
Point-Counting Method for Embarrassingly Parallel
Evaluation in Secure Computation

Toomas Krips2,3, Jan Willemson1,3 ?

1 Cybernetica, Ülikooli 2, Tartu, Estonia
2 Institute of Computer Science, University of Tartu, Liivi 2, Tartu, Estonia

3 STACC, Ülikooli 2, Tartu, Estonia

Abstract. In this paper we propose an embarrassingly parallel method for use in secure com-
putation. The method can be used for a special class of functions over fixed-point real numbers
- namely, for functions f for which there exist functions g and h such that g(f(x), x) = h(x)
and g(·, x) is monotonous. These functions include f(x) = 1

x
, f(x) =

√
x and f(x) = 1√

x
, but

also any functions that can be represented as finding a root of a polynomial with secret coef-
ficients and with a sufficiently low rank. The method can also be applied for other functions
— such as the logarithm function. The method relies on counting techniques rather than
evaluation of series, allowing the result to be obtained using less rounds of computations with
the price of more communication in one round. Since the complexity of oblivious computing
methods (like secret-shared multi-party computations (SMC)) is largely determined by the
round complexity, this approach has a potential to give better performance/precision ratio
compared to series-based approaches. We have implemented the method for several functions
and benchmarked them using Sharemind SMC engine.

1 Introduction

The problem setting for privacy-preserving data mining (PPDM) is inherently self-contra-
dictory. On one hand we collect data with a certain purpose, e.g. make policy decisions
based on its analysis. On the other hand, due to increasing ease of data misuse, privacy reg-
ulations have become more strict in time. This in turn sets tighter limits to data collection,
storage and utilisation.

In order to still make use of the data analysis, various PPDM techniques have been
proposed. In this paper we will concentrate on secure multi-party computations (SMC), as
this approach currently seems to offer good trade-off between performance loss (which is
inevitable taking privacy restrictions into account) and provided security guarantees.

SMC applications work by sharing data between several computing nodes, whereas the
privacy guarantees hold when not too many of them collude. Computations on such a set-
up assume communication between these nodes. As the computing nodes should ideally
be placed in physically and/or organisationally independent environments to provide the

? This research was supported by the European Regional Development Fund through Centre of Excellence
in Computer Science (EXCS) and the Estonian Research Council under Institutional Research Grant
IUT27-1 and Estonian Doctoral School in Information and Communication Technologies

privacy guarantees, communication complexity of the computing protocols becomes a major
bottleneck. Hence, development of the protocols having smaller communication complexity
is essential to increase the performance of SMC applications.

This paper proposes a new approach for evaluating certain special-form functions in
SMC setting. We will make use of the observation that communication complexity in SMC
case is mostly determined by the number of communication rounds, whereas the amount
of data sent within one round may be rather large without significantly decreasing the
overall computation speed. [13, 3] So far this property was mostly useful while computing
with large datasets, as many instances of the same protocols could run in parallel, giving
a good aggregated speed. The methods described in this paper can fully use this property
for small datasets, but are also flexible enough to be also well usable for large datasets.

One class of methods for function evaluation using many parallel independent attempts
is know as Monte-Carlo methods. We can “throw” points into the plane to compute in-
tegrals, or onto the line to evaluate single-variable functions, and then count the points
satisfying a certain relation. The key observation is that both “throwing” and counting can
be implemented in parallel, allowing us to save considerably on communication rounds. In
this paper we will not actually select the points randomly, hence the resulting method can
be viewed as only inspired by Monte-Carlo approach.

The paper is organised as follows. We first describe the notation and the primitives
that we can use in Section 3. Then Section 4 presents an important technical tool for the
implementation of our method. In Section 5 we introduce the central algorithm, present its
details and give the corresponding proofs for its correctness. In Section 6 we give examples
of function to which the algorithm can be applied and also present how the algorithm can
be used to compute logarithms or the roots of polynomials with secret coefficients. Finally,
we give the benchmarking results in Section 7 and draw some conclusions in Section 8.

2 Previous Work

SMC has traditionally been done over integer values, however, in the recent years, there
have been also solutions that use number types that represent real numbers, such as fixed-
point numbers or floating-point numbers. Such data types allow for applications that are
not possible when using only integer type such as the satellite collision problem [10],
privacy-preserving statistical analysis [9], QR-decomposition of matrices [14], secure lin-
ear programming with applications in secure supply chain management [5, 11], and other
problems.

Catrina and Saxena developed secure multiparty arithmetic on fixed-point numbers in
[6], and their framework was extended with various computational primitives (like inversion
and square root) in [6] and [14].

However, since the precision of fixed-point is inherently limited, secure floating-point
arithmetic has been developed independently by various groups of researchers, see Aliasgari
et al. [1], Liu et al. [15], and Kamm and Willemson [10].

In [12], we designed protocols that use fixed-point arithmetic inside of floating-point
protocols for better performance.

However, since the fixed-point protocols we used in that paper used polynomial approx-
imation to calculate different functions, the resulting accuracy was limited. This is because
better approximation polynomials require computing greater powers of x and also have
larger coefficients. These in turn increase the cumulative rounding errors resulting from
the fixed-point format and thus, past some point, increasing the accuracy of the polyno-
mial does not increase the accuracy of the method since the rounding error will dominate
past that point. This also means that the method was not really flexible concerning the
performance-precision trade-off. Also, the value of the polynomial might go outside a cer-
tain range and thus correction protocols must be applied to the fixed-point result.

