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Abstract. Authors extend the multi-parameter attacktree model thudecinac-
curate or estimated parameter values, which are modellgabbabilistic interval
estimations. The paper develops mathematical tools toextee computation
rules of the attacktree model to work with interval estiroas instead of point
estimates. We present a sample computation routine anasgi$ow to interpret
the analysis results and how to choose the optimal or an eucatly justified
security level.

1 Introduction

Recent developments in information technology have chétige way
we live and work. We can communicate faster and in largermelsithan
ever before, our productivity has increased dramatically t task au-
tomation and parallelization, etc. Unfortunately, infaton technology
has also helped the dark side. Besides legitimate worlglatig. some-
one’s (digital) assets has become much more efficient as Rrelperties
of the digital world make attacks highly parallelizableg tinaces easily
hidable and the damage occurring almost instantly.

Thus, in order to perform one’s duties under such conditiaps
plying adequate security mechanisms becomes a necessaggpisite.
Still, the number of possible attack countermeasuresgeland the task
of picking the right set is far from being trivial. Accordilygthere are
several approaches for this task.

Parker [1] emphasizes the importance of planning and $edett-
formation safeguards to achieve due diligence toward sacigesnable-
ment of trustworthy business and engineering systems amgl@nce
with the regulations and legislation. For Parker, compeis nowadays



more important than security risk reduction considerirgghnalties be-
ing applied to organizations that fail to meet regulatoyuieements.

The authors of the current paper however feel that even thoom-
pliance to regulatory requirements may ensusefficientsecurity level,
several aspects of security management remain uncovesedx&mple,
business management usually does not only require seteveyto be
sufficient, but alsmptimalin the sense that no over exaggerated invest-
ments have been made. Thus, a good security manager mustelie ab
explain to the board, what the company is getting in returriife money
invested into security [2,3].

This question is very hard to answer without a thorough redeas-
ment. Thus, developing methods for IT risk analysis is a mejallenge
requiring a solution when building large computer-depend&rastruc-
tures.

Since attacks are human created and constantly evolving,niot
possible to establish any fully automatic risk analysis na@isms (even
though several promising approaches exist based on attapkg[4,5]).
Expert knowledge will always play a substantial role witbgdty anal-
ysis. However, expert evaluations are generally ratheghh@nd can not
cope with very complicated threats. For instance, [6] ptesius with ap-
proximate expert-assigned probabilities of a number cddts with the
precision of0.1 on the scald ... 1. Even with such level of roughness,
we only see estimates for relatively simple events “Attesddtnautho-
rized System Access by Outsider”, “Abuse of Access Priategy Other
Authorized User”, etc., but not for complicated scenariks Loss of
profits due to lost user base after online service inacaéssitor 5
hours”.

Thus a method needs to be developed that on one hand is able to
handle complicated threats, but at the same time couldstike use of
approximate expert knowledge. In this paper we study a ndetblated
to attack graphs as considered by Sheyner et. al. [5,7,&revdne is in-
terested in describing and comparing different event secpeethat will
eventually result in successful penetration of securitgim@isms. How-
ever, we will assume some extra structure from these graptisas dif-
ferent subattacks are organized hierarchically and forrea The next
Section will cover this issue in more detail.



2 Hierarchical Security Assessment — State of the Art

In order to better assess security level of a complex anddgtaeous
system, a gradual refinement method calllegbat treeor attack tree
methodcan be used. Basic idea of the approach is simple — the anal-
ysis begins by identifying one or momimary threatsand continues
by splitting the threat into subattacks, either all or sorhéhem being
necessary to materialize the primary threat. The subateak be split
further etc., until we reach the state where it no more madesesto split
the resulting attacks any further; these kinds of nontstlie attacks are
calledelementaryor atomic attack@nd the security analyst will have to
evaluate them somehow. During the splitting process, aisréermed
having the primary threat in its root and elementary attackss leaves.
Using the structure of the tree and the estimations of theekeat is then
(hopefully) possible to give some estimations of the roaeas well.

Threat tree approach to security evaluation is severalddscald. It
has been used for tasks like fault assessment of criticésygs[9] or
software vulnerability analysis [10,11], and was adapteshtormation
security by Bruce Schneier [12,13].

