
Personal Security Environment on Palm PDA

Margus Freudenthal
Cybernetica

Akadeemia tee 21, Tallinn, Estonia
margus@cyber.ee

Sven Heiberg
Cybernetica Tartu Lab
Lai 36, Tartu, Estonia
sven@cyber.ee

Jan Willemson
Cybernetica Tartu Lab
Lai 36, Tartu, Estonia
jan@cyber.ee

Abstract

Digital signature schemes are based on the assumption
that the signing key is kept in secret. Ensuring that this as-
sumption holds is one of the most crucial problems for all
current digital signature applications. This paper describes
the solution developed and prototyped by the authors – us-
ing a mobile computing device with a smart card reader
for creating digital signatures. We give an overview of sev-
eral common settings for digital signature applications and
problems they have, describing also several frameworks for
mobile security applications. A discussion about the choice
of devices, design issues, concrete solutions and their secu-
rity concerns follows. We conclude that although nothing
can prevent careless private key handling, careful manage-
ment is easier and more convenient when using our solu-
tion.

1 Introduction

1.1 Digital Signatures

Rapid developments in the area of e-commerce have
forced companies and governments to think about using a
digital analogue to physical signatures in everyday busi-
ness. The most widespread method for giving digital signa-
tures uses public key cryptography introduced by Diffie and
Hellman [15]. Every user generates a key pair(PK;SK)
consisting of a public keyPK and a private keySK. The
public key is made available for everybody; whereas the pri-
vate key must be stored in such a way that no one except for
the key pair owner is able to access it.

When singing the documentX , the signer uses anSK
to produce the signature� = SigSK(X). When the verifier
obtains the pair(X; �), the public keyPK must provide the
means for establishing, whether� comprises a valid signa-
ture toX calculated with the private keySK.

There are several essential points where the physical and
digital signatures differ. The physical signature is directly

connected to the signer (via his physiological properties,
like hand muscles etc), but to the document only through
a common medium.

The digital signature, on the other hand, is most closely
connected to the document. The connection between the
signer and the signature is indirect, relying on the assump-
tion that only the signer has the private key and is hence
able to produce signatures. The connection between a pub-
lic key and the real person is established via one of several
proposed Public Key Infrastructure paradigms (PGP [22],
PKIX [3], SPKI [4] etc.)

An usual, hand-written signature is something belonging
essentially to us; it cannot be stolen from us. (It can be
forged, but usually the forgery can be detected by experts.)
Thus our signature is bound to us in a secure way. This
is not necessarily the case with digital signatures, which are
just a bit strings on some medium. Everybody who can gain
access to the person’s private key can sign documents on his
behalf. This means that one must protect the private key all
the time in order to be sure that no one else has access to it.

In this paper we focus on an approach for making digital
signatures secure. Our goal is to produce a ”What You See
Is What You Sign” environment. The problems of keeping
the private key secret are discussed also.

1.2 Attacks on Signing Environments

Most of the current digital signature applications are
based on the software-only paradigm. This means that all
the computations are carried out in the personal computer’s
software. The user’s private key is stored on the computer’s
hard disk and encrypted using a pass-phrase or secured by
other means. There are several problems associated with
this scheme. First, it is quite hard to keep the user’s private
key secret at all times since today’s desktop operating sys-
tems are not very secure. Every week new security holes
are discovered that allow reading data from computers con-
nected to the Internet. Viruses and Trojan horse programs
might be installed on computers to send secret information
to an attacker via E-mail or other means.



Secondly, even if a computer has a secure operating sys-
tem and is not connected to any network, there are issues
concerning physical security. In a normal office environ-
ment, the system administrator or even a janitor can wait
until the employee has left the office, open up his computer,
take out the hard disk and read it with the help of another
computer, bypassing all the security measures. Article [20]
contains more information about extracting keys from raw
disk image.

