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Abstract. Authors extend the multi-parameter attacktree model to include inac-
curate or estimated parameter values, which are modelled asprobabilistic interval
estimations. The paper develops mathematical tools to extend the computation
rules of the attacktree model to work with interval estimations instead of point
estimates. We present a sample computation routine and discuss how to interpret
the analysis results and how to choose the optimal or an economically justified
security level.

1 Introduction

Recent developments in information technology have changed the way
we live and work. We can communicate faster and in larger volumes than
ever before, our productivity has increased dramatically due to task au-
tomation and parallelization, etc. Unfortunately, information technology
has also helped the dark side. Besides legitimate work, attacking some-
one’s (digital) assets has become much more efficient as well. Properties
of the digital world make attacks highly parallelizable, the traces easily
hidable and the damage occurring almost instantly.

Thus, in order to perform one’s duties under such conditions, ap-
plying adequate security mechanisms becomes a necessary prerequisite.
Still, the number of possible attack countermeasures is large and the task
of picking the right set is far from being trivial. Accordingly, there are
several approaches for this task.

Parker [1] emphasizes the importance of planning and selecting in-
formation safeguards to achieve due diligence toward achieving enable-
ment of trustworthy business and engineering systems and compliance
with the regulations and legislation. For Parker, compliance is nowadays



more important than security risk reduction considering the penalties be-
ing applied to organizations that fail to meet regulatory requirements.

The authors of the current paper however feel that even though com-
pliance to regulatory requirements may ensure asufficientsecurity level,
several aspects of security management remain uncovered. For example,
business management usually does not only require securitylevel to be
sufficient, but alsooptimal in the sense that no over exaggerated invest-
ments have been made. Thus, a good security manager must be able to
explain to the board, what the company is getting in return for the money
invested into security [2,3].

This question is very hard to answer without a thorough risk assess-
ment. Thus, developing methods for IT risk analysis is a major challenge
requiring a solution when building large computer-dependent infrastruc-
tures.

Since attacks are human created and constantly evolving, itis not
possible to establish any fully automatic risk analysis mechanisms (even
though several promising approaches exist based on attack graphs [4,5]).
Expert knowledge will always play a substantial role with security anal-
ysis. However, expert evaluations are generally rather rough and can not
cope with very complicated threats. For instance, [6] provides us with ap-
proximate expert-assigned probabilities of a number of threats with the
precision of0.1 on the scale0 . . . 1. Even with such level of roughness,
we only see estimates for relatively simple events “Attempted Unautho-
rized System Access by Outsider”, “Abuse of Access Privileges by Other
Authorized User”, etc., but not for complicated scenarios like “Loss of
profits due to lost user base after online service inaccessibility for 5
hours”.

Thus a method needs to be developed that on one hand is able to
handle complicated threats, but at the same time could stillmake use of
approximate expert knowledge. In this paper we study a method related
to attack graphs as considered by Sheyner et. al. [5,7,8], where one is in-
terested in describing and comparing different event sequences that will
eventually result in successful penetration of security mechanisms. How-
ever, we will assume some extra structure from these graphs so that dif-
ferent subattacks are organized hierarchically and form a tree. The next
Section will cover this issue in more detail.



2 Hierarchical Security Assessment – State of the Art

In order to better assess security level of a complex and heterogeneous
system, a gradual refinement method calledthreat treeor attack tree
methodcan be used. Basic idea of the approach is simple – the anal-
ysis begins by identifying one or moreprimary threatsand continues
by splitting the threat into subattacks, either all or some of them being
necessary to materialize the primary threat. The subattacks can be split
further etc., until we reach the state where it no more makes sense to split
the resulting attacks any further; these kinds of non-splittable attacks are
calledelementaryor atomic attacksand the security analyst will have to
evaluate them somehow. During the splitting process, a treeis formed
having the primary threat in its root and elementary attacksin its leaves.
Using the structure of the tree and the estimations of the leaves, it is then
(hopefully) possible to give some estimations of the root node as well.

Threat tree approach to security evaluation is several decades old. It
has been used for tasks like fault assessment of critical systems [9] or
software vulnerability analysis [10,11], and was adapted to information
security by Bruce Schneier [12,13].

Earlier works in this field considered attack trees using only one esti-
mated parameter like cost or feasibility of the attack, skill level required,
etc. [11,12,14]. Opel [15] considered also multi-parameter attack trees,
but the actual tree computations in his model still used onlyone parame-
ter at a time. Even though single-parameter attack trees cancapture some
aspects of threats reasonably well, they still lack the ability to describe
the full complexity of the attacker’s decision-making process.

