Estonian Voting Verification Mechanism
Revisited Again

Ivo Kubjas', Tiit Pikma', and Jan Willemson??

! Smartmatic-Cybernetica Centre of Excellence for Internet Voting
Ulikooli 2, 51003 Tartu, Estonia
{ivo,tiit}@ivotingcentre.ee

2 Cybernetica AS
Ulikooli 2, 51003 Tartu, Estonia
janwil@cyber.ee
3 Software Technology and Applications Competence Center
Ulikooli 2, 51003 Tartu, Estonia

Abstract. Recently, Mus, Kiraz, Cenk and Sertkaya proposed an im-
provement over the present Estonian Internet voting vote verification
scheme [6,7]. This paper points to the weaknesses and questionable de-
sign choices of the new scheme. We show that the scheme does not fix the
vote privacy issue it claims to. It also introduces a way for a malicious
voting application to manipulate the vote without being detected by the
verification mechanism, hence breaking the cast-as-intended property. As
a solution, we propose modifying the protocol of Mug et al. slightly and
argue for improvement of the security guarantees. However, there is in-
herent drop in usability in the protocol as proposed by Mus et al., and
this issue will also remain in our improved protocol.

1 Introduction

Estonia is one of the pioneers in Internet voting. First feasibility stud-
ies were conducted already in early 2000s, and the first legally binding
country-wide election event with the option of casting the vote over In-
ternet was conducted in 2005. Up to 2015, this mode of voting has been
available on every one of the 8 elections. In 2014 European Parliament
and 2015 Parliamentary elections, more than 30% of all the votes were
cast over Internet [8].

During the period 2005-2011, the basic protocol stayed essentially the
same, mimicking double envelope postal voting. The effect of the inner
envelope was achieved by encrypting the vote with server’s public key, and
the signed outer envelope was replaced by using a national elD signing
device (ID card, Mobile-ID or Digi-ID) [1].

In 2011, several potential attacks were observed against this rather
simple scheme. The most significant one of them was developed by a stu-

dent who implemented proof-of-concept malware that could have either
changed or blocked the vote without the voter noticing it.

To counter such attacks, an individual verification mechanism was
developed for the 2013 elections [5]. The mechanism makes use of an in-
dependent mobile computing device that downloads the vote cryptogram
from the storage server and brute forces it using the encryption random
seed, obtained from the voter’s computer via a QR code. The value of
the vote corresponding to the downloaded cryptogram is then displayed
on the device screen, and the voter has to make the decision about its
match to her intent in her head.

The complete voting and verification protocol is shown in Figure 1.

1. Authentication

2. Candidate list L
3. Sigy(Encs,,,, (cv, 1))

4. Vote reference vr

Fig. 1. Estonian Internet voting and verification protocol

In the figure, ¢, stands for the voter’s choice, r is the random seed
used for encryption, vr is the vote reference used to identify the vote on
the server and s, is the election system’s public key.

A recent report by Mus et al. [6, 7] discusses the Estonian vote verifi-
cation scheme and draws attention to its weak privacy properties. It also
proposes an improvement over the existing system (we will give technical
details of the proposal in Section 2.2). The first objective of this paper is
to dispute the motivation of [6] and show vulnerabilities of the proposed
improvement. Finally, in Section 3 we will also show how a relatively
small modification of the protocol presented in [6] will help to remove
these vulnerabilities.

2 Analysis of the scheme by Mus et al.

2.1 Assumptions and motivation of [6]

Individual vote verification was introduced to Estonian Internet voting
scheme in 2013 to detect potential vote manipulation attacks in the voter’s
computer [1,5]. It was never designed as a privacy measure for a very
simple reason.

Since the verification application needs access to the QR code dis-
played on the screen of the voter’s computer, verification can only happen
in close physical proximity of the voting action.* But if this is the case,
the verifier can anyway observe the vote on the computer screen. For this
reason we disagree that the potential privacy leak from the verification
application makes vote buying attacks easier, as claimed in [6].

It is true that a malicious verification application sending the vote out
of the device would be unintended behaviour. However, the authors of [6]
make several debatable assessments analysing this scenario.