Introducing physical security in office environment
could be quite costly, e.g. one would have to install a safe
for every workstation. One cannot store two computers in
one safe because every user should be the only person to
access his computer. For the same reason it should be pro-
hibited for the system administrator to touch any worksta-
tion or for multiple persons to share some resource (e.g. an
application server).

These measures would apply to an environment with
high security requirements, affluent resources and consid-
erable risk of physical attacks. Otherwise, if the resources
necessary to purchase a safe for every computer are unavail-
able, the risks must be reduced by some other means.

As we saw above, if the security level of the operating
system or the physical environment is low, it is unsafe to
store keys in computer, especially when they can be used
to sign documents that have legal value. The problem is
partially solved by smart cards. Smart cards are single-chip
computers that have non-volatile memory and are able to
perform a limited number of well-defined operations. User
can store his key on a smart card that usually has some phys-
ical security features. Signing process also takes place in-
side the smart card, which means that the user’s key is never
seen outside the card. Smart card is usually protected by
password and can easily be carried with user at all times.

Previously it was mentioned that Trojan horses and
viruses can be installed on the user’s computer to steal the
keys. Besides stealing sensitive information, they can also
be used to alter some part of the system’s behavior. This
enables the following attack: instead of stealing the user’s
private key, the hacker can modify the signing software so
that it makes changes to a document before it is signed. As a
result the user sees one document, but signs something else.
On some occasions this attack is not discovered before the
signed fake document is used against the user.

We note that smart cards do not help here because they
blindly sign any data that is sent to them and the user has
no way of verifying that this data is what he wanted to be
signed. Furthermore, since this kind of attack is not ex-
cluded, users can falsely repudiate their signatures by say-
ing that since they do not have total control over their sign-
ing computer, some documents could have been forged by
someone else. With this setting, it is impossible to have dig-
ital signatures to be legally binding. Therefore, even when

using smart cards, we must still apply previously described
physical security measures for computers that are used for
signing.

This setting is clearly not feasible in a normal business
environment. However, there is no need to secure a normal
office PC when the user only has to have a complete con-
trol over the device that is used for signing documents. In
current days, various mobile devices have quite reasonable
computing abilities and displays. In this article we present
our solution to secure signing problem: a personal security
environment that is based on a mobile computing device.

2 Related Work

The first mention of mobile signing device we are aware
of comes from Donald Davies [14]. He noted that run-
ning signing software on a normal workstation is insecure
and proposed a special-purpose device for signing financial
transactions. This device would look like a calculator and
would let the user to enter the account numbers, product
codes and amounts applicable to a transaction. From these
data it would generate a transaction order and sign it.

David Chaum builds a framework for achieving privacy
and untraceability by using card computers in digital trans-
actions [13]. The card computer was meant to be a mo-
bile hand-held computing device capable of accepting smart
cards and used to connect different digital identities a per-
son might have for different purposes.

European Community’s ESPRIT program includes a
project [10], which has the goal of implementing off-line
digital payment scheme using two kinds of devices: wallets
and guardians. Wallets are devices that contain a screen and
some sort of keyboard, guardians are smart cards that store
financial information. In this scheme, the guardian protects
the interests of the money issuer while the wallet protects
the interests of the user: payment information is commu-
nicated to the guardian through the wallet, which asks the
user to confirm that this information is correct. Since the
wallet is under the user’s control, it prevents fake terminal
attacks where the payment terminal shows one amount on
screen, but deducts a completely different amount from the
user’s card.

Arnd Weber notes in [21] that in current electronic com-
merce schemes customer bears all the liability for every-
thing that is done using his private key. He argues that the
user should be liable only if he was using a secure signing
system, otherwise his signature should bear no legal value
because it could be easily faked. He also proposes a special-
purpose ”electronic wallet” that would contain a screen and
a keypad and could be used for money transfers.

Gobioff et al [17] analyze the problem that smart cards
do not have any means of direct communication with the
users. They propose schemes to substitute secure input with

2



secure output and vice versa. However, their schemes are
not very applicable for practical use since they require the
user to perform some encryption in his head.