3 Preliminaries

Our methods aim at working with fixed-point real numbers. The amount of bits after the
radix point is globally fixed and is usually denoted by m. We will not introduce special
notation for distinguishing between different types of numbers, as the type of a number
will generally be clear from the context.

We differentiate between secret (private) and public values in this work. To denote that
the value of some variable x is secret, we denote it with JxK. A concrete instantiation of
the value protection method depends on the implementation of the computation system.
The reader may think of the value JxK as being secret shared [16], protected by fully ho-
momorphic encryption [7, 8] or some other method allowing to compute with the protected
values.

Given a set X and a function f we denote with f(X) the set {f(x)|x ∈ X}. Given
a number x, and a positive integer k we will define by βk(x) the number formed by the
n − k least significant bits of x where n is the total number of bits of our data type. We
also define αk(x) := x− βk(x). In this paper, log x refers to the binary logarithm log2(x).
When we give a bit-decomposition of a value x by x0, x1, . . . , xn−1, we presume that xn−1
is the most significant bit.

3.1 Security Setting

We assume that we use a system that has some specific computational primitives and the
universal composability property - that is, if two protocols are secure then their composition
is also secure. More precisely, we will assume availability of the following computational
primitives working on private fixed-point values.

– Addition

– Multiplication of public fixed-point numbers and private integers.

– Comparison. We assume access to an operator LTEProtocol(JaK, JbK) that takes the value

J1K if a ≤ b, and J0K otherwise. We will also use notation c = a
?
≤ b to express this

comparison operator.
– For functions f specified in the section 5, we must have some easily computable func-

tions g and h so that g(f(x), x) ≡ h(x) on private inputs. These g and h depend on
which function f we want to compute, but to achieve efficient implementation they must
be fast to evaluate on private fixed-point values. For example, for inverse and square
root functions that we implemented, we only needed a small number of fixed-point
multiplications to implement them.

All these universally composable primitives are available on several privacy-preserving
computation frameworks, e.g. the framework by Catrina and Saxena [6] or Sharemind [2,
12].

4 Simple Example of the Main Idea

We start by presenting a simple method for evaluating functions where we know that the
input belongs to some small range and where the function is suitably well-behaved. This
method is similar in essence to the main method of the paper. We present this method here
to help build intuition about the general strategy and thus make the main method easier
to understand. Like the main method, this method uses many comparison operations in
parallel to bring the round complexity to a minimum at the cost of increased number of
computations in one round.

Often when we need to evaluate some function, we have some kind of information about
it letting us know that it belongs to some small range [a, b). If the function is twice derivable
and its first two derivatives are not too large, we can use the following method. For a secret
input JxK and a range [a, b), we choose a large number of equidistributed points ai where

ai := a+ i · h for some small h. We then compute JciK := ai
?
≤JxK. Then let Jd0K := 1− Jc0K

and JdiK := Jci−1K − JciK for all i ≥ 1. Note that only one of the variables JdiK is equal to
one, the rest are equal to zero. The j for which JdjK = 1 is the greatest j for which aj is
smaller than or equal to JxK. Thus aj is either the closest or second closest ai to x and
f(aj) can be considered as an approximation for f(JxK).

Thus we compute the scalar product
∑

i f(ai) · JdiK.
We noted that

∑
i f(ai) ·JdiK = f(aj) where aj ≤ JxK < aj+1. We note that |x−aj | ≤ h.

We assumed that f has first and second derivatives in [a, b). Let c1 := maxy∈[a,b) |f ′(y)| and

c2 := maxy∈[a,b) |f ′′(y)|. Then, according to Taylor’s theorem, |f(x)− f(aj)| ≤ c1h+ c2h2

6 .
We can also add the error resulting from the inaccuracy of the fixed-point representation,
but the error will be dominated by c1h.

Note that the method might also be usable for functions that do not have first and
second derivatives, but in that case, a different error estimation is needed.

Data: JxK, h, `, {bi}`−1
i=0 , a, b

Result: Given a secret number JxK such that JxK ∈ [a, b), and numbers bi ≈ f(a+ i · h) , computes
a number JzK that is approximately equal to f(x).

{ai}`−1
i=0 ← a+ i · h

{JciK}`−1
i=0 ← LTEProtocol({ai}`−1

i=0 , {JxK}
`−1
i=0)

Jd0K← 1− Jc0K
for i = 1, i < `, i+ + do

JdiK← Jci−1K− JciK
end

JzK =
∑`−1
i=0JdiK · JbiK

return JzK

Algorithm 1: Simple example of the main idea

5 Functions with Simply Computable Monotone Inverses in Bounded
Areas

There are functions that, in terms of elementary operations such as addition and multi-
plication, can be relatively complicated to compute but for which the inverse functions
require much less computational power. For example, computing k

√
x requires computing

an approximation series and it is only accurate in a small interval, but computing xk re-
quires only approximately log k multiplications. Thus it would be useful if we could use
computing xk to compute k

√
x. Since round complexity is the important factor here, it is

sufficient if we can compute k
√
x by computing many instances of xk in parallel.

We shall now describe a method that follows a similar idea. The main idea is the
following. We want to compute a function f(x) where the input x is secret, but of which
we know that f(x) belongs to the interval [a, a + 2k) where a can be private or public
and where there are are easily computable functions g and h where g(f(x), x) ≡ h(x)
where g(·, x) is also monotonous in the area [a, a + 2k). For example, if f(x) = 1√

x
, then

g(x, y) = x2 · y and h(x) = 1.

