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Abstract—In this paper we study the information security [7] and extended in several directions by Hausken [2] and
investment model proposed by Gordon and Loeb [1]. We argue Willemson [8].
that the original model is missing at least one important re-  The cyrrent paper builds on our previous research [8] and
striction concerning monotonicity of the remaining vulnerability . ized foll First in Section I i@ th
viewed as a function of original vulnerability level, and propose IS organlzg "?15 ollows. FIrst, In section Il we summarlze
adding the respective condition. We present a new family of general principles of Gordon&Loeb model. In Section Il we
remaining vulnerability functions satisfying all the conditions and  argue that an important condition is missing from the o@gjin
generalizing all the currently known example function famiies.  model and propose including it, presenting a very general

Index Terms—Gordon&Loeb model, information security in- |35 of functions satisfying all the current conditionsd an
vestment . ) . .

generalizing all the known example functions in Section IV.

Finally, Section V draws some conclusions and sets dinestio
for further work.

When some digital or physical property is to be safeguarded,
we usually face an investment problem. On one hand, no Il. THE MODEL OF GORDON AND LOEB

protection measures are for free, and on the other hand, eacfh order to estimate the optimal level of information setyuri
of the measures has its own return in terms of prevented logfestment for protecting some information set, Gordon and
However, security investments differ from capital investts. | oeb consider several parameters of the set in [1], and we wil
In case of the latter ones, return can be measured dire@btept similar, though a bit more formal notation.
by the amount of income obtained within some time period. First, let L denote thepotential lossassociated with the
But in case of security investments, how are we supposedif@eat against the information set, i®.= t), wheret is the
evaluate the amount of loss that actually never occurs?  probability of the threat occurring andis the (monetary) loss
This is indeed a complicated question, to which no singlgiffered. Further, let denotevulnerability, i.e. the success
correct answer has been found and probably will never Qgrobability of the attack once launchedl is then the total
Over the years, several approaches have been proposegl trgikpected losassociated with the threat against the information
to estimate the cost-benefit balance for security investsnerset,
e.g. Annual Loss Expected (ALE) and several ALE enhance-|f 3 company invests dollars into security, the remaining
ments like Exposure/lmpact analysis [4], Return on (Séguri yulnerability (calledsecurity breach probabilityn [1]) will be
Investments (RO(S)I) [6] and Security Savings and Beneffit [Zjenoted byS(z,v). The expected benefit from the investment
see [5] for a good overview and comparison of several relatggn then be computed s — S(z,v))L and the expected net
methodologies. benefit agv — S(z,v))L — z. Under suitable differentiability
Even though being quite general and well-proven in pragssumptions, we can see that the optimal level of investment
tical situations, these approaches mainly give us meanscéh be found by computing the local optimusi of the

reason whether some security investment is reasonabléh(wW@ixpected net benefit, i.e. by solving the first order equation
its cost), but they hardly help us in finding the optimal level 5

of investments. In order to achieve this kind of functiotyali -

one has to introduce methods allowing more analytical tools 9z
A suitable framework was proposed by Gordon and Loeind obtaining the following condition for* = z*(v):

in 2002 [1]. First they assumed all the essential parameters

(like decrease in vulnerability as a function of investndot —25(2*, v)L = 1. (1)

be continuous and enough differentiable (which they gdlyera z

aren’t, but this simplification is still reasonable to ackeiean Of course, the remaining vulnerability function can not be

analytic model). Next they made some natural assumpticaditrary. Clearly, sincé&(z, v) is a probability, we must have

concerning the behavior of these parameters and used san@a< S(z,v) < 1. Its first argument is an investment and the

calculus to study a few example situations. Later this modetcond one another probability, o< z and0 < v < 1.

has been experimentally evaluated by Tanaka and MatsuBesides that, the following assumptions are defined in [1]:

I. INTRODUCTION

[(v—S(z,v))L—2]=0



Al VzS(z,0) = 0, i.e. if initially the attack success proba- [1l. THE NEW ASSUMPTION

bility is 0, it stays so after every possible investment. 4+ o the original restriction1-A3 of Gordon and Loeb,
A2 Vv 5(0,v) = v, i.e. if we invest no money, there will be o1 5n4A2 are boundary conditions a8 states the behavior
no change in the attack probability. _of S(z,v) as the function of the investment However,
A3 The functionS(z,v) is continuously twice differentiable there is no restriction regarding the behaviorSgt, v) as the
and for0 < v < 1 ’

function of the original vulnerability. In fact, it is possible to

9 92 find functionsS(z,v) satisfying all the assumptions1-A3,
5,5(%v) <0 and =-55(z,v) > 0. but still contradicting the intuition about security inteents.
In particular, we argue that the remaining vulnerability
Additionally, function should be monotone in as well. Otherwise, for
Yo lim S(z,0) = 0. some investment we could have initial vulnerability levels
z—00 v1 < vg such that after investing the amountve would get