Balfanz and Felten [9] observe that normal personal
computers should not be trusted to perform cryptographic
operations. They implement PKCS#11 [6] compatible li-
brary on PC that performs cryptographic operations on
Palm PDA. As an added feature, they use the Palm to enter
the PIN code and display the decrypted text so that sensitive
information never leaves PDA. Despite this, their solution
is still not secure because the document is displayed and
hashed on an insecure PC. The PDA acts only as a smart
card with a secure keyboard.

In their list of risks concerning public key infrastruc-
tures, Ellison and Schneier [16] note that PKI assumes that
the user is responsible for everything that is performed us-
ing that key, even when this key is not kept very securely.
They also point out that the verifying computer must be as
secure as the signing computer or else the whole system
breaks down.

In their article [11] Boneh and Daswani describe per-
sonal security environment built on Palm PDA. They use
this PSE as an electronic wallet that is capable of producing
digital signatures as part of their wallet protocol.

3 Our Solution

3.1 Choice of Platform

When creating a mobile signing device, there are sev-
eral important design decisions to make. There is a choice
between mono-functional and multi-functional devices. A
mono-functional device can be made more secure. Firstly,
it can be designed from scratch to be physically tamper-
resistant. Secondly, we have only one program running on
it and this program interacts with the untrusted outer world
through a clearly defined application-level protocol, which
allows the user to transfer only signed and unsigned docu-
ments. Signing key can be kept in a well-protected part of
the memory.

On the other hand, all this device can do is to sign doc-
uments. Lots of people already have mobile phones and
personal digital assistants (PDAs) and they do not want to
carry around yet another device just for signing (except for
high-end users who often sign documents with significant
monetary value). Most users would want to have signing
functionality integrated into their mobile phone or PDA in-
stead of having to pay extra money for specialized signing
device. It is sure that a mono-functional device can be made
more secure, but in the authors’ opinion the efforts to create
such a device would not pay off on the today’s market. So
we chose the multi-functional signing device paradigm for

our prototype because it is more user-friendly and easier to
implement.

Two most obvious devices that can also incorporate sign-
ing function are a mobile phone and a PDA. Both have
adequate screens for previewing documents and input de-
vices to enter passwords for unlocking signing keys. Mobile
phones have the advantage of a built-in smart card reader
and they can also be used to transfer signed documents us-
ing SMS or WAP protocol. On the other hand, PDAs have
larger screens and better input facilities enabling the users
to create documents on the signing device itself. In addi-
tion, almost all the PDAs let the users upload their own
software and have developer tools and programming infor-
mation readily available, whereas the mobile phones have
their software hardwired into the memory.

We chose Palm PDA [1] as our development platform
mainly for following reasons:� It has the choice of several development tools and its

operating system documentation is freely available;� It has large screen (related to its size). It is also one of
the smallest PDAs.� It is one of the most popular PDAs because of its mod-
erate price and high usability. Its low price also means
that user can use his PDA only for signing, thus gain-
ing the increased security of a monofunctional device.

3.2 Design Issues

Our prototype personal security environment for signing
electronic documents consists of a Palm III PDA, a smart
card reader and a smart card. In the following section some
technical details are considered in more depth. The choice
of Palm leads us to a very natural question – do we really
need something additional to our PDA? It would be very
convenient to do all the cryptographic operations in Palm
and thus reduce the cost and increase the usability of the
overall system. There are several problems though which
have lead us to the smart cards.

The Palm is not a suitable device for some cryptographic
primitives. The RSA 512 bit key generation takes approx-
imately 4 minutes on its 16MHz Motorola 68000 proces-
sor. Signing with this key requires about 7 seconds. If some
well-formed public exponent such as 3 is used, then the ver-
ification procedure will be relatively fast (1 second). The is-
sues are much worse with the 1024 bit RSA where the key
generation takes about 30 minutes.

