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Abstract—In this paper we study the information security
investment model proposed by Gordon and Loeb [1]. We argue
that the original model is missing at least one important re-
striction concerning monotonicity of the remaining vulnerability
viewed as a function of original vulnerability level, and propose
adding the respective condition. We present a new family of
remaining vulnerability functions satisfying all the conditions and
generalizing all the currently known example function families.

Index Terms—Gordon&Loeb model, information security in-
vestment

I. I NTRODUCTION

When some digital or physical property is to be safeguarded,
we usually face an investment problem. On one hand, no
protection measures are for free, and on the other hand, each
of the measures has its own return in terms of prevented loss.
However, security investments differ from capital investments.
In case of the latter ones, return can be measured directly
by the amount of income obtained within some time period.
But in case of security investments, how are we supposed to
evaluate the amount of loss that actually never occurs?

This is indeed a complicated question, to which no single
correct answer has been found and probably will never be.
Over the years, several approaches have been proposed trying
to estimate the cost-benefit balance for security investments,
e.g. Annual Loss Expected (ALE) and several ALE enhance-
ments like Exposure/Impact analysis [4], Return on (Security)
Investments (RO(S)I) [6] and Security Savings and Benefit [3];
see [5] for a good overview and comparison of several related
methodologies.

Even though being quite general and well-proven in prac-
tical situations, these approaches mainly give us means to
reason whether some security investment is reasonable (worth
its cost), but they hardly help us in finding the optimal level
of investments. In order to achieve this kind of functionality,
one has to introduce methods allowing more analytical tools.

A suitable framework was proposed by Gordon and Loeb
in 2002 [1]. First they assumed all the essential parameters
(like decrease in vulnerability as a function of investment) to
be continuous and enough differentiable (which they generally
aren’t, but this simplification is still reasonable to achieve an
analytic model). Next they made some natural assumptions
concerning the behavior of these parameters and used standard
calculus to study a few example situations. Later this model
has been experimentally evaluated by Tanaka and Matsuura

[7] and extended in several directions by Hausken [2] and
Willemson [8].

The current paper builds on our previous research [8] and
is organized as follows. First, in Section II we summarize the
general principles of Gordon&Loeb model. In Section III we
argue that an important condition is missing from the original
model and propose including it, presenting a very general
class of functions satisfying all the current conditions and
generalizing all the known example functions in Section IV.
Finally, Section V draws some conclusions and sets directions
for further work.

II. T HE MODEL OF GORDON AND LOEB

In order to estimate the optimal level of information security
investment for protecting some information set, Gordon and
Loeb consider several parameters of the set in [1], and we will
accept similar, though a bit more formal notation.

First, let L denote thepotential lossassociated with the
threat against the information set, i.e.L = tλ, wheret is the
probability of the threat occurring andλ is the (monetary) loss
suffered. Further, letv denotevulnerability, i.e. the success
probability of the attack once launched;vL is then the total
expected lossassociated with the threat against the information
set.

If a company investsz dollars into security, the remaining
vulnerability (calledsecurity breach probabilityin [1]) will be
denoted byS(z, v). The expected benefit from the investment
can then be computed as(v−S(z, v))L and the expected net
benefit as(v − S(z, v))L− z. Under suitable differentiability
assumptions, we can see that the optimal level of investment
can be found by computing the local optimumz∗ of the
expected net benefit, i.e. by solving the first order equation

∂

∂z
[(v − S(z, v))L− z] = 0

and obtaining the following condition forz∗ = z∗(v):

−
∂

∂z
S(z∗, v)L = 1. (1)

Of course, the remaining vulnerability function can not be
arbitrary. Clearly, sinceS(z, v) is a probability, we must have
0 ≤ S(z, v) ≤ 1. Its first argument is an investment and the
second one another probability, so0 ≤ z and 0 ≤ v ≤ 1.
Besides that, the following assumptions are defined in [1]:



A1 ∀z S(z, 0) = 0, i.e. if initially the attack success proba-
bility is 0, it stays so after every possible investment.

A2 ∀v S(0, v) = v, i.e. if we invest no money, there will be
no change in the attack probability.

A3 The functionS(z, v) is continuously twice differentiable
and for0 < v < 1

∂

∂z
S(z, v) < 0 and

∂2

∂z2
S(z, v) > 0.

Additionally,

∀v lim
z→∞

S(z, v) = 0.

The last item is postulating that with increasing investments it
is possible to decrease the vulnerability level, but at a decreas-
ing rate. Nevertheless, investing larger and larger amounts it
is possible to make the attack probability arbitrarily small.

An interesting detail to note in assumptionA3 is the
restriction v < 1. Does this mean that if the vulnerability
level is originallyv = 1 (i.e. if an attack is launched, it will
inevitably succeed) then no matter how much money we invest,
we may not be able to decrease this vulnerability? This would
very much counter our intuition about information set defense,
thus from now on we will consider the assumptionA3 to hold
for all v ∈ (0, 1].