Suppose that we know that the output f(x) will be in some [a, a + 2k) and that
we want to achieve precision 2k−s. We then consider values ai := a + i · 2k−s for every

i ∈ {1, . . . , 2s − 1}, compute g(ai, x), do secret comparisons by setting ci := g(ai, x)
?
≤h(x)

if g is increasing and ci := g(ai, x)
?
≥h(x) if g is decreasing and finally set the result to be

a+ 2k−s · (
∑
ci).

Intuitively, this gives a correct answer because for one j ∈ {0, . . . , 2s}, aj is approxi-
mately equal to f(x). If g is increasing, we can measure the position of this j in {0, . . . , 2s}

by testing whether g(ai, x)
?
≤h(x) for all i — due to monotonicity, for all i smaller than

j, g(ai, x) ≤ h(x) but for all i greater than j, g(ai, x) > h(x). Thus the number of i that
”pass the test” is proportional to the position of j in {0, . . . , 2s}. A similar argument holds
when g is decreasing.

The following theorem shows why the approach works.

Theorem 1. Let f be a function. Let g, gx and h be such functions that g(f(x), x) ≡ h(x),
gx(y) := g(y, x) and gx is strictly monotonous in [a, a + 2k). Let x ∈ X be such that
f(x) ∈ [a, a+ 2k). Let y0, y1, . . . , y2s be such that yi := a+i ·2k−s. Let Y := {y1, . . . , y2s−1}.
Let Z := gx(Y).

Let j := |{yi ∈ Y |gx(yi) ≤ h(x)}| and j′ := |{yi ∈ Y |g(yi, x) ≥ h(x)}|. Then
f(x) ∈ [yj , yj+1) if g is monotonously increasing and f(x) ∈ [yj′ , yj′+1) if it is monotonously
decreasing.

Proof. We will give a proof for a monotonously increasing gx. The proof for monotonously
decreasing gx is the same, mutatis mutandis. First note that gx(y1) < gx(y2) < · · · < gx(y2s−1),
because gx is monotonously increasing. We know that f(x) ∈ [yr, yr+1) for some r. Since
gx is monotone, this is equivalent to gx(f(x)) ∈ [gx(yr), gx(yr+1)). Rewriting this gives us
h(x) ∈ [gx(yr), gx(yr+1)). Because gx(y1) < gx(y2) < · · · < gx(y2s−1), this is equivalent to
h(x) ≥ gx(y1), . . . , gx(yr) and h(x) < gx(yr+1), . . . , gx(y2s−1), i.e. |{g(yi) ∈ Z|h(x) ≥ g(yi)}| = r.
This in turn gives us |{yi ∈ Y |h(x) ≥ gx(yi)}| = r, which gives us r = j which is what we
wanted to show. ut

We shall use this theorem for Algorithm 2. Namely, to compute f(JxK), we first create
values Jy1K, Jy2K, . . . , Jy2s−1K be such that JyiK := JaK + i · 2k−s. We compute, g(JyiK), for

every i, in parallel. Then, using the LTEProtocol in parallel, we set ci to be g(yi)
?
≤h(x) for

every i. We compute r =
∑
ci. By the theorem, r = j and thus we set the answer to be

JaK + r · 2k−s.
We shall now give two remarks about how the theorem still applies for some slightly

weaker assumptions. We did not use these assumptions in the theorem due to the sake of
clarity.

Remark 1. Note that even if h(x) is not easily computable but there exists an easily com-
putable function h̃(x) such that h(x) ∈ [gx(yr), gx(yr+1))⇔ h̃(x) ∈ [gx(yr), gx(yr+1)) then
we can replace h(x) with h̃(x) in the algorithm and the output is the same.

Remark 2. We also note that it is not strictly necessary for gx to be monotonous in [a, a+
2k). It suffices for it to be monotonous in [a, a+ 2k − 2k−s].

When we refer to functions g, gx, h or h̃ later in this paper, we assume that they have
the meanings described in this section. Also, when the function g(x, y) does not depend
on y, we shall just write g(x). Also, in that case, gx(y) ≡ g(y) and thus we will write g(y)
instead of gx(y).

5.1 Iteration

Note that when the range of input is large and we want good accuracy, we have to perform
a large number of tests in parallel — i.e. s will be rather large. However, due to network

Data: JxK, JaK, k, n, s, sign
Result: Computes one round of function f of JxK where we already know that

f(x) ∈ [JaK, JaK + 2k). Here g and h are functions so that g(f(x), x) ≡ h(x). The public flag
sign is 1 if the function is increasing and 0 if it is decreasing. We use 2s − 1 test points and
we work on n-bit data types.

JwK← h(JxK)
{JaiK}2

s−1
i=1 ← {JaK + i · 2k−s}2

s−1
i=1

{JbiK}2
s−1
i=1 ← {Jg(ai, x)K}2

s−1
i=1

if sign == 1 then

{JciK}2
s−1
i=1 ← LTEProtocol({JbiK}2

s−1
i=1 , {JwK}2

s−1
i=1)

else

{JciK}2
s−1
i=1 ← LTEProtocol({JwK}2

s−1
i=1 , {JbiK}2

s−1
i=1)

end

JcK =
∑2s−1
i=1 2k−sJciK

return JaK + JcK

Algorithm 2: Computing a function with an easily computable inverse.

saturation, there is an upper bound to how many operations does it make sense to perform
in parallel. Let this number be 2σ. Up to 2σ−1, doubling the number of tests should increase
the overall computation time by a factor that is strictly smaller than 2. Past that point,
however, doubling the number of tests will double the performance time. This is not a
very serious loss, but we can also propose a method that can ideally achieve much greater
accuracy gain while only doubling the performance time.