This may seem as a hindering factor because even longer
keys (2048 bits according to [18]) are recommended for to-
day’s applications. However, these recommendations as-
sume that the signing key must be secure for the lifetime
of the signature (could be 20 years for a long-term lease

3



contract) and thus at least 512 bits long to gain any secu-
rity at all. It is possible to improve the situation by using
state of the art time-stamping methods [12]. In this case
our key needs to be secure only until the time certificate is
valid. Since cracking the 512-bit key still requires a ma-
jor computing effort, it can be considered reasonably secure
for that time period. Still, we did not choose the way of
time-stamping as it requires a whole new infrastructure not
present as a standard today.

There is no crypto-API in PalmOS. Starting with the
PalmOS 3.1 there are some cryptographic primitives im-
plemented in PalmOS API (DES, MD4, MD5), but those
functions are not suitable for our application. Most of the
security software vendors for the Palm have implemented
cryptographic primitives on their own. Still, they like to use
symmetric primitives, because of the Palm’s weak process-
ing power. For purposes of digital signatures asymmetric
primitives are essential to be implemented.

There is a version of SSLeay 0.8.1 ported to PalmOS
which implements a wide range of cryptographic primitives
starting from hash functions (SHA1, MD5) and symmet-
ric ciphers (DES, IDEA) to asymmetric crypto-algorithms
such as RSA. Unfortunately this library is no longer be-
ing supported (although SSLeay has found its successor
in OpenSSL). During the development we tried to port
OpenSSL to PalmOS, but had to stop because of the restric-
tions of the Palm. The main problem was that OpenSSL
discontinued support for 16-bit systems. Also, some spe-
cial features of Palm development tools made the porting of
OpenSSL quite a tedious task. The Metrowerks CodeWar-
rior did not have shared library support suitable for us, GNU
tools had several bugs. The interested reader is referred to
[2] for further information about developing software for
Palm platform using GNU tools.

PalmOS does not have memory protection. Every part
of the memory can be read by every process. This is suffi-
cient enough to steal the private keys kept in the Palm. One
could write a malicious program which would just send the
signing application’s database to the PC during data trans-
mission between the Palm and the desktop computer.

Implementation problems together with security reasons
forced us to choose smart cards as cryptographic devices
for our system. We have implemented a library compatible
with the PKCS#11 standard. Currently we support message
digesting, signing and verification with smart cards.

3.3 PKCS #11 library

Our PKCS#11 library currently has support for Gem-
plus, Setec and Schlumberger smart cards .

The hardware token needs a smart card reader to be at-
tached to the Palm. We created the reader as part of our
project. It connects to the Palm’s serial port. Since the user

usually needs to transfer documents to and from his Palm
before and after signing, we have made our reader a pass-
through device so that there is no need to take the Palm
out of the reader for transferring files. The only restriction
is that when the card is in the reader, Palm communicates
exclusively with the smart card and the pass-through con-
nection is disabled.

Currently there are no commercial products that enable
Palm programmers to make use of smart cards. Our solu-
tion opens a whole new area of applications for the Palm
platform. We have already described the secure signing en-
vironment implemented using this platform. The smart card
reader with Palm is a good platform for other applications
as well. One possible example is a police officer using our
terminal to check one’s electronic ID-card.

3.4 Signing Application

We have implemented a sample application for our li-
brary, which is able to sign records of PalmOS Memo-
Pad application. Our software accesses the MemoPad’s
database and gives the user the ability to view the docu-
ments kept there. If the user has made a request for signing
a currently active document, then the PIN for smart card is
required. If the PIN is entered correctly the document is sent
to the token for hashing, otherwise the access to the token
is denied. After the hashing is complete, the hash value will
be signed using the private key of the current user. The sig-
nature will be attached to the document and the signed doc-
ument is kept in proprietary format.1 We include signers’
public key in the signature and this can be used to check the
validity of the given signature. There is an easily portable
application written in GNU-C that can be used to verify the
signed documents on the PC.