It seems that the reason why Gordon and Loeb originally
introduced the somewhat artificial restrictionv < 1 is the
example familySII(z, v) = vαz+1, (α > 0) given in [1] which
for v = 1 would be constantly equal to1. Thus considering
the remark above we argue that this family in its vanilla form
can not really correspond to any real threat scenario. On the
other hand, Tanaka and Matsuura claim in their paper [7]
to have found empirical evidence supporting the familySII

considering the case of computer viruses spread by email.
However, Tanaka and Matsuura only compare the familySII

to the familySI(z, v) = v
(αz+1)β

, (α > 0, β ≥ 1) and the real
claim they make is that the familySII fits more. They do it
by considering the (relative) effect of security investments

E(za, zb; v) =
S(za, v)

S(zb, v)
(za < zb) .

Thus the evidence to support the familySII is rather remote.
First, it may happen that some non-considered family (e.g.
some of the families considered by Hausken [2] or Willemson
[8]) would fit much more thanSII of Gordon and Loeb, and
second, the same expressionE(za, zb; v) can be obtained from
several different functionsS(z, v). We conclude that more
empirical evidence must be collected and analyzed before we
can say anything in the favor of some concrete family of the
remaining vulnerability functions.

In the rest of the paper we will on one hand restrict the orig-
inal Gordon and Loeb model by adding another assumption,
and on the other hand generalize it by proposing a general
functional form for the functionsS(z, v) covering all the
currently proposed concrete function families.

III. T HE NEW ASSUMPTION

Out of the original restrictionsA1–A3 of Gordon and Loeb,
A1 andA2 are boundary conditions andA3 states the behavior
of S(z, v) as the function of the investmentz. However,
there is no restriction regarding the behavior ofS(z, v) as the
function of the original vulnerabilityv. In fact, it is possible to
find functionsS(z, v) satisfying all the assumptionsA1–A3,
but still contradicting the intuition about security investments.

In particular, we argue that the remaining vulnerability
function should be monotone inv as well. Otherwise, for
some investmentz we could have initial vulnerability levels
v1 < v2 such that after investing the amountz we would get
S(z, v1) > S(z, v2). This contradicts the original intuition of
Gordon and Loeb, however, the assumptionsA1–A3 do not
prohibit such a situation.

Consider for instance the family of functions

S♯(z, v) = v ·

(

1−
arctan((α · (v − β)2 + 1) · z)

π
2

)

,

whereα > 0, 0 < β < 1. The example forα = 50 andβ = 1
2

is depicted in Figure 1.

Fig. 1. Graph of the functionS♯(z, v) for α = 50 andβ = 1
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Since

arctan((α · (v − β)2 + 1) · z) ∈ [0,
π

2
),

we have0 ≤ S♯(z, v) ≤ 1.
Proposition 1: The functionS♯(z, v) satisfies the assump-

tions A1–A3, but is not monotone inv for any valuez > 0.
Proof.The conditionsA1 andA2 are straightforward to verify.
We compute the partial derivatives ofS♯(z, v) for the condition
A3.

∂

∂z
S♯(z, v) = −

2(α(v − β)2 + 1)v

π((α(v − β)2 + 1)2z2 + 1)
< 0, (v > 0)

∂2

∂z2
S♯(z, v) =

4(α(v − β)2 + 1)3vz

π((α(v − β)2 + 1)2z2 + 1)2
> 0, (v > 0)



It is clear that all these derivatives are continuous and also
that if z → ∞ thenarctan((50 · (v − 1

2 )
2 + 1) · z) → π

2 and
thus limz→∞ S♯(z, v) = 0.

On the other hand, consideringS♯(z, v) as a function ofv
we evaluate it forv = 0, v = β ∈ (0, 1) and v = 1. We see
that

(α·(0−β)2+1)·z > (α·(β−β)2+1)·z < (α·(1−β)2+1)·z

which due to monotonicity ofarctan implies

S♯(z, 0) < S♯(z, β) > S♯(z, 1)

for any z > 0. �

It is clear that the functions behaving likeS♯(z, v) should
not be considered when talking about returns on security
investments. In order to rule them out, we propose adding a
new assumption to the three originally stated by Gordon and
Loeb, namely:

A4 The functionS(z, v) is differentiable as a function ofv
and for allz

∂

∂v
S(z, v) > 0 .

IV. A GENERAL CLASS OFFUNCTIONS SATISFYING

A1–A4

Even though the original Gordon and Loeb model is too
relaxed and does not contain enough restrictions to capture
the full intuition concerning security investments, all the cur-
rently known examples of the remaining vulnerability function
families ([1], [2], [8]) are rather specific. The purpose of
this section is to present a more general family of functions
satisfying the assumptionsA1–A4 and generalizing all the
previous examples.

The general family we propose to consider can be defined
as follows:

S♦(z, v) = vp(z)q(z),

where p, q : R → R are twice continuously differentiable
functions satisfying the following conditions:

p(0) = 1

q(0) = 1

p′(z) ≥ 0

p′′(z) ≤ 0 (2)

q′(z) < 0

q′′(z) > 0

lim
z→∞

q(z) = 0

Note that these conditions imply thatp(z) and q(z) obtain
only positive values, more precisely, for every value ofz we
havep(z) ≥ 1 and0 < q(z) ≤ 1.