The idea is, in essence, 2σ-ary search. We note that in the beginning of Algorithm 3
we start with the knowledge that f(JxK) ∈ [JaK, JaK + 2k) and in the end we know that
f(JxK) ∈ [Ja′K, Ja′K + 2k

′
) where k′ is smaller than k. Thus it is rather natural to run

Algorithm 3 again assuming that f(JxK) ∈ [Ja′K, Ja′K + 2k
′
) with a suitable number of test

points in that interval. This can be done several times in a row, until the precision we want
has been achieved.

More precisely, suppose that we want to compute v instances of some function f in
parallel with accuracy of t bits and so that we beforehand know that Jf(xi)K ∈ [ai, ai + 2k)
for every i ∈ {1, . . . , v}. Suppose also that our system can perform at most approximately
2σ comparison operations or operations g in parallel and we want to achieve precision 2t.

Then we have to perform approximately (k−t) log v
σ rounds where in every round the

total number of operations performed is no greater than 2σ.

However, if the number of operations we wish to do in parallel is too great, then we
must perform more than 2σ operations in one round. In this case, we shall compute only
one extra bit each round because that is the smallest possible amount.

The resulting procedure is presented as Algorithm 3, where the RoundF subroutine
refers to Algorithm 2.

Data: v, {JxiK}v−1
i=0 , {JaiK}

v−1
i=0 , k, σ, n, t

Result: Computes function f of values {JxiK}v−1
i=0 . We know that Jf(xi)K ∈ [ai, ai + 2k) for all

i ∈ {0, . . . , v − 1}. We can perform at most 2σ comparison or g operations in parallel. We
work on n-bit data types and we wish to achieve precision 2t

s← max{bσ − log vc, 1}
r ← b k−t

s
c

s′ ← k − t− s · r
if s′ == 0 then

s′ ← s
r ← r − 1

end

{Jy0,iK}v−1
i=0 ← RoundF ({JxiK}v−1

i=0 , {JaiK}
v−1
i=0 , k, n, s

′)
for j = 1; j ≤ r; j + + do
{Jyj,iK}v−1

i=0 ← RoundF ({JxiK}v−1
i=0 , {Jyj−1,iK}v−1

i=0 , k − s
′ − (j − 1)s, n, s)

end
return JyrK

Algorithm 3: Computing f using iteration

6 Applications of the Method

The class of functions f described in Theorem 1 (for which there exist easily computable
functions g and h such that g(f(x), x) ≡ h(x) and g(·, x) is also monotonous) is rather
abstract and not easy to interpret. This Section studies this class more closely.

The functions described by Theorem 1 are perhaps best understood when considering
the possible options for the easily computable functions g, h and h̃. Which functions ex-
actly are easy to compute depends on the underlying implementation of secure computation
engine. Typically such functions would include constants, additions, subtractions, multipli-
cations and their compositions. However, depending on the system, other operations such
as bit decompositions, shifts or other functions might be cheap and thus different functions
might belong into that class in that case.

The compositions of constants, additions, subtractions, multiplications are polynomials.
Thus, one subset of the functions computable using this method are equivalent to finding
the root of a polynomial with secret coefficients in a range where the polynomial is injective.

For example:

– computing 1
JaK is equivalent to finding a root of JaKx− 1 = 0;

– computing
√

JaK is equivalent to finding a root of x2 − JaK = 0;
– computing 1√

JaK
is equivalent to finding a root of JaKx2 − 1 = 0;

– computing JaK
JbK is equivalent to finding a root of JbKx− JaK = 0.

This class of problems can also be extended to finding the roots of polynomials with
secret coefficients in general, whether they are injective in an area or not, and this is done
in Section 6.1. Later, in Section 6.2, we will present the computation routine for binary
logarithm.

6.1 Finding Roots of Polynomials

We saw that finding the roots of injective polynomials is a large subclass of problems that
can be solved using the point-counting method described above.

We will now present a method for making point-counting applicable also for polynomials
that are not injective in the given interval. Denoting the rank of the polynomial by k, the
extended method will possibly be up to k2 times slower, hence it should be used only for
polynomials with a suitably small rank.

The key observation for the extended method is the fact that we can still use the
point-counting method if we can divide [a, b) into intervals [a, c1), [c1, c2), .., [ck, b) so that
the polynomial p(x) is monotone in all those intervals — we can then separately use the
point-counting method in all those intervals.

The polynomial is monotone in an interval if the derivative of the polynomial does not
change signs there. Since the derivative of a polynomial is a continuous function, it changes
signs only when it is equal to zero. Thus we can find the points c1, . . . , ck by computing the
roots of p′(x). Now we again must find the roots of a polynomial — but that polynomial has
a smaller rank than the original one. This, rather naturally, gives us a recursive algorithm.
If p′(x) is an injective function, we can directly use the point-counting algorithm. If it is
not, we can compute its roots recursively.

If the rank of the polynomial p(x) is k, then its (k− 1)st derivative is a linear function
and thus injective, which means that the recursion has no more than k − 1 steps.

We presume that we have access to the following functions.