Earlier works in this field considered attack trees using omnle esti-
mated parameter like cost or feasibility of the attack,| $&vel required,
etc. [11,12,14]. Opel [15] considered also multi-paramattack trees,
but the actual tree computations in his model still used onky parame-
ter at a time. Even though single-parameter attack treesagatnre some
aspects of threats reasonably well, they still lack theitsdtib describe
the full complexity of the attacker’s decision-making pzes.

A substantial step towards better understanding the ntatdivaf the
attacker was made in 2006 by Buldas et. al. [16]. Besidesdenisg just
the cost of the attack, they also used success probabigstiter with
probabilities and amount of penalties in the case of suamefslure of
the attack in their analysis. As a result, a much more aceuratdel of
the attack game was obtained.

The model of [16] has a significant drawback when it comes ag{r
tical application. Namely, the authors of [16] considerth# parameter
values to be precise point estimates. Still, in practicaisgcanalysts
rarely tend to provide exact numerical values for costshabdities etc.
Instead, it feels much more natural to talk about intervdiens the pa-
rameters belong to with some confidence.



The purpose of this paper is to extend the research of Buldas. e
[16] by replacing exact values with interval estimationse paper is or-
ganized as follows. First, in Section 3 we give a more forngdinition
of attack trees. In order to be able to give estimations didrdevel at-
tacks based on more elementary ones, rules of computattbnnterval
estimations must be developed and this is done in SectioeetioB 5
presents an example of the computation routine and givesrglerules
for result interpretation. Finally, in Section 6 we draw sooonclusions
and give directions for future work.

3 Attack Trees

As mentioned in Section 2, attack tree is a result of a toprdpmcess
of splitting complex attacks into simpler ones. In this pape will con-
sider two types of splits — AND-splits and OR-spfit3hus, there are
altogether three types of nodes in the tree.

1. Leaf nodeor elementary attackwhich does not have any subattacks
and which success does not depend on any other attacks. fidre-pa
eter values of the leaf nodes are assigned by the experts.

2. OR-nodewhich has child nodes; for the OR-node attack to succeed,
at least one of the sub-attacks must succeed.

3. AND-node which has child nodes; for the AND-node attack to suc-
ceed, all of the sub-attacks must succeed as well.

Following [16], we will use the parameters in Table 1 that @rbée
evaluated in the leaf nodes and computed throughout the tree

It will later prove useful to denote the expected loss in ¢hsattack
was successfuls - ks by 75 and the expected loss in case the attack was
not successfwy - kr by 7p.

We will denote the cost of the elementary attatlas Cost(A) and
similar notation will be used for other parameters as well.

We will later use the example attack tree given in Figure Icdes
ing a simple security analysis of information leak from a pamy. The
tree has four leaf nodes, two OR-nodes (one of them dendtmgti-
mary threat at the root) and one AND-node. We are using naiiorar

5 Even though the approach using only AND and OR splits is naitfle enough to cover
all possible security settings (e.g. threshold securthgy have proven to be enough in all
practical threat trees analyzed by the authors.



Table 1.Parameters of the attacks

Parameter Definition
Cost cost of performing the attack
D probability of success of the attack
qs probability of catching the attacker, if the attack was ssstul
ks penalty of the attacker, if the attack was successful ardlet was caught
qr probability of catching the attacker, if the attack was natcessful
kr penalty of the attacker, if the attack was not successfubttadker was caught

to AND-gates (& ) and OR-gateq £ 1)) to distinguish between AND-
nodes and OR-nodes.

[> 1] Leak information

=

[> 1] Leak without internal help| [&] Leak with internal help]
Electronic Regular _ Recruite Use privileged persor
espionage espionage privileged person to leak information

Fig. 1. Attacktree of leaking sensitive information from a company

3.1 Tree Computations

The authors of [16] give the following formulae for compuithe pa-
rameters of parent node based on the values of child nodésand B.
If C'is an AND-node, we get

Cost(C') = Cost(A) + Cost(B), (1)

p(C) = p(A) - p(B), (@)



ms(C) = ms(A) + 7s(B), 3)

75(C) = i - [P(A)(L = p(B)) (ms(A) + me(B)) +
(1 - p(A))p(B)(m(A) + 75(B)) +
(1= p(A)(1 = p(B)(me(A) + 7e(B)). (@)

The following formula is used in case the nades an OR-node.