A substantial step towards better understanding the motivation of the
attacker was made in 2006 by Buldas et. al. [16]. Besides considering just
the cost of the attack, they also used success probability together with
probabilities and amount of penalties in the case of successor failure of
the attack in their analysis. As a result, a much more accurate model of
the attack game was obtained.

The model of [16] has a significant drawback when it comes to prac-
tical application. Namely, the authors of [16] consider allthe parameter
values to be precise point estimates. Still, in practice security analysts
rarely tend to provide exact numerical values for costs, probabilities etc.
Instead, it feels much more natural to talk about intervals where the pa-
rameters belong to with some confidence.



The purpose of this paper is to extend the research of Buldas et. al.
[16] by replacing exact values with interval estimations. The paper is or-
ganized as follows. First, in Section 3 we give a more formal definition
of attack trees. In order to be able to give estimations of higher level at-
tacks based on more elementary ones, rules of computation with interval
estimations must be developed and this is done in Section 4. Section 5
presents an example of the computation routine and gives general rules
for result interpretation. Finally, in Section 6 we draw some conclusions
and give directions for future work.

3 Attack Trees

As mentioned in Section 2, attack tree is a result of a top-down process
of splitting complex attacks into simpler ones. In this paper, we will con-
sider two types of splits – AND-splits and OR-splits.5 Thus, there are
altogether three types of nodes in the tree.

1. Leaf nodeor elementary attack, which does not have any subattacks
and which success does not depend on any other attacks. The param-
eter values of the leaf nodes are assigned by the experts.

2. OR-node, which has child nodes; for the OR-node attack to succeed,
at least one of the sub-attacks must succeed.

3. AND-node, which has child nodes; for the AND-node attack to suc-
ceed, all of the sub-attacks must succeed as well.

Following [16], we will use the parameters in Table 1 that areto be
evaluated in the leaf nodes and computed throughout the tree.

It will later prove useful to denote the expected loss in casethe attack
was successfulqS · kS by πS and the expected loss in case the attack was
not successfulqF · kF by πF .

We will denote the cost of the elementary attackA asCost(A) and
similar notation will be used for other parameters as well.

We will later use the example attack tree given in Figure 1 describ-
ing a simple security analysis of information leak from a company. The
tree has four leaf nodes, two OR-nodes (one of them denoting the pri-
mary threat at the root) and one AND-node. We are using notionsimilar

5 Even though the approach using only AND and OR splits is not flexible enough to cover
all possible security settings (e.g. threshold security),they have proven to be enough in all
practical threat trees analyzed by the authors.



Table 1.Parameters of the attacks

Parameter Definition
Cost cost of performing the attack

p probability of success of the attack
qS probability of catching the attacker, if the attack was successful
kS penalty of the attacker, if the attack was successful and attacker was caught
qF probability of catching the attacker, if the attack was not successful
kF penalty of the attacker, if the attack was not successful andattacker was caught

to AND-gates (& ) and OR-gates (≥ 1 ) to distinguish between AND-
nodes and OR-nodes.

≥ 1 Leak information

≥ 1 Leak without internal help

Electronic
espionage

Regular
espionage

& Leak with internal help

Recruite
privileged person

Use privileged person
to leak information

Fig. 1. Attacktree of leaking sensitive information from a company.

3.1 Tree Computations

The authors of [16] give the following formulae for computing the pa-
rameters of parent nodeC based on the values of child nodesA andB.
If C is an AND-node, we get

Cost(C) = Cost(A) + Cost(B), (1)

p(C) = p(A) · p(B), (2)



πS(C) = πS(A) + πS(B), (3)

πF (C) = 1
1−p(A)p(B)

· [p(A)(1 − p(B))(πS(A) + πF (B)) +

+(1 − p(A))p(B)(πF (A) + πS(B)) +

+(1 − p(A))(1 − p(B))(πF (A) + πF (B))]. (4)

The following formula is used in case the nodeC is an OR-node.

(Cost(C), p(C), πS(C), πF (C))

=

{

(Cost(A), p(A), πS(A), πF (A)) if Outcome(A) ≥ Outcome(B)
(Cost(B), p(B), πS(B), πF (B)) if Outcome(A) < Outcome(B)

,

(5)

whereOutcome(A) is the outcome of the attackA for attacker. Its value
is computed as

Outcome(A) = p(A)·Gain−p(A)·πS(A)−(1−p(A))·πF (A)−Cost(A) ,
(6)

whereGain is a global parameter expressing the total gain of the attacker
in case the primary threat is materialized.