First, we naturally assume that we have access to the function that evaluates the poly-
nomial. We denote with p(Ja0K, . . . , JanK, Jx0K) the function that evaluates the polynomial∑n

i=0JaiKx
i at Jx0K.

Second, we assume access to the function Der(Ja0K, . . . , JanK) that takes in the coeffi-
cients of a polynomial and returns the coefficients of its derivative.

Third, we presume that we have access to a version of Algorithm 3 that, in an interval
where a polynomial is injective, returns a root of the polynomial if it has one or an endpoint
of the interval if it does not. However, we need to modify the function RoundF that it calls,
i.e. Algorithm 2. We shall replace it with the Algorithm 4 which differs from Algorithm 2
in two ways.

First, unlike in Algorithm 2, we do not know the length of the interval where our result
may be. It might even happen that the interval has length zero. We solve this problem in
the following way. Suppose that we know that our solution is in [JaK, JbK].

We then compute the values of gx as usual in the interval [JaK, Ja+2kK) where 2k is such a
number such that JbK ≤ JaK+2k. However, now we also compare every point JaiK = JaK+i·h

with JbK. After computing the comparison vector {JciK}, we compute Jc′iK := JaiK
?
≤JbK and

compute JciK = JciK · Jc′iK. We then proceed as usual. After this procedure we can be certain
that the result is in [JaK, JbK].

Note that although we use intervals in the format [a, b] instead of [a, a + 2t), we can
still use the Theorem 1 due to Remark 2.

The second way Algorithm 4 differs from Algorithm 2 is the fact that we do not know
whether the polynomial p(x) =

∑n
i=0 aix

i is increasing or decreasing in the interval [JaK, JbK]
where it is injective. We solve this problem by executing the algorithm in both cases and

then computing p(a)
?
≤p(b) to perform oblivious choice between the two options.

Because p is injective in the interval, the only case when it can happen that p(JaK) = p(JbK)
is when JaK = JbK, but then the output of the function is always JaK and does not depend
on whether we use the increasing or decreasing version of the algorithm. In other cases
comparing p(JaK) and p(JbK) will give us whether the function is increasing or decreasing
in that interval and thus the correct output. Thus we obtain Algorithm 4.

Data: JxK, JaK, JbK, k, n, s
Result: Computes one round of function f of JxK where we already know that f(x) ∈ [JaK, JbK].

Here g and h are functions so that g(f(x), x) ≡ h(x). We use 2s − 1 test points and we
work on n-bit data types. We know that the function is monotone but not whether it is
increasing or decreasing.

JwK← h(JxK)
{JaiK}2

s−1
i=1 ← {JaK + i · 2k−s}2

s−1
i=1

{JbiK}2
s−1
i=1 ← {Jg(ai, x)K}2

s−1
i=1

{Jci,0K}2
s−1
i=1 ← LTEProtocol({JbiK}2

s−1
i=1 , {JwK}2

s−1
i=1)

{Jci,1K}2
s−1
i=1 ← LTEProtocol({JwK}2

s−1
i=1 , {JbiK}2

s−1
i=1)

{Jc′iK}2
s−1
i=1 ← LTEProtocol({JbiK}2

s−1
i=1 , {JbK}2

s−1
i=1)

{Jci,0K}2
s−1
i=1 ← {Jci,0K}

2s−1
i=1 · {Jc

′
iK}2

s−1
i=1

Jc0K = 2k−s ·
∑2s−1
i=1 Jci,0K

{Jci,1K}2
s−1
i=1 ← {Jci,1K}

2s−1
i=1 · {Jc

′
iK}2

s−1
i=1

Jc1K = 2k−s ·
∑2s−1
i=1 Jci,1K

JzaK← p(Ja0K, . . . , JanK, JaK)
JzbK← p(Ja0K, . . . , JanK, JbK)
JzK← LTEProtocol(za, zb)
JcK← JzK · Jc0K + (1− JzK) · Jc1K
return JaK + JcK

Algorithm 4: Computing a function with an easily computable inverse in a secret
interval. Function may be either increasing or decreasing.

If we thus replace the call to Algorithm 2 with a call to Algorithm 4 in Algorithm 3,
we shall obtain a function that we call injecRoot(Ja0K, . . . , JanK, JaK, JbK) that takes in a
secret interval [JaK, JbK] and the secret coefficients Ja0K, . . . , JanK of a polynomial such that
the polynomial has at most one root in [JaK, JbK]. The function outputs the root of the
polynomial in [JaK, JbK] if it exists. If it does not exist, the function outputs the point JaK if
the function has only positive values and is increasing in the interval or has only negative

values and is decreasing in the interval. In other cases, it outputs the largest representable
value in [JaK, JbK].

We shall now present Algorithm 5 for the function polyRoot(Ja0K, . . . , JanK, JaK, JbK, t)
that returns n values, in increasing order, among which are all the real roots of the poly-
nomial.

First it finds the polynomial that is the derivative of the polynomial
∑n

i=0JaiKx
i. If

that is a linear function, it applies the function injecRoot to it to obtain its root if it has
one. If the derivative has a higher order, it recursively calls polyRoot to obtain n− 1 values
c1, . . . , cn−1, in increasing order, among which are all the real roots of the derivative.

We then set Jc0K = JaK and JcnK = JbK. We then apply the function injecRoot to the
original polynomial in the intervals [JciK+2t, Jci+1K] where 2t is the precision of the function
injecRoot. We return the outputs of injecRoot, ordered.