(COSt(C)> p(C), WS(C)> WF(C))
_ {(COSt(A),p(A),?Ts(A),WF(A)) if Outcome(A) > Outcome(B)
(Cost(B),p(B), ns(B), mr(B)) if Outcome(A) < Outcome(B) ’
()

whereOutcome(A) is the outcome of the attack for attacker. Its value
is computed as

Outcome(A) = p(A)-Gain—p(A)-mg(A)—(1—p(A))-mp(A)—Cost(A) ,

(6)
whereGain is a global parameter expressing the total gain of the agtack
in case the primary threat is materialized.

4 Modeling Parameter Estimations

As discussed above, security experts may find it more coatstartvork-
ing with intervals, rather than exact values. When talkibgu the value
of some parameter belonging to an interval, such claims sually not
absolute, but hold with some level of confidence. So we catewri

px = Prlky < X <k , (7)

wherepy is theprobability of the unknown value of the parametgrbe-

ing within the interval of/ky, k»]. We will later refer topx asconfidence
or confidence leveind X = (px, k1, ko) asestimation The set of all
estimations will be denoted 2.



4.1 Motivation and Connections with Bayesian Networks

In order to handle the estimations in intuitively compredible manner,
we will consider estimated parameters as random variables proba-
bilistic inference between random variables has been sy stud-
ied in the Bayesian Networks (BN) theory and used e.g. in #lddiof
artificial intelligence and machine learning. Attack trees be viewed
as a special kind of BN graphs, which try to investigate tkelihood
of the primary threats, given the information about leaheks. Attack
tree structure represents causality connections betwitarka and the
node parameters represent random variables in the BN g@aphway
to "convert” attack trees to the causal networks has beesepted by
Qin and Lee [17]. In case of multi-parameter attack treesh @@de has
many variables and the inference between nodes is a bit noonplex,
as expressed by the formulae (1) — (6).

The general structure of operations on estimations follawsnple
pattern — given argument estimations, we first convert themandom
variables, then perform our computation operations ana toavert the
resulting random variable back to the estimation based odigtribu-
tion. In order to do the first conversion, we need some assangbout
the corresponding distributions, and in the current papewll take all
our distributions to be normal. Additionally, we assumet laour es-
timations in leaf nodes and therefore the random varialdesell are
independent of each other, which in practice is roughly Ihstize case.
This allows us to simplify the operations on random variable

The assumption about normal distributions is natural fostnod the
parameters, since security experts evaluating them areumsiand hu-
mans tend to estimate values using normal distribution.cdmeept of
using imprecise data and estimations in the BN graphs isewtamd has
been explored in [18] and [19]. However, in this paper, we dbtry to
compute the exact (conditional) distributions of all ourigbles, but sim-
ply use normal distributions as is generally done when gymsimplify
the BN calculations. Note that we merely use the normaligpagption
as a heuristic that helps our expert to deduce estimatiopareht nodes
based on estimations of the child nodes in the attack treeywenmake
no formal claims concerning what these distributions idityeenight be.

One can think of the analyst’s task to find out whether theesyss
vulnerable with respect to the primary threat. While cortiptgthis task,



the analyst considers the leaves of his current tree (whsthcpnsists of
one root node in the beginning of the process) and if (s)h@aable to
evaluate some parameters of some leaf, (s)he must devélogher. Af-
ter “solving” the resulting subtree, only the estimatiohthe parameters
of the current node are important, and several heuristiceaused to
achieve a reasonable result. The heuristic assuming nalistelbutions
is just one possibility; other possibilities definitely stxibut they remain
outside of the scope of the current paper.