4 Security Concerns

First of all, it should be noted that having a secure envi-
ronment for signing is not enough. A verification of signa-
tures must also take place in a secure environment. Other-
wise, instead of trying to attack a highly secure system, the
attacker can just modify the software that does the verifica-
tion to display results that are favorable to him.

Although our solution is considerably more secure than a
conventional PC-based signing, there are still some security
concerns if we analyze our system from a conservative point
of view. First of all, it is necessary for the user to carry his
PDA with him all the time. If he leaves it out of sight for a
couple of moments, there is a chance that somebody might

1Currently our software is for demonstration purposes only.Our aim
was to create a PKCS#11 library and show its usability by building a
lightweight application. See also the note about PKCS#7 signatures in
the section 5.

4



have modified his signing program so that it signs false doc-
uments. Furthermore, a PDA’s hardware may be modified
so that false documents are signed even when signing soft-
ware is compiled from clean, verified sources and installed
from a trusted PC. For this reason, one must be careful when
acquiring the signing device. Especially accepting a PDA
with preinstalled software from a system administrator is
the source of potential problems. Ideally, each employee
should buy his device directly from a shop where he can
pick one at random from a large crate full of identical PDA-
s. Of course, one must still trust the manufacturer, but the
risk of getting a PDA modified for a particular user is highly
reduced.

The physical security of the smart card reader must be
considered as well as it can be exchanged for modified
reader too. Although encryption can be used to secure the
connection between the smart card and the PDA, there are
still problems with key distribution, because current smart
cards do not support any key exchange protocols.

Additionally, it must be noted that the user should be
suspicious about his smart card, too. Although smart card
is a reasonably safe place to store keys, there is no reason
to assume that the card that you are about to use for digital
signature is your own.

Imagine the following attack: you will go to sauna and
leave your clothes in a locker. The attacker opens your
locker and replaces your card with fake one that looks ex-
actly like yours. The next time you start signing some doc-
ument, the fake card captures your PIN code and sends it to
the attacker. The attacker now has both your card and your
PIN and can start signing documents on your behalf.

To fight this attack, you can let your card create a key
pair and store the public key in your computer. You can
even get a certificate on that key from some certification
authority so that you won’t have to store it very securely.
Then you can verify the authenticity of your card by letting
it encrypt random nonce. If you can verify the result us-
ing card’s public key, you can safely send your PIN to card.
Some cards like Cyberflex Access and Cryptoflex even have
special commands ”Internal authenticate” and ”External au-
thenticate” that are used respectively for authenticatingcard
to terminal and authenticating terminal to card. The second
command is dualistic to the first one: the card sends nonce
to terminal and verifies the result with an internally stored
public key. This enables to authenticate the user with cryp-
tographic methods instead of just sending the PIN over un-
protected channel. However, to make use of this feature,
one must have some secure place for storing one’s private
authentication key. But if we had a secure place for storing
keys, we wouldn’t need smart cards in the first place.

It could be argued that adding a smart card reader does
not necessarily improve the security of our system. From a
conservative point of view this is true: although the key is

not stored on the user’s PDA, the user must still keep it in
a safe place together with the smart card and the smart card
reader. Also, introducing the smart card adds complexity
to the system and creates several new subsystems (smart
card and reader) that can be attacked. For further discussion
about risks associated with adding smart cards to systems,
see article [19].

However, for practical purposes this is not necessarily so.
Consider two cases: in one case hacker manages to acquire
the victim’s PDA that contains the signing keys in the PDAs
memory. In the other case, he gets the PDA, the smart card
reader and the smart card. In the first case, all he has to
do is to have the PDA dump all its memory contents to a
PC and the extract keys. He probably will not have to use
the statistical approach described in [20] because it is very
likely that some popular signing program is used that stores
its keys in some known location. Then he can perform a
brute-force attack on the user’s PIN which is used to encrypt
key and he can successfully fake signed documents from
the privacy of his home. For popular signing applications
this attack is probably pre-packaged in some user-friendly
exploit program.