Data: Ja0K, . . . , JanK, JaK, JbK, t
Result: Gets as input the polynomial with coefficients Ja0K, . . . , JanK and an interval [JaK, JbK].

Returns n values, in an increasing order, among which are all the real roots of the
polynomial. Has precision 2t.

if n > 1 then
Jb0K, . . . , Jbn−1K← Der(Ja0K, . . . , JanK)
Jc1K, . . . , Jcn−1K← polyRoot(Jb0K, . . . , Jbn−1K, JaK, JbK, t)
Jc0K← a
JcnK← b
for i = 0, i < n, i+ + do

JdiK← injecRoot(Ja0K, . . . , JanK, Jci + 2tK, Jci+1K)
end
return Jd0K, . . . , Jdn−1K

else
return injecRoot(Ja0K, . . . , Ja1K, JaK, JbK)

end

Algorithm 5: Computing roots of a polynomial

Based on Theorem 1, we note that each step gives correct answers provided that the
function under question is injective in the intervals where it is called. Based on properties
of the derivative of a polynomial we conclude the correctness of the algorithm.

The reason why we chose the specific intervals for injecRoot as [JciK + 2t, Jci+1K] is
the following. We know that the derivative of the function may be zero in [JciK, JciK + 2t)
and [Jci+1K, Jci+1K + 2t), but not between those intervals. Thus the function is injective in
[JciK + 2t, Jci+1K] and the algorithm gives the desired output. Also, this does not exclude
any points, given the precision level t.

6.2 Logarithm

In this Section we show how the point-counting method can be applied to computing binary
logarithms.

As noted by Aliasgari et al. [1], an approximation of the exponential function can be
computed using the bits of the input to obliviously choose between 22

i
and 1 and then

computing the product over all bits — we can use this for the function g. At first, it
may seem that this requires us to perform bit-decomposition and many multiplications for
computing the function g. However, we will later see that it can be done in a manner where
we only need a multiplication of a private and a public value to compute g.

To avoid technical details arising from the need to handle negative numbers, we only
present here the point-counting method for logarithms that only works on inputs greater
than one. We refer to the discussion in Section 7 how to overcome this limitation.

Let us have input JxK and suppose that we want to compute Jlog xK. We assume that
Jlog xK ∈ [JaK2b, (JaK + 1)2b) for some JaK and b. Let us have n-bit numbers as input. Let

us also have computed the value J22baK. We let f(x) = log x and g(y) = gb,s(y0, . . . , yn−1),
where y0, . . . yn−1 are the bits of y and gb,s(y0, . . . , yn−1) is the function defined in the
following way.

gb,s(y0, . . . , yn−1) = 22
baΠs

i=n−b(yi · 22
i

+ (1− yi) · 1).

Note that this performs oblivious choice between 22
i

and 1 every step using the bit yi, and
essentially computes an approximation of the exponent that uses only the first s bits of y.
In fact, g(y) ≡ 2αs(y). Let us have 2s−b test points ar in such a way that ai = i · 2n−s. Thus
h(x) = gb,s(log x) = 2αs(log x).

This gives us h(x) = 2αs(log x). However, this is difficult to compute.
We now use Remark 1 and set h̃(x) = x. We need to confirm that h(x) ∈ [g(ar), g(ar+1))⇔

h̃(x) ∈ [g(ar), g(ar+1)) Indeed,

h(x) ∈ [g(ar), g(ar+1))⇔ 2αs(log x) ∈ [2αs(ar), 2αs(ar+1))⇔ αs(log x) ∈ [αs(ar), αs(ar+1))⇔

αs(log x) = αs(ar)⇔ x = 2αs(ar)·2βs(x) ⇔ x ∈ [2αs(ar), 2αs(ar+1))⇔ h̃(c) ∈ [g(ar), g(ar+1)).

The equivalence αs(log x) ∈ [αs(ar), αs(ar+1))⇔ αs(log x) = αs(ar) holds because the
only point in [αs(ar), αs(ar+1)) to which αs(·) maps is αs(ar).

We now note that if we know J22baK, then computing g(x) can be done at the cost
of multiplying a public value with a private value. Namely, we note that given the bit
representation of ai as ain−1ain−2 . . . ai0 , the product Πs

j=n−b(aij ·22
j
+(1−aij) ·1) is public

since the individual bits ain−b , . . . , ais are public as they only depend on i. Thus we only

need to compute the product of J22baK and Πs
j=n−b(aij ·22

j
+ (1−aij) ·1) to compute g(ai).

We also note that the constraint that we should have the value J22baK before computa-
tion is not too restricting. If we have performed no rounds before, then it can be set to 1.

However, if it is not the first round, then we can compute it based on the values we obtained
from the previous round using the method described in Section 4. Note that we have com-

puted values JciK = Jg(x)K
?
≤JxK. We then compute Jd0K := 1− Jc0K and JdiK := Jci−1K− JciK

for all i ∈ {1, . . . , 2s − 1}. We now note that there is only one JjK for which JdjK = 1,

namely, the one for which g(aJjK) ≤ JxK < g(aJj+1K). Now we compute
∑2s−1

i=0 diJg(ai)K
which is equal to the g(aJjK) for which it holds that g(aJjK) ≤ JxK < g(aJj+1K). Note that

this means 2αs(aJjK) ≤ JxK < 2αs(aJjK)+2n−s . We note that by taking b = n−s and a =
αs(aj)
2n−s

this is equivalent to JaK2b ≤ x < (JaK+1)2b and thus we can take Jg(aj)K =
∑2s−1

i=0 diJg(ai)K
for the new JaK2b.