Firstly they claim that “all voter details including the real vote are
displayed by the verification device.” In fact, up to the 2015 parliamentary
elections, the vote has been the only piece of data actually displayed.
Note that following the protocol [5], the verification device only obtains
the vote encrypted with the voting system’s public key. The signature
is being dropped before the cryptogram is sent out for verification from
the server, so the verification device has no idea whose vote it is actually
verifying.

The reason for this design decision was the problem that back in
2011 when the development of the new protocol started, less than half of
the mobile phones used were smartphones. Hence the protocol needed to
support verification device sharing.

However, such an anonymised verification procedure is vulnerable to
attacks where, say, a coalition of malicious voting applications manipu-
lates a vote and submits a vote cryptogram from another voter for verifi-
cation. This way they can match the voter verification expectation, even
though the actual vote to be counted has been changed.

To counter such attacks, the protocol to be used in 2017 for Estonian
local municipal elections will be changed [2]. Among other modifications,
the verification app will get access to the vote signature and the identity
of the voter will be displayed on the screen of the verification device. Thus

4 Of course we assume here that the voter’s computer is honest in the sense that it
does not send the QR code anywhere else. But if it would be willing to do so in
order to break the voter’s privacy, it could already send away the vote itself.

the privacy issue pointed out by Mus et al. has not been as problematic
previuosly, but starting from 2017 its importance will rise.

Second, the authors of [6] argue that verification privacy leaks may
be aggregated to obtain the partial results of the election before it has
concluded. We feel that this scenario is too far-fetched. First, only about
4% of the Internet voters actually verify their votes [3]. Also, nothing
is known about the preference biases the verifiers may have, so the par-
tial results obtained would be rather low-quality. There are much easier,
better-quality and completely legal methods of obtaining the result (like
polls). Hence this part of the motivation is not very convincing.

Third, getting the user to accept a malicious verification application
from the app store is not as trivial as the report [6] assumes. For exam-
ple Google Play store displays various reliability information about the
application like the number it has been installed and the average mark
given by the users. When the voter sees several competing applications,
a smaller number of installations should already give the first hint that
this is not the officially recommended verification app.

At the time of this writing (July 2017), the official application “Val-
imised”® is the only one under that or similar name, with more than
10,000 installations and an average score of about 3.6 points out of 5.
If the attacker wants to roll out his own version, he would need to beat
those numbers first. Occurrence of an alternative verification app is com-
pletely acceptable per se, but it will be widely visible. App stores can and
are being constantly monitored, and any independent verification apps
would undergo an investigation. In case malicious behaviour is detected,
the malicious applications can be requested to be removed from the app
store.

However, it is true that at this point the protocol relies on organisa-
tional measures, not all of which (like removing a malicious app from the
official app store) are under control of the election management body.
Organisational aspects can probably never be fully removed from the
security assumptions of elections, but decreasing the number of such as-
sumptions is definitely a desirable goal.

All in all, we agree that privacy enhancement of the Estonian vote
verification mechanism would be desirable. Hence the initiative by Mus
et al. is welcome, but their approach needs further improvements that we
will discuss in this paper.

5 “Valimised” means “Elections” in Estonian.

2.2 Description of the scheme

The scheme proposed in [6] extends the Estonian vote verification protocol
by adding another parameter ¢ to the scheme. The role of ¢ is to serve as
a random, voter-picked verification code that will be encrypted using the
hash of the vote cryptogram h = H(Encs,,,(cy,7)) as a symmetric key
(see Figure 2).

1. Authentication

2. Candidate list L = {c1,...,cm}
3. Sigy(Encs,,, (cv, 7)), q

4. Vote reference vr

Fig. 2. Proposed update to the Estonian protocol

The verification mechanism will also be altered accordingly. In the
original Estonian verification scheme, the verification application goes
through the candidate list and tries to re-create vote cryptogram, using
the random seed obtained from the voting application via a QR code. In
the modification proposed by [6], the candidate list is also traversed in a
similar manner, but the hashes of all the vote cryptogram candidates are
used as symmetric keys to try to decrypt q.

The trick is that even an incorrect symmetric decryption key leads to
some sort of a decrypted value ¢;, so that the task of the verifier becomes
recognizing the correct one in the list of decrypted values qi,qo, ..., ¢m
(where m is the number of election candidates) displayed to her.