There is another detail to note. Some of our parameters hese fi
value domains, e.g. are probabilities and hence belorig, td, so we
can not claim that they follow normal distribution. Howeveonsidering
probabilities itself as imprecise values (second-ordebability distri-
bution) is well known in Bayesian statistics and for our mstiions it
is enough thaik,, k»] C [0,1]. There is no harm caused when the cor-
responding parameter is internally interpreted as a ndyrdatributed
random variable, even if its original value represents dabdity. We
will cover this issue in more detail in the end of Section 4.

4.2 Estimation Arithmetic

Our goal is to replace exact parameter values in formulae- (B) by
estimations. To do so, we will have to define addition, sudbima, multi-
plication, division and comparison of estimations, bubatsiltiplication
by and adding to a real number.

To use estimations in our formulae, we next discuss how tomeefi
the required operations in such a way tiratvould become closed under
these operations.

Conversion between estimations and random variablesTo convert
the estimatior’ to a random variablé&’, we have to find out the meanr

and standard deviationy. From the assumption above and from equa-
tion (7) we can get the following formulae:

ki + ko

aX:EX: 5 s

(8)

pX:Pr(/ﬂSXS/m):@(kQ_aX)—@(kl_aX) , (9

OXx
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0.2 - _

0.15 - -
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Fig. 2. Conversion¥ = (0.8, —1,3) — X ~ N(1,1.56061).

where thed(x) is the Laplace’s function. Although we cannot give ex-
plicit formula for calculatingr x, we can certainly solve the equation (9)
to compute the standard deviatior using a computer.

We denote conversion of estimatidn to normally distributed ran-
dom variableX asX = (px, k1, k2) — X ~ N(ax,ox). An example
is depicted in Figure 2 for the conversion = (0.8, —-1,3) — X ~
N(1,1.56061).

To convert the probabilistic variabl¥ back to an estimatio/’, we
would need to know the confidengg, at which we would like to express
the estimation. After we have specifigd, we can compute the appropri-
ate intervallk,, k2| from equation (9). We denote such back-conversion
asX ~ N(ax,ox) — X = (py, Kk}, k)

To simplify the operations with our estimations of the dttaee
node parameters, we will convert all estimations to the seonédence
level pr, which will be defined globally for the attack-tree. In effge,
defines the confidence level or the margin of error at which wala
like to have the answer of our attack-tree analysis givethdforiginal
estimationt’ of an expert is given using some other confidence lgyel



we first convertY = (px, ki, ks) — X ~ N(ax,ox) and then find the
new intervalk, k5] by X ~ N(ax,ox) — X = (pr, K}, k).)

Next, we need to define the computation rules for estimatioes
operationst and- as functions of typd x IR — 1P, operationst, - and
/ as functions of typd® x IP — IP and a binary relatiog: on the sefP.

Adding a real number to an estimation Givenr < IR together with
estimationX’ = (pr, k1, k2) and wanting to comput& +r = ), we first
convert¥ — X ~ N(ax,ox). After that we can computé = r + X
using the propertiesy = r + ax andoy = ox. Finally, we havel” —
y: (pT,]ﬁ—'—T,kg—i—T).

Multiplying an estimation by a real number It is known that given
X ~ N(ax,ox)andr € Rwe haver - X =Y ~ N(r-ax,|r-ox|).
To simplify the computationY = (pr, k1, k2) is first centralized X =
X — ax. Thenoy = |r- ox| and now we obtait’ — Y = (pr, —k, k),
where the interval—k; k] is found from the equation

pr =29 (‘ﬁ) : (10)
0x
After that) is de-centralized by shifting its interval by ax. Thus, we
finally gety = (pr,—k+7r-ax,k+7r-ax).

Adding two estimations X; and X; When adding two estimations
X1 = (pr, k1, ke) and Xy = (pr, ki, k}), we first convert both of them
to X; ~ N(a1,01) and Xy ~ N(ay, 09). Then, assuming’; and X, to
be independent, we can compite= X; + X5, whereay = a; + as
andoy = o7 + 0,. In case of subtracting, we get = a; — aq, but
Oy = 01 + 09.

