocol step can be implemented in a single round.
For correctness note that if Pj is honest then zi = yσ(i) = xπ(σ(i)) for i ∈ {1, . . . , n}. As the set A is maximal
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Prover: A prover is a miner Pj in the hider set knowing x1, . . . , xn and y1, . . . , yn.
Helpers: Miners in the hider set C know a permutation π such that y1 = xπ(1), . . . , yn = xπ(n).
Common inputs: Miners have shares [[x1]], . . . , [[xn]], [[y1]], . . . , [[yn]].

1. All miners engage secure coin-tossing protocol to fix a random permutation σ.
The resulting bits are revealed to all miners in the hider set so that they can learn σ.

2. The prover Pj computes z1 = yσ(1), . . . , zn = yσ(n) and shares them.
3. All parties engage in a secure coin-tossing protocol to get a public random bit b.
4. (a) If b = 0 then all miners in the hider set broadcast σ. Each miner reconstructs σ.

All miners compute shares of [[z1]]− [[yσ(1)]], . . . , [[zn]]− [[yσ(n)]] and broadcast the results.
(b) If b = 1 then all miners in the hider set broadcast π ◦ σ. Each miner reconstructs π ◦ σ.

All miners compute shares of [[z1]]− [[xπ(σ(1))]], . . . , [[zn]]− [[xπ(σ(n))]] and broadcast the results.
5. Proof fails if any of the revealed values is non-zero, otherwise miners accept the proof.

Protocol 4: Zero-knowledge proof ZkShf for shuffle correctness

adversarial set and the condition Q3 holds, the condition Q2 must hold in the hiding set C. Consequently,
each miner can correctly reconstruct permutations σ or π ◦σ in the fourth step. By the condition Q2, honest
coalition is strictly larger than any adversarial set in C. As the replies sent by honest parties coincide, each
party can detect the correct answer. As the adversarial coalition cannot alter the reconstructed values by
changing their shares, the revealed values will always be zeroes. For the soundness claim, assume that the
prover cheats and there exists yj 6= xπ(j). Let i = σ−1(j). Then zi 6= yj or zi 6= xπ(j) cannot simultaneously
succeed. As malicious parties cannot alter the end results, the prover is bound to fail with probability at
least 1

2 . For the simulatability, note that the adversarial coalition cannot bias the outputs of coin-tossing
protocols. Hence, the permutations σ and π ◦ σ are random permutations in isolation. When no hider is
corrupted, we can just send a random permutation to simulate the beginning of the fourth step. Otherwise,
we have to extract π form the inputs of the corrupted hider and simulate permutation generation according
to the protocol. The public opening of the shares is trivial to simulate, as the result is known to be zero.
More precisely, note that the simulator has access to the input shares of the corrupted parties (i.e., the shares
of x and y) and thus can augment them to be shares of zero. By emulating the protocol with these dummy
shares, the share distribution in the opening phase is guaranteed to coincide with the real protocol. ut

Final security claim. As in the semihonest setting, the final shuffle protocol can be obtained by repeating
the VerShf protocol for every maximal tolerable adversarial coalition A. The correctness proofs assure
that honest miners detect all deviations form the protocol and catch the corresponding culprit. After each
incident, the culprit must be excluded form the computations and the corresponding shuffle phase must be
restarted. As the number of malicious parties is limited and the exclusion does not invalidate Q3 condition,
honest miners can always complete the protocol.

Theorem 6. If a secret sharing scheme satisfies the condition Q3, there exists a secure oblivious shuffle
protocol with O(2m/

√
m) rounds and communication complexity O(2mm3/2n log n) in the malicious model.

5 Efficiency Tweaks for Generic Oblivious Transfer

Since multiplication requires small constant number of rounds (e.g. 1 in case of Sharemind [9]), Theorem 1
implies that the round complexity of oblivious transfer is essentially equal to the round complexity of equality
testing. In most frameworks, equality test is built on top of the generic bit-decomposition techniques by
Damg̊ard et al [21]. For elements of ZN , the resulting protocols have quite large overhead and non-constant
round complexity O(log logN). In the following, we present several tweaks that address this issue.
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5.1 Equality Testing Without Bit Decomposition

Let ` = dlog(n+ 1)e the bit length of n. Then the bit decomposition step can be circumvented if the client
shares individual bits i`, . . . , i1 of the index i in GenOt. Equality tests can be computed as products

([[i]] = j) =
∧̀
k=1

([[ik]] = jk) =
∏̀
k=1

([[ik]] = jk) . (2)

Since one bit in comparison protocols is public, we can simply set

([[ik]] = jk) =

{
[[ik]], if jk = 1 ,

1− [[ik]], if jk = 0 .

without spending any extra rounds. The resulting protocol is very efficient, as it has only log n multiplications
and the round complexity can be reduced to O(log log log n) by balanced evaluation of the product.

However, this protocol is not secure against malicious clients unless miners verify in zero knowledge
that the inputs [[i`]], . . . , [[i1]] are indeed bits. For rings Zpt , the latter is straightforward, as the equation
x(x − 1) has only two solutions x = 0 and x = 1. Hence, miners can simply publicly test if ik(ik − 1) = 0
for k ∈ {1, . . . , `}. For arbitrary rings ZN , the equation x(x − 1) = 0 can have non-trivial solutions and
we must use alternative methods. For instance, the client can create additive shares over Z2. Then miners
must convert the share domain from Z2 to ZN . For that, each miner first shares its share over ZN and
then resulting m shares are XOR-ed together. As each XOR operation takes one multiplication and we can
parallelize evaluation, the total round complexity is O(τmul logm) for m miner nodes. In general, conversion
from ZM to ZN can be done by sharing the shares over ZN and then emulating the reconstruction procedure
with shares. The latter requires a secure modular reduction protocol for public M , which is usually even
more complex than bit decomposition. Hence, splitting the input into bits is more efficient only if N is a
prime power or reconstruction procedure for shares over Z2 is simple enough to do it implicitly over ZN .