4 Modeling Parameter Estimations

As discussed above, security experts may find it more comfortable work-
ing with intervals, rather than exact values. When talking about the value
of some parameter belonging to an interval, such claims are usually not
absolute, but hold with some level of confidence. So we can write

pX = Pr[k1 ≤ X ≤ k2] , (7)

wherepX is theprobabilityof the unknown value of the parameterX be-
ing within the interval of[k1, k2]. We will later refer topX asconfidence
or confidence levelandX = (pX , k1, k2) as estimation. The set of all
estimations will be denoted asIP.



4.1 Motivation and Connections with Bayesian Networks

In order to handle the estimations in intuitively comprehensible manner,
we will consider estimated parameters as random variables.The proba-
bilistic inference between random variables has been extensively stud-
ied in the Bayesian Networks (BN) theory and used e.g. in the fields of
artificial intelligence and machine learning. Attack treescan be viewed
as a special kind of BN graphs, which try to investigate the likelihood
of the primary threats, given the information about leaf attacks. Attack
tree structure represents causality connections between attacks and the
node parameters represent random variables in the BN graph.One way
to ”convert” attack trees to the causal networks has been presented by
Qin and Lee [17]. In case of multi-parameter attack trees, each node has
many variables and the inference between nodes is a bit more complex,
as expressed by the formulae (1) – (6).

The general structure of operations on estimations followsa simple
pattern – given argument estimations, we first convert them to random
variables, then perform our computation operations and then convert the
resulting random variable back to the estimation based on its distribu-
tion. In order to do the first conversion, we need some assumptions about
the corresponding distributions, and in the current paper we will take all
our distributions to be normal. Additionally, we assume that all our es-
timations in leaf nodes and therefore the random variables as well are
independent of each other, which in practice is roughly usually the case.
This allows us to simplify the operations on random variables.

The assumption about normal distributions is natural for most of the
parameters, since security experts evaluating them are humans and hu-
mans tend to estimate values using normal distribution. Theconcept of
using imprecise data and estimations in the BN graphs is not new and has
been explored in [18] and [19]. However, in this paper, we do not try to
compute the exact (conditional) distributions of all our variables, but sim-
ply use normal distributions as is generally done when trying to simplify
the BN calculations. Note that we merely use the normality assumption
as a heuristic that helps our expert to deduce estimations ofparent nodes
based on estimations of the child nodes in the attack tree, and we make
no formal claims concerning what these distributions in reality might be.

One can think of the analyst’s task to find out whether the system is
vulnerable with respect to the primary threat. While completing this task,



the analyst considers the leaves of his current tree (which just consists of
one root node in the beginning of the process) and if (s)he is unable to
evaluate some parameters of some leaf, (s)he must develop itfurther. Af-
ter “solving” the resulting subtree, only the estimations of the parameters
of the current node are important, and several heuristics can be used to
achieve a reasonable result. The heuristic assuming normaldistributions
is just one possibility; other possibilities definitely exist, but they remain
outside of the scope of the current paper.

There is another detail to note. Some of our parameters have fixed
value domains, e.g. are probabilities and hence belong to[0, 1], so we
can not claim that they follow normal distribution. However, considering
probabilities itself as imprecise values (second-order probability distri-
bution) is well known in Bayesian statistics and for our estimations it
is enough that[k1, k2] ⊂ [0, 1]. There is no harm caused when the cor-
responding parameter is internally interpreted as a normally distributed
random variable, even if its original value represents a probability. We
will cover this issue in more detail in the end of Section 4.

4.2 Estimation Arithmetic

Our goal is to replace exact parameter values in formulae (1)– (6) by
estimations. To do so, we will have to define addition, subtraction, multi-
plication, division and comparison of estimations, but also multiplication
by and adding to a real number.

To use estimations in our formulae, we next discuss how to define
the required operations in such a way thatIP would become closed under
these operations.