Now we have the necessary information to conYéert- ). First we
convertY — ) = (pr, —k, k), wherek is found from equation (10)
by replacingoy with oy. Now, ) can be de-centralized by shifting its
interval bya; + a». So, we get the final result = (pr, —k+a1+as, k+
a;+as), orin case of the subtractioy, = (pr, —k+a; —as, k+a; —as).

Multiplying two estimations &3 and X> When multiplying two esti-
mationsX;, and X, we first centralize them t&; and X,. ThenY =



X, - X, is calculated using the assumption of independent vasadie
the fact thatry = o, - 09, however, the distribution of is not normal,
but Bessel distribution.

To convertY to Y, we computéf — j) = (pr, —kp, kp), wherekp
is found from equation

kB
pr = Pr[—kB S Y S kB] — fB(y;O-Y)dy ) (11)
—kp
where ] "
fB(y,0v) = —Kj <i)
oy Oy

is the probability density function of the Bessel distribut Now, Y
needs to be de-centralized. The mea))atould be computed as, =
E(X;-X,) = EX;-EX, = a; - as. Therefore, we can shif¢ interval by
ay - az. SO, we get the final result = (pr, —kp + a1 - as, kp + a; - az).

Dividing two estimations &X; and X, Using centralized independent
variablesX; and X,, it is known thatX,/X, = Y ~ Cauchy0, oy ),
whereoy = g—;

Using the global confidence valpe, we convert th&” to ). In order
to do that, we first convelt — ) = (pr, —kc, ko), wherekc is found
from the equation

kB
pPr = Pr[_kB <Y< kB] - fC’(y7y0> JY)dy ) (12)

—kp

where |
_ 9
fC(yayOaUY)_ T 012/+(y_y0)2
is the probability density function of the Cauchy distrilout Now, Y
needs to be de-centralized. The meanyotan be compyted as =
E(X;/X,) = EX;/EX, = a;/ay. Therefore, we can shiff interval by
a1 /as. SO, we get the final result = (pr, —kc + a1/as, ke + a1 /as).

Comparing two estimations X; and X, The last operation to enable
us to use estimations as operands in our formulae is the atsupa
To decide the order of the estimations, we compare the mefatige o



corresponding random variables. Formally, we can defineonepari-
son as the binary relatioa= {(X}; X2)|X1 = (pr, k1, k) — X1 ~
N(a1,01), Xy = (pr, Ky, ky) — Xo ~ N(az,02), a1 > as}.

4.3 Soundness of computations

Almost all parameters of the nodes have a limited value dorpegde-
fined by the interpretation of the parameter, €gst should be a non-
negative real number ands a probability belonging to the intervil, 1].
When estimations are considered instead of specific vatlisstill nat-
ural to assume that the respective interyisk,] are subsets of the value
domains (e.gk1, ks] C [0, c0) for Cost and [k, ko] C [0, 1] for p). Even
if expert estimations given to leaf node parameters sdiisfge assump-
tions, it may happen that as a result of tree computatiomagsaf the
parameters in other nodes do not.

Generally, such a situation indicates that no sound coimiascan
be drawn on the given confidence leygl This problem can be solved
in a number of ways.

— The global confidence level- can be decreased in order to achieve
soundness of estimations in all the nodes. It is possiblentb the
largest valuepr ensuring sound conclusions and this value can be
considered as the confidence level of the whole tree.

— It is possible to define the required confidence level locliyeach
node.

— It is possible to adjust one or both of the bourdsndk, to fit into
the required interval; this will automatically decrease tonfidence
level of the respective node as well.

Each of these approaches has its pros and cons; selectimgshene
may be application specific and remains the subject for éutesearch.

5 Tree Computations with Estimations

First consider as an illustration a simple attack tree cdatpn routine
based on the example given in Figure 1. First we fix the levelooifi-
dence of our estimations to lpe = 0.9 and second we let out experts to
evaluate the parameters of the leaves with this confiderssAe we get
the estimation interval for th€ost parameter in the leaf “Use privileged



person to leak information” at this confidence to[bé&6- 10, 1.24- 107,
etc, as given in Table 2.