More formally, let us have the candidate list L = {c1,¢2,...,¢m}-
The verification application computes h; = H(Encs,,,(ci,r)) for i =
1,2,...,m and displays the list {q1,q2,...,¢n} where

¢i = SymDecyp,(SymEncy(q)) (i=1,2,...,m). (1)

The voter accepts verification if ¢ = g;, where ¢; was the candidate of her
choice.

2.3 Analysis of the scheme — privacy and usability

Even though clever conceptually, the scheme of Mus et al. fails in usability,
and this will unfortunately lead to considerable weakening of the protocol.

First and foremost, humans are notoriously poor random number gen-
erators [9]. This is also acknowledged by the authors of the scheme, so
they propose not to require the user to generate the entire value of g, but
only 32 rightmost bits denoted as gyight. The remaining bits gery would
be generated by the voting application, so that ¢ = gieft || Gright- In the
authors’ vision, the 32 bits could be asked from the voter in the form of
4 characters, and these characters would later also be displayed on the
screen of the verification device.

Such an approach would assume that every possible byte has a cor-
responding keyboard character. However, this is clearly not true. Capital
and lower-case letters, numbers and more common punctuation marks
altogether give about 70-75 symbols, which amounts to slightly over 6
bits of entropy. Hence, four-letter human entered codes can in practice
have no more than 25 bits worth of randomness.

Achieving this theoretical maximum assumes that humans would se-
lect every character for every position equally likely and independently.
This is clearly not the case, and a relatively small set of strings like “1234”
“aaaa” or “gwer” may be expected to occur much more frequently than
others. This observation gives the first simple attack against the proposed
scheme — the attacker can observe the output of the verification applica-
tion and look for some of these frequent codes.

Even if the voter takes care and selects a rather random-looking 4-
character pattern, the attacker still has a remarkable edge. Namely, when
the 32-bit parts of the decrypted values are converted into characters,
some of these characters may fall out of the ~75 character set. In fact,
several of the 256 possible byte values do not have a printable character
assigned to them at all. Spotting such a code, the adversary can disregard
that one immediately.

To give a rough quantification of the attacker’s success probability,
assume that the set C of characters used by the voter to input a code
consists of 75 elements. When in the equation (1) we have h # h;, the
resulting values ¢; (and their 4-byte code parts ¢; right) are essentially ran-
dom (assuming the underlying symmetric encryption-decryption primi-
tive behaves as a pseudorandom permutation).

This means that the probability that one single character of an incor-
rect ¢;right falls outside of the set C is % =~ 0.707. The probability
that at least one of the four characters falls outside of this set is

1_(1_256—75

4
~ 0.993
256)

which is very-very high. The attacker will have an excellent chance of
spotting the correct code, since with very high probability there are only
very few candidates g;right that have all the characters belonging to the
set C. This observation completely breaks the privacy claims of [6].

Another usability problem is the need to display the list of all candi-
date values of ggnt on the screen of the verification device. The list has
the same number of elements as there are candidates in a given district.
In case of Estonian elections, this number varies between tens and hun-
dreds, with the most extreme cases reaching over 400. It is unrealistic to
expect the voter to scroll through this amount of unintuitive values on a
small screen.

Even worse — when the user really scrolls through the list until her
candidate of choice has been found, we obtain a side channel attack. A
malicious verification device may observe the moment when the user stops
scrolling, making an educated guess that the correct candidate number
must have then been displayed on the screen. This attack does not lead
to full disclosure, but may still reveal the voter’s party preference when
the candidates of one party are listed sequentially (as they are in the
Estonian case).

2.4 Vote manipulation attack

The core motivation of introducing an individual verifiability mechanism
is to detect vote manipulation attacks by a malicious voting application.
In this Section we show that with the updates proposed by Mus et al.,
vote manipulation attacks actually become very easy to implement.

Consider an attack model where the attacker wants to increase the
number of votes for a particular candidate ¢; by manipulating the vot-
ing application or its operational environment. The key to circumventing
detection by the verification mechanism is to observe that the voting ap-
plication has a lot of freedom when choosing two random values — r for
randomizing the encryption and ges; for padding the voter-input code.
By choosing these values specifically (even the freedom of choosing r is
sufficient), a malicious voting application can make the vote it submitted
for ¢; to verify as a vote for almost any other candidate c;.