Conversion between estimations and random variablesTo convert
the estimationX to a random variableX, we have to find out the meanaX

and standard deviationσX . From the assumption above and from equa-
tion (7) we can get the following formulae:

aX = EX =
k1 + k2

2
, (8)

pX = Pr(k1 ≤ X ≤ k2) = Φ

(

k2 − aX

σX

)

− Φ

(

k1 − aX

σX

)

, (9)
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Fig. 2.ConversionX = (0.8,−1, 3) → X ∼ N(1, 1.56061).

where theΦ(x) is the Laplace’s function. Although we cannot give ex-
plicit formula for calculatingσX , we can certainly solve the equation (9)
to compute the standard deviationσX using a computer.

We denote conversion of estimationX to normally distributed ran-
dom variableX asX = (pX , k1, k2) → X ∼ N(aX , σX). An example
is depicted in Figure 2 for the conversionX = (0.8,−1, 3) → X ∼
N(1, 1.56061).

To convert the probabilistic variableX back to an estimationX , we
would need to know the confidencep′X , at which we would like to express
the estimation. After we have specifiedp′X , we can compute the appropri-
ate interval[k1, k2] from equation (9). We denote such back-conversion
asX ∼ N(aX , σX) → X = (p′X , k′

1, k
′

2.)

To simplify the operations with our estimations of the attack-tree
node parameters, we will convert all estimations to the sameconfidence
level pT , which will be defined globally for the attack-tree. In effect, pT

defines the confidence level or the margin of error at which we would
like to have the answer of our attack-tree analysis given. Ifthe original
estimationX of an expert is given using some other confidence levelpX ,



we first convertX = (pX , k1, k2) → X ∼ N(aX , σX) and then find the
new interval[k′

1, k
′

2] by X ∼ N(aX , σX) → X = (pT , k′

1, k
′

2.)
Next, we need to define the computation rules for estimations, i.e.

operations+ and· as functions of typeIP× IR → IP, operations+, · and
/ as functions of typeIP× IP → IP and a binary relation>= on the setIP.

Adding a real number to an estimation Given r ∈ IR together with
estimationX = (pT , k1, k2) and wanting to computeX +r = Y , we first
convertX → X ∼ N(aX , σX). After that we can computeY = r + X
using the propertiesaY = r + aX andσY = σX . Finally, we haveY →
Y = (pT , k1 + r, k2 + r).

Multiplying an estimation by a real number It is known that given
X ∼ N(aX , σX) andr ∈ IR we haver · X = Y ∼ N(r · aX , |r · σX |).
To simplify the computation,X = (pT , k1, k2) is first centralized to̊X =
X − aX . ThenσY = |r · σX | and now we obtain̊Y → Y̊ = (pT ,−k, k),
where the interval[−k; k] is found from the equation

pT = 2Φ

(

|k|

σX

)

. (10)

After thatY̊ is de-centralized by shifting its interval byr · aX . Thus, we
finally getY = (pT ,−k + r · aX , k + r · aX).

Adding two estimations X1 and X2 When adding two estimations
X1 = (pT , k1, k2) andX2 = (pT , k′

1, k
′

2), we first convert both of them
to X1 ∼ N(a1, σ1) andX2 ∼ N(a2, σ2). Then, assumingX1 andX2 to
be independent, we can computeY = X1 + X2, whereaY = a1 + a2

andσY = σ1 + σ2. In case of subtracting, we getaY = a1 − a2, but
σY = σ1 + σ2.

Now we have the necessary information to convertY → Y . First we
convertY̊ → Y̊ = (pT ,−k, k), wherek is found from equation (10)
by replacingσX with σY . Now, Y̊ can be de-centralized by shifting its
interval bya1 +a2. So, we get the final resultY = (pT ,−k+a1 +a2, k+
a1+a2), or in case of the subtraction,Y = (pT ,−k+a1−a2, k+a1−a2).

Multiplying two estimations X1 and X2 When multiplying two esti-
mationsX1 andX2 we first centralize them to̊X1 and X̊2. Then Y̊ =



X̊1 · X̊2 is calculated using the assumption of independent variables and
the fact thatσY = σ1 · σ2, however, the distribution of̊Y is not normal,
but Bessel distribution.

To convertY to Y , we compute̊Y → Y̊ = (pT ,−kB, kB), wherekB

is found from equation

pT = Pr[−kB ≤ Y ≤ kB] =

∫ kB

−kB

fB(y, σY )dy , (11)

where

fB(y, σY ) =
1

πσY

K0

(

|y|

σY

)

is the probability density function of the Bessel distribution. Now, Y̊
needs to be de-centralized. The mean ofY could be computed asaY =
E(X1 ·X2) = EX1 ·EX2 = a1 ·a2. Therefore, we can shift̊Y interval by
a1 · a2. So, we get the final resultY = (pT ,−kB + a1 · a2, kB + a1 · a2).