S(z,v1) > S(z,v2). This contradicts the original intuition of

The last item is postulating that with increasing investtaéin .
b 9 9 Gordon and Loeb, however, the assumptidis-A3 do not

is possible to decrease the vulnerability level, but at aehes L S
ing rate. Nevertheless, investing larger and larger ar‘rsoinntprOh'b't.SUCh a-5|tuat|0n. . .
is possible to make the attack probability arbitrarily smal Consider for instance the family of functions
An interesting detail to note in assumptiok3 is the Stz 0)=v- <1 B arctan((a - (v — B)2 +1) - z)>
restrictionv < 1. Does this mean that if the vulnerability T z ’
level is originallyv = 1 (i.e. if an attack is launched, it will
inevitably succeed) then no matter how much money we invedfierea > 0,0 < 5 < 1. The example for = 50 and 5 = 3
we may not be able to decrease this vulnerability? This woufi depicted in Figure 1.
very much counter our intuition about information set dsfgn
thus from now on we will consider the assumptié@ to hold
for all v € (0,1]. Fig. 1. Graph of the functior$* (z,v) for o = 50 and 8 = 1
It seems that the reason why Gordon and Loeb originally
introduced the somewhat artificial restrictian < 1 is the
example familyS’! (z, v) = v***1, (o > 0) given in [1] which
for v = 1 would be constantly equal tb. Thus considering
the remark above we argue that this family in its vanilla form
can not really correspond to any real threat scenario. On the
other hand, Tanaka and Matsuura claim in their paper [7]
to have found empirical evidence supporting the fangily/
considering the case of computer viruses spread by email.
However, Tanaka and Matsuura only compare the fasily
to the family S (z, v) = CTEEyEE (a > 0,3 > 1) and the real
claim they make is that the familg’! fits more They do it
by considering the (relative) effect of security investtsen

E(zq4, 2p;v) = % (2a < 2p).

Thus the evidence to support the famfy’ is rather remote.  Since
First, it may happen that some non-considered family (e.g.
some of the families considered by Hausken [2] or Willemson

H II
[8]) would fit much more thars** of Gordon and Loeb, and we haveo < S(z,v) < 1.

zgsg:ﬁ’ ;Tf(?esrzl?tefﬁ)rigtriiiss?ﬁza’)zb;\/i\)lzecgcr)]nileu?jztatw:td r:g:g Proposition 1: The functionS¥(z,v) satisfies the assump-
(2, ). tions A1-A3, but is not monotone im for any valuez > 0.

empirical evidence must be collected and analyzed before Bfoof. The conditionsAl andA2 are straightforward to verify.

can say anything n _the favqr of some concrete family of ﬂ\%‘le compute the partial derivatives 8f(z, v) for the condition
remaining vulnerability functions.

. . A3.
In the rest of the paper we will on one hand restrict the orig-

arctan((a - (v — )2 +1) - 2) € [0, g)v

inal Gordon and Loeb model by adding another assumption_,a_su(z’v) I (21 —25)2 +21)20 <0, (v>0)
and on the other hand generalize it by proposing a general m((a(v — B)? +1)222 + 1)

functional form for the functionsS(z,v) covering all the 0? o B 4(a(v —B)* +1)3vz 0 0
currently proposed concrete function families. 022 (z0) = 7((a(v — B)2 +1)222 4 1)2 >0, (v>0)



It is clear that all these derivatives are continuous and aland for the conditiorA2 we find
that if = — oo thenarctan((50 - (v — $)*+1) - 2) — Z and
thuslim, o, S*(z,v) = 0.

On the other hand, considerir§j(z, v) as a function of
we evaluate it forv =0, v = 5 € (0,1) andv = 1. We see
that

5°(0,v) = vPVq(0) = v - 1 = v.

For the condition#3 andA4 we note thatS® (z,v) is contin-
uously twice differentiable as a function efand continuously
differentiable as a function of. We evaluate the derivatives
(a-(0—=B)*+1)-2 > (a-(B—B)*+1)-2 < (a-(1—-B)*+1)-2 as follows.

which due to monotonicity ofirctan implies 250(2 V) = Up(z)(q/(z)) ) log(v)q(2)(p'(2)) < 0
0z ’ ’
S%(2,0) < S S%(z,1
(2,0) < 5%z, ) > §(2, 1) since the first term is< 0 and the second ong 0.
foranyz > 0.0 52
——5%zv) = WP (2) +

It is clear that the functions behaving like (2, v) should o(2) L
not be considered when talking about returns on security + 20" log(v)p'(2)q'(2) +
investments. In order to rule them out, we propose adding a vP3) log(v)q(2)p" (2) +
new assumption to the three originally stated by Gordon and P(?) log(v)%q(2)(1'(2))? > 0,
Loeb, namely:

A4 The functionS(z,v) is differentiable as a function of since the first term is> 0 and the others are= 0. Since