To implement the attack, the attacker needs a pre-computation phase.
During this phase, the attacker fixes his preferred choice ¢; and the en-
cryption randomness 7* € R, and computes h = H(Encs,,,(cj,7*)). The
attacker can also set his own ¢ arbitrarily, say, ¢ = 00...0.

For every possible pair of voter choice ¢; € L and gyight € {0,1,. .., 232_
1}, the attacker tries to find a suitable encryption randomness Ti grign UL
would give the last 32 bits of ¢’ being equal to gyight, where

h = H(Encs,,,(Ci; Tigug,)) and q = SymDecy (SymEncy,(00...0)) .
(2)
If the attacker succeeds in finding such a r;4,,., then later during
the voting phase he casts his vote to the server as Encs,,(cj,7*), but
sends r; g, to the verification application. This random seed will cause
the voter picked gyight to occur next to the voter’s choice ¢;. The leftmost
non—voter chosen bits of ¢’ would not match, but they are not important,
since they are not shown to the voter anyway.
The pre-computed values of encryption randomness for all candidates
can be tabulated as in Table 1.

Table 1. Pre-computation dictionary

Gright _|choice ¢i| 7Ti,q,p
0 c1 71,0
2%2 1 c1 71,2321
0 c2 72,0

32
27 —1 c2 Tg,932_1
0 Cm T'm,0
32
27 —1 Cm, T'm,232 1

Note that only the last column of this table needs to be stored. Hence
the size of required storage is 23?mlog, |R|, where log, |R| is the number
of bits required for representing elements in the randomness space R.
In practice, the length of the random value is not more than 2048 bits.
This means that the size of the database is 1024m GB. By restricting the

randomness space (for example, by fixing some bits of the random value),
we can decrease the table size.

Another option of limiting the storage requirement is referring to the
observations described in Section 2.3. Human users will not be able to
make use of the whole 232 element code space, but at most 22°. This
will bring the storage requirement down 27 times to only 8m GB. If the
attacker is willing to settle only with the most common codes, the table
will become really small.

Even without reducing the table size, storing it is feasible as hard
drives of several TB are readily available. A malicious voting application
only needs one online query per vote to this database, hence the attacker
can for example set the query service up in a cloud environment.

There are several possible strategies for filling Table 1. We suggest
starting from the choice and randomness columns (selecting the random-
ness truly randomly) and computing the corresponding gyight values. In
the latter case the computation complexity of the pre-computation phase
is 232m times one asymmetric encryption, one hash function application
and one symmetric decryption (see equations (2)). This amount of com-
putation is feasible even for an ordinary office PC.

This strategy is not guaranteed to 100% succeed, since we may hit
the same value of gyignt for different inputs 7; 4,,.. To estimate the success
probability, consider generating the table for a fixed election candidate
¢;. Let us generate N = 232 random values and use them to compute the
corresponding values gright using the equations (2).

The probability of one specific gright not being hit in one attempt is
%. Consequently, the probability of not hitting it in NV attempts is

N-1\N 1
(N) T
Hence, the expected probability of hitting one specific value at least once
is1—1~0.63.
By linearity of expectation, we may conclude that using 23?m com-
putation rounds, about 63% of the whole table will be filled.
This percentage can be increased allowing more time for computa-

tions. For example, if we would make twice as many experiments, we
would get the expected success probability

N —1\2V 1
1— (== ~1—— ~0.86.
(N) e?

Allowing four times more computation time would give us already more
than 98% of the values for gyighe filled.

Hence we obtain a vote manipulation attack by a malicious voting
application with very high success rate, essentially invalidating Theorem
2 of [6].

Note that in order to implement this attack, it is not necessary to
manipulate the actual voting application. It is sufficient for the attacker
to be able to only change the values of the vote, random seed and ¢. He
can achieve this e.g. by manipulating suitable bytes in voter computer’s
memory, similar to the vote invalidation attack from 2015 Estonian Par-
liamentary elections [4]. The random value transferred from the voting
application to the verification application can be manipulated by over-
laying the QR code that carries it on the voter computer’s screen similar
to the Student’s Attack of 2011 [1].

3 Improving the protocol

Analyzing the attacks presented above we see that the major vulnerabil-
ities of the scheme presented in [6] were enabled by the fact that the
voter herself had to choose ¢. This allowed both privacy leakage due to
format guessing of gyigh: and fooling the verification application via care-
fully crafting the value of q.