Dividing two estimations X1 and X2 Using centralized independent
variablesX̊1 andX̊2, it is known thatX̊1/X̊2 = Y̊ ∼ Cauchy(0, σY ),
whereσY = σ1

σ2

.
Using the global confidence valuepT , we convert theY toY . In order

to do that, we first convert̊Y → Y̊ = (pT ,−kC , kC), wherekC is found
from the equation

pT = Pr[−kB ≤ Y ≤ kB] =

∫ kB

−kB

fC(y, y0, σY )dy , (12)

where

fC(y, y0, σY ) =
σY

π
·

1

σ2
Y + (y − y0)2

is the probability density function of the Cauchy distribution. Now, Y̊
needs to be de-centralized. The mean ofY can be computed asaY =
E(X1/X2) = EX1/EX2 = a1/a2. Therefore, we can shift̊Y interval by
a1/a2. So, we get the final resultY = (pT ,−kC + a1/a2, kC + a1/a2).

Comparing two estimationsX1 and X2 The last operation to enable
us to use estimations as operands in our formulae is the comparison.
To decide the order of the estimations, we compare the means of the



corresponding random variables. Formally, we can define thecompari-
son as the binary relation>== {(X1;X2)|X1 = (pT , k1, k2) → X1 ∼
N(a1, σ1),X2 = (pT , k′

1, k
′

2) → X2 ∼ N(a2, σ2), a1 ≥ a2}.

4.3 Soundness of computations

Almost all parameters of the nodes have a limited value domain prede-
fined by the interpretation of the parameter, e.g.Cost should be a non-
negative real number andp is a probability belonging to the interval[0, 1].
When estimations are considered instead of specific values,it is still nat-
ural to assume that the respective intervals[k1, k2] are subsets of the value
domains (e.g.[k1, k2] ⊂ [0,∞) for Cost and[k1, k2] ⊂ [0, 1] for p). Even
if expert estimations given to leaf node parameters satisfythese assump-
tions, it may happen that as a result of tree computations, some of the
parameters in other nodes do not.

Generally, such a situation indicates that no sound conclusions can
be drawn on the given confidence levelpT . This problem can be solved
in a number of ways.

– The global confidence levelpT can be decreased in order to achieve
soundness of estimations in all the nodes. It is possible to find the
largest valuepT ensuring sound conclusions and this value can be
considered as the confidence level of the whole tree.

– It is possible to define the required confidence level locallyfor each
node.

– It is possible to adjust one or both of the boundsk1 andk2 to fit into
the required interval; this will automatically decrease the confidence
level of the respective node as well.

Each of these approaches has its pros and cons; selecting thebest one
may be application specific and remains the subject for future research.

5 Tree Computations with Estimations

First consider as an illustration a simple attack tree computation routine
based on the example given in Figure 1. First we fix the level ofconfi-
dence of our estimations to bepT = 0.9 and second we let out experts to
evaluate the parameters of the leaves with this confidence. Assume we get
the estimation interval for theCost parameter in the leaf “Use privileged



person to leak information” at this confidence to be[7.56 ·104, 1.24 ·105],
etc, as given in Table 2.

Next we use the computation rules developed in Section 4 to obtain
parameter estimations for non-leaf nodes as well (see Table2). Finally,
in the root node we use (6) in its interval form to findPr[2.51 · 107 ≤
Outcome ≤ 5.36·107] = 0.9, which shows that the outcome of the attack
is with high probability positive for the attacker, hence some measures
must be introduced in order to counter it.

Table 2: Attacktree of leaking sensitive information from acompany.