7 Results

7.1 Security Settings of the Benchmarking Process

For implementation and benchmarking we used the Sharemind 3 SMC platform4. Share-
mind 3 is based on secret sharing and is information-theoretically secure in the passive
security model and contains the necessary universally composable primitives for fixed-point
numbers, as described in section 3.1.

7.2 Benchmarks

We implemented four functions – inverse, square root and logarithm using the point-
counting technique, and the Gaussian error function using the method described in Sec-
tion 4. All three computing nodes for the Sharemind platform that we used contained two
Intel X5670 2.93 GHz CPUs with 6 cores and had 48 GB of RAM. Although we optimised
the methods concerning round-efficiency, total communication cost became the deciding
factor for efficiency. Since these methods were designed to fully use the communication
capacity of channels, communication cost is proportional to time. We performed tests
for 32-bit numbers and 64-bit numbers as the basic integer data type, and with different
precision levels. To see how vector size affects the performance, we ran tests for different
vector sizes. We performed 20 tests for every value given here for the inverse, square root
and the Gaussian error function and 10 tests for every value for the logarithm and averaged
the result.

For clearer comparison, we used the floating-point methods for the inverse function and
the square root function presented in [12], but replaced the fixed-point subroutines with the
methods proposed in this paper. We also did not need as much correction algorithms, since
our new algorithms allow for much higher accuracy without significant loss in performance.
The results of the tests are presented in Tables 1, 2 and 4, respectively.

4 http://sharemind.cyber.ee/

We chose the precision parameters for square root and inverse for the following reasons.
We wished to have a near-maximal precision for both 32-bit and 64-bit numbers but for
practical reasons, we implemented the method for 30 or 62 bits of precision. This precision
is much higher than the previous results of [12] and [10] for the respective data types while
taking about 2 to 6 times more time than the results of [12]. We also ran tests for 16 bits of
precision for 32-bit numbers and 32 bits of precision for 64-bit numbers. These precisions
are approximately half of the near-maximal precision but also close to the precisions of the
protocols of [12].

Comparing these benchmarks with the near-maximal precision we can see how doubling
the number of bits for precision also approximately doubles the execution time. Based on
the nature of the protocol, we can also assume that this pattern also holds more generally —
when a protocol with n bits precision would take time t, then the same protocol would take
time 2t for 2n bits of precision. Consequently, this protocol can be used with reasonable
efficiency for applications needing very high precision. Verifying this conclusion assumes
implementation of our algorithms on a platform providing 128-bit primitive types, so this
remains the subject for future research.

We can also see that for 64-bit numbers, the performance for vector size 10000 is poorer
than for vector size 1000. This happens because for 64-bit numbers, 2σ < 10000 and thus
we have to perform more operations in a round than can be computed in parallel.

Since precision is an important aspect of our methods, we included precision of other
methods to those methods where the precision could be found or computed. For the error
function, we can see that for small vector sizes, our implemented method outperforms pre-
vious methods for several different precisions, being able to be both faster and more precise
than our previous result [12]. However, if the vector size is larger, then the performance
quickly decreases as precision grows. Thus it is preferable to use this method only for small
vector sizes.

As for the logarithm, we implemented a logarithm function for 32-bit and 64-bit fixed-
point numbers. In the implementation presented in this paper we assumed that the result of
the logarithm operator would be positive. However, it is straightforward to also implement
the absolute value of the negative case using the same method and then execute one
oblivious choice. This would increase the computation time by approximately two times.

Our implemented methods had precisions of 2−15 and 2−31, respectively, due to the
respective radix-point used — for the radix-point used, higher precision was not possible.
We can see that while the method proposed by Aliasgari et al can achieve very high
precision due to the nature of the floating-point data type, our method is faster, and for
larger vector sizes, faster by several orders of magnitude.

8 Conclusions

This paper presented a method for oblivious evaluation of special-format single-variable
functions, including, but not limited to functions that can be represented as finding roots

1 10 100 1000 10000

Catrina, Dragulin,AppDiv2m 128 bits, [4] 3.39

Catrina, Dragulin, Div2m, 128 bits [4] 1.26

Kamm and Willemson, 32 bits,accuracy 2−18 [10] 0.17 1.7 15.3 55.2 66.4

Kamm and Willemson, 64 bits,accuracy 2−18 [10] 0.16 1.5 11.1 29.5 47.2

Krips and Willemson, 32 bits, accuracy 2−13 [12] 0.99 8.22 89.73 400.51 400.51

Krips and Willemson, 64 bits, accuracy 2−26 [12] 0.82 8.08 62.17 130.35 130.35

Current paper, 32 bits, accuracy 2−30 0.34 3.60 21.97 98.13 106.15

Current paper 64 bits, accuracy 2−62 0.24 2.21 10.8 48.1 37.1

Current paper, 32 bits, accuracy 2−16 0.61 8.25 40.8 190.9 212.01

Current paper 64 bits, accuracy 2−32 0.45 4.11 23.31 100.0 67.13
Table 1. Operations per second for different implementation of the inverse function for different input
sizes.