Fixing these flaws starts from the observation that it is actually not
necessary for the voter to select ¢ (or grignt). We propose a solution where g
is generated by the server instead and later sent to the voter application to
display. Note that the cryptogram SymFEncp(q) can be computed by the
server, too. Hence the overall change required to the high-level description
given in Section 2.2 is relatively small. On Figure 2, ¢ will be dropped
from message 3, and will be sent from the server to the voter application
in a later pass.

Selection of the exact message pass for sending ¢ is a question of
design choice, subject to trade-offs. The first obvious candidate is message
number 4 of Figure 2, where ¢ can be added to the vote reference vr.

The next choice one has to make is when to display the code to the
voter. This choice is potentially privacy critical. Displaying ¢ on the voter
screen next to the QR code enables a malicious verification application
to read it. Having access to ¢ will in turn allow the verification app to
reveal the voter’s choice during the verification process.

Hence the code ¢ has to be displayed to the user after the QR code.
The question now becomes at which point this should be done. From
the usability point of view, displaying ¢ should happen right after the
voter has scanned the QR code. However, the problem with the current

protocol is that the voter application is not informed about the moment
of scanning. Thus a new message needs to be added to the protocol. Once
the need for a new message is already established, it is natural to define
q as its content.

This will also give rise to a cleaner cryptographic protocol design
where a party (voting application) does not have access to a value (q)
before it absolutely needs to. We will later see in Section 3.1 that such a
design choice is crucial in preventing the vote manipulation attack.

Finally we observe that the voting application does not need access
to the whole g, but only the part grgh: that will be displayed to the voter.
Hence, sending over only grigh: Will be sufficient.

The resulting protocol is depicted in Figure 3.

1. Authentication
2. Candidate list L = {c1,...,cm}
3. Sigy(Encs,,,, (cv, 7))

4. Vote reference vr

8. qright

Fig. 3. Improved update to the Estonian protocol

3.1 Analysis of the improved protocol

In this Section we will analyse to which extent does the proposed update
help to mitigate the vulnerabilities present in [6].

The vote manipulation attack described in Section 2.4 assumes access
to ¢ before selecting the encryption randomness . On the other hand, in
the updated protocol, the voter application has to commit to r before it
sees Gright- Hence the best it can do is to guess gight. Even if gyight is only
32 bits long, the probability of success is only 2732, assuming the choice
of ¢ is truly random.

Of course this assumption may be violated if the server behaves dis-
honestly. But note that even in this case we obtain a higher level of se-
curity as compared to [6], since now coordinated malicious collaboration
between the voter application and the server is required to manipulate
the vote in a manner undetected by verification.

Non-random choice of ¢ can also be used to violate privacy of the
vote in case of malicious collaboration between the server and the verifi-
cation application. If the verification app can predict the value of gight,
it can trivially determine the voter preference by looking at the list of
verification code candidates ¢, ..., ¢m,. This attack would be equivalent
to leaking the value of ¢ to the verification app, say, on step 7 of Figure 3.
Again, such an attack would only work if the server and the verification
application would collaborate maliciously.

When the server generates g honestly randomly, also the guessing at-
tack presented in Section 2.3 can be prevented. To achieve this, the true
value of gright must be (visually) indistinguishable from all the candidates
obtained by decryption. This is easy to implement for machine-generated
random values. The only user interface aspect to solve is the visual repre-
sentation of g ght and its candidates. There are standard approaches for
this problem, including hexadecimal and base-64 representations, allow-
ing to encode 4 and 6 per character, respectively. Since 6 bits allows for
more entropy, we suggest using the base-64-like encoding.

As the final security observation we note that sending gigh instead of
q on step 8 of Figure 3 is in fact critical. If a malicious voting application
would have access to the entire ¢, it would know all the necessary values
to compute ¢; (i = 1,...,m). This would allow for a vote manipulation
attack where the malicious voting app casts a vote for a different candi-
date, but still shows the verification code g; that the voter sees next to
her own preference on the verification device.

A malicious voting app may attempt accessing SymFEncy(q) (which
would also be sufficient to restore all the values ¢;) by faking a verification
request. This problem should also be mitigated, possibly by using out-of-
protocol measures like limiting the number of verification attempts, only
allowing verifications from a different IP address compared to voting, etc.