+ +

and for all z lim, 0 g(z) = 0 andv < 1, we must also have
0
%S(z,v) >0 lim SC(z,v) = lim v"*)g(z) = 0.
Z—r 00 Z—r 00
IV. A GENERAL CLASS OFFUNCTIONS SATISFYING o ) )
Al—A4 The derivative oS¢ (z, v) as a function ob can be estimated
- .. as
Even though the original Gordon and Loeb model is too 9 oo (£)-1
relaxed and does not contain enough restrictions to capture 55> (2 0) = 0P p(2)q(2) > 0,

the full intuition concerning security investments, aletbur- o -

rently known examples of the remaining vulnerability fiont Since all the multiplied terms are positive as wéll.

families ([1], [2], [8]) are rather specific. The purpose of )

this section is to present a more general family of functions Next we consider some of the currently proposed examples

satisfying the assumption&1-A4 and generalizing all the of remaining vulnerability functions and sh_ow to which entte _

previous examples. and how they can be rep_re_sented as special cases of _the family
The general family we propose to consider can be definsd (2, v). We note that similar arguments hold essentially for

as follows: every example family presented in [1], [2], [8]. Verificatiof

the conditions given by equations (2) is straightforward &n

therefore omitted.

Whergp,q : R — R are tW|(;e contm_gously differentiable The family S7(z,v)

functions satisfying the following conditions:

59 (z,0) = v"Pq(2),

Gordon and Loeb [1] can be obtained fra# (z,v) by

p(0) 1 takingp(z) =1 andq(z) = 7@;—1)5'
q0) = 1 o The family S'!(z,v) = v***!, (a > 0) of Gordon and
'z) > 0 Loeb [1] can be obtained froi® (z, v) by takingp(z) =
Zi/ - az+1 andq(z) = 1. We note that such a choice does not
pi(z) < 0 ) satisfy the requiremeniim, .., ¢(z) = 0, but as noted
d(z) < 0 in Section Il, the familyS’/(z,v) does not satisfy the
'(z) > 0 requirementim, ., S/ (z,v) = 0 for v = 1 either.
lim g(z) = 0 o The family S (z,v) = m (vy>0,0¢> 0).of
2—00 Hausken [2] can be obtained frosi®(z,v) by taking

Note that these conditions imply thatz) and ¢(z) obtain p(z) = 1 and q(z) = m One can see that

only positive values, more precisely, for every valuezofve
havep(z) > 1 and0 < ¢(z) < 1.

Proposition 2: All the functions of the family S¢(z,v)
satisfy the assumptions1-A4.
Proof. For the conditiorA1 we compute

59(2,0) = 0PPg(z) = 0

the first derivative ofg(z) Is not monotone, and as a
consequencey’’!(z,v) does not satisfy the assumption
A3 as noted already by Hausken.

The family

_z\k <
Sv(z,v)z{v(l b)O’ :;2;§<b (b>0,k>1)



of Willemson [8] can be obtained fron$®(z,v) by
takingp(z) =1 and

q(z) = { Sl 2

0,
The first and second derivatives gfz) are not strictly
different from zero, but in [8] we discuss the method of
removing the strictness constraint by modifying the “tail{3]
of this function as well.

(1]

if0o<z<bd

2> (b>0,k>1).

(2]

4]
In general, most of the current examples of the remaining

vulnerability function havep(z) = 1, with the only notable [5]
exception ofS?!(z,v) = v***1, (o > 0) of Gordon and Loeb 6
[1]. At the same time, the only existing evidence (even thoug
very remotely) hints thaS?/(z,v) may describe the reality
the best [7]. Thus it seems that considering more compl[:ﬁ(
functions in the position op(z) may be the key for future
understanding of security investment behavior.

8
V. CONCLUSIONS ANDFURTHER WORK (8]

In this paper we developed the original model of Gordon and
Loeb in two directions. First, we restricted the class ofsilule
remaining vulnerability functions by adding another aspum

tion and second, we generalized all the known examples by

stating simple functional (rather than scalar) constsaiatthe
family. It is easy to see that not all possible functionssgiing
the assumption&1-A4 are covered by the familg< (z,v),
for example we may consider the function

Ul+zv
1+2°

Thus one of the further research direction is to try to find
more natural restrictions to the class of remaining vulbiditg
functions.

Another prospective research direction is opposite to the
previous one — trying to find even more general forms of
function families. Ideally, both of the directions shouldne

S(z,v) =

verge to the point where we on one hand have defined a

reasonable list of restrictions and on the other hand are abl
to fully constructively describe all the members of the figmi
determined by these restrictions.

When studying the way how the famif (z, v) generalizes
all the previously known specific examples, we noted thaheve
though most of these examples use the trivial exponent for
v being equal tol, it may actually happen that non-trivial
exponents (like defined for the familg’’ by Gordon and
Loeb [1]) reflect the reality much better. Thus understagdin
the role of this exponent may be one of the key factors for
better application of Gordon&Loeb model in practice.

All these directions together with wider experimental eval
uations of the model remain the subjects for future research
efforts.
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