In the second case, the hacker has two options: he can
tamper with the signing program so that it modifies the doc-
uments that are sent for signing. In that case he has to think
of a way to make the user believe that the signature is cor-
rect and he also must have some way to retrieve this signa-
ture when it has been created (which probably means that he
will have to steal this PDA once again). The second option
is to try to extract the key from the user’s smart card using
appropriate equipment. Admittedly, all these attacks can be
performed by intelligence agencies and really determined
individuals. On the other hand, they could also threaten the
user with a gun and make him sign whatever they want to
with or without a secure signing environment. This means
that technical security measures can only be used to pro-
tect assets that are less valuable than the cost of a physical
attack. In that case, our system can be considered secure be-
cause mounting a technical attack (like repeatedly stealing
user’s PDA or reverse-engineering the smart card) requires
a lot of resources. If one limits the things that can be done
with his PDA and a smart card – like setting an upper limit
on the amount of money that can be affected by any signed
document – he is quite safe because the costs of attacking
his device can exceed benefits that can arise from a success-
ful attack.

5 Future Directions

Our work with creating a personal security environment
will not stop after the first prototype. Our main plans for
future are the following:� Support for standard formats like PKCS#7 [7] for sig-

5



natures, PKCS#10 [5] for certificate request messages
and X.509v3 [8] for user’s certificates. Support for
these formats is especially important for verification
because we would like to be able to securely verify
any signed documents in standard formats.� Support for cryptographic authentication of the smart
card.� Better support for multiple identities. The identities
are associated with different private keys and represent
different roles of a person. For example, one may sign
documents as an employee of company X or as a mem-
ber of some club. We would like each identity to have
a separate security policy that determines the certifica-
tion authorities that are considered to be ”trusted”.� Currently we have an ASCII text viewer for PalmOS,
but one would like to have viewers for other document
formats also, e.g. XML and HTML. On the other hand,
involving more complex document formats causes a
serious security problem as one bit string can have sev-
eral visual interpretations. E.g. a HTML-document
can be viewed both with an ASCII-editor as a source
code and with a web browser as a formatted text. One
of the several interpretations can have more visual in-
formation than the other. A malicious individual can
include comments like

<!-- I give my house for free to
John Smith -->

into a HTML-document. If one signs the document
having seen it only with the web browser, John Smith
can later claim in the court that the signer had the pos-
sibility to see the source code and its content is actually
what he meant at the moment of signing. An attack of
this kind implies the need for including document type
definitions into the documents as well. This technique
is standard for XML document format. Unfortunately
some of very widespread document formats (e.g. Mi-
crosoft Word’s .doc-files) have non-public definitions
and hence can not be used in security-critical applica-
tions.

6 Conclusions

The current digital signature implementations, where
one’s private key is kept in an untrustworthy PC, have
proven not to be suitable for today’s applications such as e-
commerce. Today’s digital signature must have equal legal
value with the old-fashioned hand-written signature. Thus
one’s private key must be kept secure by all means.

Attention has to be paid to the signing environment as
well. There is no use in securing one’s private key if the

signing environment can be easily compromised by some
Trojan horse. In such a case, malicious programs can sign
anything on user’s behalf. In this article we have proposed a
personal security environment consisting of a Palm III PDA,
a smart card and a smart card reader. This environment
makes it possible to convince one in the authenticity of the
document to be signed. The user’s private key is kept in
the smart card and document signing and verification takes
place in the device that can be kept in a secure place.

Security still was, is and will remain a very delicate ques-
tion. If someone else’s signature is badly needed on the
document it will usually be given in one way or another. It
is only a matter of the price to be paid. In principle, when
one has enough time, money or other resources, our sys-
tem can be compromised as well. Still the attacker’s life is
made very hard and our system is secure when compared
to the old signing environments. If good care is taken of
the environment and time-stamping is used in addition to
signing, then the system can be put in everyday use without
the fear of one’s signature being abused by those who must
not have access to it. For applications where very valuable
signatures are given, additional security measures shouldbe
considered.