Proposition 2: All the functions of the familyS♦(z, v)
satisfy the assumptionsA1–A4.
Proof. For the conditionA1 we compute

S♦(z, 0) = 0p(z)q(z) = 0

and for the conditionA2 we find

S♦(0, v) = vp(0)q(0) = v1 · 1 = v.

For the conditionsA3 andA4 we note thatS♦(z, v) is contin-
uously twice differentiable as a function ofz and continuously
differentiable as a function ofv. We evaluate the derivatives
as follows.

∂

∂z
S♦(z, v) = vp(z)(q′(z)) + vp(z) log(v)q(z)(p′(z)) < 0 ,

since the first term is< 0 and the second one≤ 0.

∂2

∂z2
S♦(z, v) = vp(z)q′′(z) +

+ 2vp(z) log(v)p′(z)q′(z) +

+ vp(z) log(v)q(z)p′′(z) +

+ vp(z) log(v)2q(z)(p′(z))2 > 0 ,

since the first term is> 0 and the others are≥ 0. Since
limz→∞ q(z) = 0 andv ≤ 1, we must also have

lim
z→∞

S♦(z, v) = lim
z→∞

vp(z)q(z) = 0 .

The derivative ofS♦(z, v) as a function ofv can be estimated
as

∂

∂v
S♦(z, v) = vp(z)−1p(z)q(z) > 0 ,

since all the multiplied terms are positive as well.�

Next we consider some of the currently proposed examples
of remaining vulnerability functions and show to which extent
and how they can be represented as special cases of the family
S♦(z, v). We note that similar arguments hold essentially for
every example family presented in [1], [2], [8]. Verification of
the conditions given by equations (2) is straightforward and is
therefore omitted.

• The family SI(z, v) = v
(αz+1)β

(α > 0, β ≥ 1) of
Gordon and Loeb [1] can be obtained fromS♦(z, v) by
taking p(z) = 1 andq(z) = 1

(αz+1)β .
• The family SII(z, v) = vαz+1, (α > 0) of Gordon and

Loeb [1] can be obtained fromS♦(z, v) by takingp(z) =
αz+1 andq(z) = 1. We note that such a choice does not
satisfy the requirementlimz→∞ q(z) = 0, but as noted
in Section II, the familySII(z, v) does not satisfy the
requirementlimz→∞ SII(z, v) = 0 for v = 1 either.

• The family SIII(z, v) = v
1+γ(eφz−1)

(γ > 0, φ > 0) of
Hausken [2] can be obtained fromS♦(z, v) by taking
p(z) = 1 and q(z) = 1

1+γ(eφz−1) . One can see that
the first derivative ofq(z) is not monotone, and as a
consequence,SIII(z, v) does not satisfy the assumption
A3 as noted already by Hausken.

• The family

SV (z, v) =

{

v(1 − z
b
)k, if 0 ≤ z < b

0, if z ≥ b
(b > 0, k > 1)



of Willemson [8] can be obtained fromS♦(z, v) by
taking p(z) = 1 and

q(z) =

{

(1− z
b
)k, if 0 ≤ z < b

0, if z ≥ b
(b > 0, k > 1) .

The first and second derivatives ofq(z) are not strictly
different from zero, but in [8] we discuss the method of
removing the strictness constraint by modifying the “tail”
of this function as well.

In general, most of the current examples of the remaining
vulnerability function havep(z) = 1, with the only notable
exception ofSII(z, v) = vαz+1, (α > 0) of Gordon and Loeb
[1]. At the same time, the only existing evidence (even though
very remotely) hints thatSII(z, v) may describe the reality
the best [7]. Thus it seems that considering more complex
functions in the position ofp(z) may be the key for future
understanding of security investment behavior.

V. CONCLUSIONS ANDFURTHER WORK

In this paper we developed the original model of Gordon and
Loeb in two directions. First, we restricted the class of possible
remaining vulnerability functions by adding another assump-
tion and second, we generalized all the known examples by
stating simple functional (rather than scalar) constraints to the
family. It is easy to see that not all possible functions satisfying
the assumptionsA1–A4 are covered by the familyS♦(z, v),
for example we may consider the function

S(z, v) =
v1+zv

1 + z
.

Thus one of the further research direction is to try to find
more natural restrictions to the class of remaining vulnerability
functions.

Another prospective research direction is opposite to the
previous one – trying to find even more general forms of
function families. Ideally, both of the directions should con-
verge to the point where we on one hand have defined a
reasonable list of restrictions and on the other hand are able
to fully constructively describe all the members of the family
determined by these restrictions.

When studying the way how the familyS♦(z, v) generalizes
all the previously known specific examples, we noted that even
though most of these examples use the trivial exponent for
v being equal to1, it may actually happen that non-trivial
exponents (like defined for the familySII by Gordon and
Loeb [1]) reflect the reality much better. Thus understanding
the role of this exponent may be one of the key factors for
better application of Gordon&Loeb model in practice.

All these directions together with wider experimental eval-
uations of the model remain the subjects for future research
efforts.
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