Since our update does not change the verification experience as com-
pared to [6], usability problems of scrolling through a long list of code
candidates still remains. Consequently, the side channel determined by
the moment of stopping the scrolling and leading to the hypothesis that
the correct candidate number must be displayed at that moment still re-
mains. These problems may probably be eased a little by packing as many

code candidates to one screen as possible, say, in form of a 2-dimensional
table. This leads to another trade-off between usability and privacy guar-
antees of the solution.

4 Conclusions and further work

Even though vote privacy was not the primary design goal of the Estonian
vote verification application, it would of course be nice to have extra
privacy protection capabilities. Unfortunately, the proposal made in [6]
is even at the voter’s best effort still completely vulnerable to a guessing
attack by just looking at the characters used by the code candidates.

Also, we have demonstrated a vote manipulation attack that can be
implemented with reasonable amount of pre-computation by an attacker
who manages to compromise the voting application or voter’s computer.
As a result, the verification application does not fulfil its purpose of en-
suring correct operation of the voting application.

As a possible solution, we presented an improvement to the protocol
where the verification code generation is performed by the server rather
than the voter. We have shown that the resulting protocol has stronger se-
curity properties, requiring at least two parties to collaborate maliciously
in order to break either the verification or privacy properties.

The major drawback in both [6] and the present proposal is the drop
in usability. Unfortunately, this will lead to an additional side channel
attack against vote privacy in the course of verification. The question of
the right balance between usability and privacy remains the subject of
future research.

Acknowledgements

The research leading to these results has received funding from the Euro-
pean Regional Development Fund through Estonian Centre of Excellence
in ICT Research (EXCITE) and the Estonian Research Council under
Institutional Research Grant IUT27-1. The authors are also grateful to
Arnis Parsovs for pointing out a flaw in an earlier version of the improved
protocol.

References
1. Heiberg, S., Laud, P., Willemson, J.: The application of i-voting for Estonian par-

liamentary elections of 2011. In: International Conference on E-Voting and Identity.
LNCS, vol. 7187, pp. 208-223. Springer (2011)

. Heiberg, S., Martens, T., Vinkel, P., Willemson, J.: Improving the verifiability of the
Estonian Internet Voting scheme. In: The International Conference on Electronic
Voting E-Vote-ID 2016. LNCS, vol. 10141, pp. 92-107. Springer (2016)

. Heiberg, S., Parsovs, A., Willemson, J.: Log Analysis of Estonian Internet Voting
2013-2014. In: Haenni, R., Koenig, R.E., Wikstrom, D. (eds.) E-Voting and Identity:
5th International Conference, VotelD 2015, Bern, Switzerland, September 2-4, 2015,
Proceedings. LNCS, vol. 9269, pp. 19-34. Springer International Publishing (2015)
. Heiberg, S., Parsovs, A., Willemson, J.: Log Analysis of Estonian Internet Voting
2013-2015. Cryptology ePrint Archive, Report 2015/1211 (2015), http://eprint.
iacr.org/2015/1211

. Heiberg, S., Willemson, J.: Verifiable Internet Voting in Estonia. In: Electronic
Voting: Verifying the Vote (EVOTE), 2014 6th International Conference on. pp.
1-8. IEEE (2014)

. Mus, K., Kiraz, M.S., Cenk, M., Sertkaya, I.: Estonian Voting Verication Mechanism
Revisited. Cryptology ePrint Archive, Report 2016/1125 (2016), http://eprint.
iacr.org/2016/1125

. Mus, K., Kiraz, M.S., Cenk, M., Sertkaya, I.: Estonian Voting Verication Mechanism
Revisited. arXiv:1612.00668v1 (2016), https://arxiv.org/abs/1612.00668v2

. Vinkel, P., Krimmer, R.: The How and Why to Internet Voting: An Attempt to
Explain E-Stonia. In: The International Conference on Electronic Voting E-Vote-
ID 2016. LNCS, vol. 10141, pp. 178-191. Springer (2016)

. Wagenaar, W.A.: Generation of random sequences by human subjects: A critical
survey of literature. Psychological Bulletin 77(1), 65 (1972)