5.2 Recursive Equality Testing

For further optimisations, note that `-element conjunction can be represented by an equality test of dlog(`+
1)e bit strings provided that all inputs bk are binary:

∧̀
k=1

[[bk]] =

(∑̀
k=1

[[bk]] = `

)
. (3)

The right hand side of Equation (3) again requires comparing a secret shared value to a public one, and
can hence be computed by Equation (2), leading to double recursion. Hence, equality testing can be re-
duced to testing equality of logarithmically shorter strings. The latter, however, cannot be done without
bit-decomposition. Hence the round complexity must exceed the round complexity of bit decomposition.
However, the overhead is asymptotically very small, being limited to the factor of iterated logarithm log∗ `
(see [18]).

Theorem 7. Let τbd be the round complexity of a bit decomposition protocol for the ring ZN . Then there
exists a protocol for equality test for `-bit numbers and conjunction for ` terms with O(τbd log∗ `) rounds.

Proof. Equation (3) assures that high-degree conjunction for ` terms can be implemented with the same
round-complexity as dlog `e-bit equality test. By adding shares of b1, . . . , b` and then splitting the sum
b1 + . . . + b` back to bits, we reduce `-element conjunction to a conjunction of log ` terms with the cost of
O(τbd) rounds, as comparison of individual bits is a constant rounds operation. By repeating the recursion as
long as possible we get a protocol for conjunction with O(τbd log∗ `) rounds. The claim follows, as Equation (2)
assures that `-bit equality test can be reduced to conjunction of ` terms. ut
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From a theoretical viewpoint, the result is not very impressive, as Damg̊ard et al [21] gave constant
round protocols for bit decomposition, conjunction, disjunction, and for all comparison operations when the
message space is a finite field Zp. However, the corresponding constants are rather high – over 50 for equality
and conjunction. As the bit-decomposition can be easily done in log log p rounds, the solution is more efficient
for most practical instance sizes ` ≤ 2128. The result is even more appealing in the case of rings Zpt , where
constant round constructions are not known.

5.3 Round Complexity versus Communication Complexity

Oblivious transfer protocols based on high-degree conjunction are very round efficient. However, the commu-
nication complexity between the miner nodes is rather high and the time needed to deliver protocol messages
starts to dominate for large enough databases. For instance, oblivious transfer without bit decomposition
contains O(n log n) multiplication operations and thus the asymptotic running time is Θ(n log n).

As a first step towards lower communication complexity note that the right hand side of Equation (1)
can be viewed as a multivariate polynomial with arguments i1, . . . , i`, where i1, . . . , i` are the bits of index i:

f(i1, . . . , i`) =

n∑
j=1

∏̀
k=1

[(1− jk)(1− ik) + jkik] · xj =
∑

K⊆{1,...,`}

αK ·
∏
k∈K

ik .

Here the coefficients of the monomials are linear combinations

αK(x1, . . . , xn) = αK,1x1 + · · ·+ αK,nxn

with public constants αK,1, . . . , αK,n ∈ {−1, 0, 1}. For example, for the three element database {x1, x2, x3}
we have

f(i1, i2) = x1i1 + x2i2 + (x3 − x2 − x1)i1i2 .

By construction, ` = dlog(n+ 1)e and thus the number of nonzero coefficients αK is Θ(n). Moreover, as
the shares of αK are locally computable, only Θ(n) monomials must be securely computed and multiplied by
αK for each query. Näıvely, these can be computed by doing Θ(n) multiplication operations in κ rounds. That
is, we first compute all monomials for one element sets K, then for two element sets and so on. This solution
is not round optimal, since we can compute monomials of k elements in dlog ke rounds by balancing the
expression tree. The same holds also if we compute all monomials in parallel. Hence, the online complexity of
the corresponding oblivious transfer protocol is Θ(n) multiplication operations and Θ(τmul log log n) rounds.
The round complexity can be further reduced by using high-degree conjunction protocols to evaluate the
monomials, as multiplication and conjunction are equivalent for bits.

In particular, by using a single double reduction step we can reduce the round count to
O(τmul log log log n + τbd) rounds. That is, we first form all possible shares of sums ik1 + · · · + iks and
then use bit decomposition protocol to reduce the problem back to the conjunction. The asymptotic running
time does not decrease since there are Θ(n) share additions to carry out. In practice, the running time
decreases significantly as addition is much faster than multiplication.

6 Conclusions and Future Work

In this paper, we have proposed several round-efficient protocols for oblivious database manipulation over
secure MPC in both semihonest and malicious model, including oblivious transfer and oblivious shuffle of
secret shared databases. We also presented an oblivious filtering protocol and selection protocols as possible
applications of these techniques.

For oblivious transfer, we have presented several versions with round complexity between O(log log n)
and O(log log log n). For oblivious shuffle, we have proposed three alternative implementations with different
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trade-offs between the round and communication complexity. Which one of them is the fastest for a given
application and deployment scenario, is a non-trivial question requiring further research and benchmarking.
We have also provided several possible tweaks for optimization of the presented primitives, but several
questions are left open. For example, finding out optimal hider set constructions for possible adversarial
structures is an interesting combinatorial problem of its own. As a useful by-product of the tweaking, we
obtained an efficient protocol for equality testing based on double recursion with bit decomposition.

In the current paper, we presented initial performance results proving that oblivious database shuffle
is efficient for relatively large databases (roughly 25 seconds for 107 elements). Further improvements can
be achieved by optimizing the implementation, however, these improvements remain the subject for future
development as well.
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