1 10 100 1000 10000

Liedel, 110 bits, accuracy 2−78 [14] 0.204

Kamm and Willemson, 32 bits [10] 0.09 0.85 7 24 32

Kamm and Willemson, 64 bits [10] 0.08 0.76 4.6 9.7 10.4

Krips and Willemson, 32 bits, accuracy 2−17 [12] 0.77 7.55 70.7 439.17 580.81

Krips and Willemson, 64 bits, accuracy 2−34 [12] 0.65 6.32 41.75 78.25 119.99

Current paper, 32 bits, accuracy 2−30 0.30 2.98 19.97 94.13 101.8

Current paper 64 bits, accuracy 2−62 0.21 1.93 9.23 44.79 37.13

Current paper, 32 bits, accuracy 2−16 0.49 5.98 35.2 152.0 202.3

Current paper 64 bits, accuracy 2−32 0.38 3.59 21.2 86.0 79.5
Table 2. Operations per second for different implementation of the square root function for different input
sizes.

of polynomials with secret coefficients. Several important functions belong to this class (e.g.
various power functions and binary logarithm). Our method is easy to implement and rather
flexible as it can be used for various vector sizes and precisions, is designed to fully use the
communication capacities of channels, and it offers good performance/precision ratio and
can effectively be used for both small and large datasets and give maximal precision for
fixed-point data types.

References

1. Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on floating
point numbers. In NDSS, 2013.

2. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast Privacy-Preserving
Computations. In Sushil Jajodia and Javier Lopez, editors, ESORICS’08, volume 5283 of LNCS, pages
192–206. Springer Berlin / Heidelberg, 2008.

3. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance secure multi-party
computation for data mining applications. International Journal of Information Security, 11(6):403–
418, 2012.

1 10 100

Kamm and Willemson, 32 bits [10] 0.1 0.97 8.4

Kamm and Willemson, 64 bits [10] 0.09 0.89 5.8

Krips and Willemson, 32-bit, accuracy 2−13 [12] 0.5 4.41 30.65

Krips and Willemson, 64-bit, accuracy 2−13 [12] 0.46 4.13 21.97

Current paper, 32-bit, accuracy 2−10 0.93 8.49 35.3

Current paper, 64-bit, accuracy 2−10 0.86 7.01 22.36

Current paper, 32-bit, accuracy 2−11 0.92 7.81 26.46

Current paper, 64-bit, accuracy 2−11 0.84 5.93 13.55

Current paper, 32-bit, accuracy 2−12 0.9 5.85 13.26

Current paper, 64-bit, accuracy 2−12 0.81 3.94 6.13

Current paper, 32-bit, accuracy 2−13 0.86 4.88 8.61

Current paper, 64-bit, accuracy 2−13 0.75 2.59 3.75

Current paper, 32-bit, accuracy 2−14 0.8 3.4 5.34

Current paper, 64-bit, accuracy 2−14 0.57 1.19 1.54
Table 3. Operations per second for different implementation of the Gaussian error function for different
input sizes.

1 10 100 1000 10000 100000

Aliasgari, accuracy 2−256 [1] 12.36 12.5 13.3 13.3 13.5

Current paper, 32-bit, accuracy 2−15 2.39 15.43 119.2 549.9 1023.6 1288.9

Current paper, 64-bit, accuracy 2−31 0.90 6.8 37.9 152.5 244.3 275.6
Table 4. Operations per second for different implementation of the logarithm function for different input
sizes.

4. Octavian Catrina and Claudiu Dragulin. Multiparty computation of fixed-point multiplication and
reciprocal. In Database and Expert Systems Application, 2009. DEXA ’09. 20th International Workshop
on, pages 107–111, 2009.

5. Octavian Catrina and Sebastiaan Hoogh. Secure multiparty linear programming using fixed-point
arithmetic. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, Computer Security
– ESORICS 2010, volume 6345 of Lecture Notes in Computer Science, pages 134–150. Springer Berlin
Heidelberg, 2010.

6. Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In Radu Sion,
editor, Financial Cryptography and Data Security, volume 6052 of Lecture Notes in Computer Science,
pages 35–50. Springer Berlin Heidelberg, 2010.

7. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09, pages 169–178, 2009.
8. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In Ken-

neth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer Berlin Heidelberg, 2011.

9. Liina Kamm. Privacy-preserving statistical analysis using secure multi-party computation. PhD thesis,
University of Tartu, 2015.

10. Liina Kamm and Jan Willemson. Secure floating-point arithmetic and private satellite collision analysis.
Cryptology ePrint Archive, Report 2013/850, 2013. http://eprint.iacr.org/.

11. F. Kerschbaum, A. Schroepfer, A. Zilli, R. Pibernik, O. Catrina, S. de Hoogh, B. Schoenmakers,
S. Cimato, and E. Damiani. Secure collaborative supply-chain management. Computer, 44(9):38–43,
2011.

12. Toomas Krips and Jan Willemson. Hybrid Model of Fixed and Floating Point Numbers in Secure
Multiparty Computations. In Proceedings of ISC 2014, volume 8783 of LNCS, pages 179–197. Springer,
2014.

13. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious Database Manipulation.
In ISC ’11, volume 7001 of LNCS, pages 262–277, 2011.

14. Manuel Liedel. Secure distributed computation of the square root and applications. In MarkD. Ryan,
Ben Smyth, and Guilin Wang, editors, Information Security Practice and Experience, volume 7232 of
Lecture Notes in Computer Science, pages 277–288. Springer Berlin Heidelberg, 2012.

15. Y.-C. Liu, Y.-T. Chiang, T. s. Hsu, C.-J. Liau, and D.-W. Wang. Floating point arithmetic protocols
for constructing secure data analysis application.

16. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