ID Description Type Parameter estimations
Gain of the attacktree Pr[5.23 · 107

≤ Gain ≤ 2.48 · 108] = 0.9

A Leak information OR Pr[8.58 · 104
≤ Cost ≤ 2.14 · 105] = 0.9

Pr[0.0561 ≤ p ≤ 0.544] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106

≤ πF ≤ 6.14 · 106] = 0.9
Pr[2.51 · 107

≤ Outcome ≤ 5.36 · 107] = 0.9

A.1 Leak without internal
help

OR Pr[8.58 · 104
≤ Cost ≤ 2.14 · 105] = 0.9

Pr[0.0561 ≤ p ≤ 0.544] = 0.9
Pr[4.86 · 106

≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106

≤ πF ≤ 6.14 · 106] = 0.9
Pr[2.51 · 107

≤ Outcome ≤ 5.36 · 107] = 0.9

A.1.1 Electronic espionage LEAFPr[9.86 · 106
≤ Cost ≤ 1.11 · 107] = 0.9

Pr[0.186 ≤ p ≤ 0.314] = 0.9
Pr[4.86 · 106

≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[1.71 · 107

≤ Outcome ≤ 2.59 · 107] = 0.9

A.1.2 Regular espionage LEAFPr[8.58 · 104 ≤ Cost ≤ 2.14 · 105] = 0.9
Pr[0.0561 ≤ p ≤ 0.544] = 0.9
Pr[4.86 · 106

≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[2.51 · 107

≤ Outcome ≤ 5.36 · 107] = 0.9

A.2 Leak with internal help ANDPr[8.66 · 106 ≤ Cost ≤ 2.15 · 107] = 0.9
Pr[0.0779 ≤ p ≤ 0.0871] = 0.9
Pr[9.72 · 106

≤ πS ≤ 1.23 · 107] = 0.9
Pr[−3.33 · 106 ≤ πF ≤ 2.53 · 107] = 0.9
Pr[−2.05 · 107

≤ Outcome ≤ −6.98 · 106] = 0.9

A.2.1 Recruite privileged per-
son

LEAF Pr[8.58 · 106 ≤ Cost ≤ 2.14 · 107] = 0.9
Pr[0.0858 ≤ p ≤ 0.214] = 0.9
Pr[4.86 · 106

≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[−8.16 · 106

≤ Outcome ≤ 1.22 · 107] = 0.9

continues next page . . .



Table 2 — continues from previous page . . .
ID Description Type Parameters estimations
A.2.2 Use privileged person to

leak information
LEAF Pr[7.56 · 104 ≤ Cost ≤ 1.24 · 105] = 0.9

Pr[0.428 ≤ p ≤ 0.672] = 0.9
Pr[4.86 · 106

≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[6.98 · 107

≤ Outcome ≤ 8.4 · 107] = 0.9

In general, we may have three possible classes of estimationsX =
(pX , k1, k2) for Outcome of the root node:

1. 0 < k1 < k2, in which case we say that the vulnerability level of
the primary threat under consideration with respect to the required
confidence level ishigh;

2. k1 < k2 < 0, in which case we say that the vulnerability level islow;
3. k1 ≤ 0 ≤ k2, in which case we say that the vulnerability level is

medium.

If needed, the last class can be further divided into lower medium and
higher medium vulnerability levels depending on whether the mean value
k1+k2

2
of the estimation (considered as a normally distributed random

variable) is less or greater than zero.
If the security analyst finds out that the security level is not accept-

able, (s)he concludes that some measures must be implemented. The pos-
sible measures are usually targeted towards lowering attack success prob-
ability or increasing expected penalties (e.g. by increasing probability of
getting caught). When some set of protection measures is considered, the
tree computations can be performed again for a new setting and if the
security level becomes acceptable, we know that the set of measures is
sufficient. It only remains to pick the most adequate set of such measures
(this step is identical to the one described in [16]).

Following the tree computation routine, we can also find out which
nodes of the tree are critical ones and must be addressed withour security
enhancements. E.g. in the example presented above we see that parame-
ters of the root node are derived from the parameters of the leaf “Regular
espionage”, which is thus the most vulnerable node in this setting.

6 Conclusions and Further Work

We presented an extension of the multi-parameter threat tree model to
the case where the parameters of elementary attacks are given as inter-



val estimations rather than exact values. Clearly, such a problem setting
implies the need to compute the values of primary threat parameters as
estimations as well. A suitable method for defining necessary algebraic
operations and relations on evaluations was developed in this paper and
illustrated with a simple attack scenario.

There are still several directions our research can be continued in.
First, our current heuristic used to compute with estimations is to con-
sider all the parameters as normally distributed with suitable parameters.
This simplification can turn out to be too restrictive for some applica-
tions, hence further studies are needed to find out how other distributions
behave under the given tree computation rules.

Second, our tree computation routine can give out-of-bounds values
for some parameters (e.g. probabilities) in some nodes. There are several
possible solutions to this problem and selecting the best one remains the
subject for future research as well.

And, last but not least, even though the authors have used attack tree
approach successfully in several security analyses, its extension to inter-
val estimations still needs further practical evaluation.
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