References

[1] Palm home page:http://www.palm.com/.
[2] PalmOS GCC development tools:

http://www.palmos.com/dev/tech/tools/gcc/.
[3] Public-Key Infrastructure (X.509) (pkix) Charter:

http://www.ietf.org/html.charters/pkix-
charter.html.

[4] Simple Public Key Infrastructure (spki) Charter:
http://www.ietf.org/html.charters/spki-
charter.html.

[5] PKCS #10 – Certification Request Syn-
tax Standard, 1993. Available online at
http://www.rsasecurity.com/rsalabs/pkcs/
pkcs-10/index.html.

[6] PKCS #11 – Cryptographic Token Inter-
face Standard, 1993. Available online at
http://www.rsasecurity.com/rsalabs/pkcs/
pkcs-11/index.html.

[7] PKCS #7 – Cryptographic Message Syntax Standard, 1993.
Available online at
http://www.rsasecurity.com/rsalabs/pkcs/
pkcs-7/index.html.

[8] ITU-T Recommendation X.509: The Directory: Authentica-
tion Framework, 1997.

[9] D. Balfanz and E. Felten. Hand-held computers can be better
smart cards. InProceedings of USENIX Security ’99, August
1999.

[10] J. P. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Mjol-
snes, F. Muller, T. Pedersen, B. Pfitzmann, B. S. P. de
Rooij, M. Schunter, L. Valle, and M. Waidner. The ES-
PRIT project CAFE - high security digital payment systems.

6



In D. Gollmann, editor,Proceedings ESORICS’94, volume
875 ofLNCS, pages 217–230. Springer-Verlag, 1994.

[11] D. Boneh and N. Daswani. Experimenting with electronic
commerce on the PalmPilot. InProceedings of Finan-
cial Cryptography ’99, volume 1648 ofLNCS, pages 1–16.
Springer-Verlag, 1999.

[12] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-
stamping with binary linking schemes. InAdvances in Cryp-
tology – CRYPTO’98, volume 1462 ofLNCS, pages 486–
501, Santa Barbara, 1998. Springer-Verlag.

[13] D. Chaum. Security without identification: Transaction sys-
tems to make big brother obsolete.Communications of the
ACM, 28(10):1030–1044, October 1985.

[14] D. W. Davies. Use of the ’signature token’ to create a nego-
tiable document. InAdvances in Cryptology: Proceedings
of CRYPTO’83, pages 377 – 382, New York, USA, 1984.
Plenym Publishing.

[15] W. Diffie and M. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22:644–
654, 1976.

[16] C. Ellison and B. Schneier. Ten risks of PKI: What you’re
not being told about public-key infrastructure.Computer
Security Journal, 16(1):1–7, 2000.

[17] H. Gobioff, S. Smith, J. D. Tygar, and B. Yee. Smart cards
in hostile environments. InProceedings of The Second
USENIX Workshop on Electronic Commerce, Oakland, CA,
1996.

[18] A. K. Lenstra and E. R. Verheul. Selecting
cryptography key sizes. Available online at
http://www.cryptosavvy.com/cryptosizes.pdf,
2000.

[19] B. Schneier and A. Shostack. Breaking up is hard to do:
Modeling security threats for smart cards. Available online
at http://www.counterpane.com/smart-card-
threats.html, 1999.

[20] N. van Someren and A. Shamir. Playing hide and seek with
stored keys. Available online at
http://www.ncipher.com/products/rscs/
downloads/whitepapers/keyhide2.pdf, 1998.

[21] A. Weber.Distribution of risks in Implementations of Digital
Signatures. Univ. Freiburg i. Brsg., 1997. Available online at
http://www.semper.org/info/111FR023.ps.gz.

[22] P. R. Zimmerman.The Official PGP User’s Guide. MIT
Press, 1995.

7