Next we use the computation rules developed in Section 4 t&irob
parameter estimations for non-leaf nodes as well (see Tyblenally,
in the root node we use (6) in its interval form to fiRd[2.51 - 107 <
Outcome < 5.36-107] = 0.9, which shows that the outcome of the attack
is with high probability positive for the attacker, hencersomeasures
must be introduced in order to counter it.

Table 2: Attacktree of leaking sensitive information frorocampany.

ID Description Type Parameter estimations
Gain of the attacktree Pr[5.23 - 107 < Gain < 2.48 - 10°] = 0.9
A Leak information OR Pr 8.58 - 10% < Cost < 2.14 - 10°] = 0.9

Pr[0.0561 < p < 0.544] = 0.9
Pr[4.86 - 10° < 75 < 6.14-10°] = 0.9
Pr[4.86 - 10° < 7p < 6.14-10°] = 0.9
Pr[2.51 - 107 < Outcome < 5.36 - 10"] = 0.9
Pr[8.58 - 10* < Cost < 2.14-10°] = 0.9
Pr[0.0561 < p < 0.544] = 0.9
Pr[4.86 - 10° < 75 < 6.14-10°] = 0.9
Pr[4.86 - 10° < 7p < 6.14-10°] = 0.9
Pr[2.51 - 107 < Outcome < 5.36 - 10"] = 0.9
A.1.1 Electronic espionage LEAFr[9 86-10° < Cost < 1.11-10"] = 0.9
Pr[0.186 < p < 0.314] = 0.9
Pr[4.86 - 10° < 75 < 6.14-10°] = 0.9
Pr[4.86 - 10° < mr < 6.14 - 10 = 0.9
Pr[1.71 - 107 < Outcome < 2.59 -107] = 0.9
A.1.2 Regular espionage LEAFr[8 58 - 10* < Cost < 2.14 - 10°] = 0.9
Pr[
Pr]
Pr[
Pr
[
Pr[
Prf
Pr[—
Pr[—
[
Pr[
Pr]
Pr[
Pr[—

Al Leak without internal OR
help

0.0561 < p < 0.544] = 0.9
4.86-10° < 75 < 6.14-10°]1 = 0.9
4.86-10° < 7p < 6.14-10°] = 0.9
2.51 - 107 < Outcome < 5.36 - 107] = 0.9
A.2  Leak with internal help ANDPr 8.66 - 10° < Cost < 2.15-107] = 0.9
0.0779 < p < 0.0871] = 0.9
9.72-10° < 75 < 1.23-107] = 0.9
3.33-10° < 7p < 2.53-107] = 0.9
2.05 - 107 < Outcome < —6.98 - 10°] = 0.9
A.2.1 Recruite privileged pet-EAF Pr 8.58 - 10° < Cost < 2.14-107] = 0.9
0.0858 < p < 0.214] = 0.9
4.86-10° < 75 < 6.14-10°]1 = 0.9
4.86-10° < 7p < 6.14-10°] = 0.9
8.16 - 10° < Outcome < 1.22-107] = 0.9
continues next page ...

son




Table 2 — continues from previous page ...

ID Description Type Parameters estimations

A.2.2 Use privileged person loEAF Pr[7.56 - 107 < Cost < 1.24 - 10°] = 0.9
leak information Pr[0.428 < p < 0.672] = 0.9

Pr[4.86 - 10° < 75 < 6.14-10°] = 0.9

Pr[

Pr|

4.86-10° < 7p < 6.14-10°] = 0.9
6.98 - 107 < Outcome < 8.4-107] = 0.9

In general, we may have three possible classes of estinsatios
(px, k1, ko) for Outcome of the root node:

1. 0 < ky < kg, in which case we say that the vulnerability level of

the primary threat under consideration with respect to dwpiired

confidence level ivigh;

k1 < ko < 0, in which case we say that the vulnerability levelas;

3. ky < 0 < ko, in which case we say that the vulnerability level is
medium

N

If needed, the last class can be further divided into lowedioma and
higher medium vulnerability levels depending on whethenttean value
’“LQ’” of the estimation (considered as a normally distributedioam
variable) is less or greater than zero.

If the security analyst finds out that the security level i$ axcept-
able, (s)he concludes that some measures must be impleim&he=pos-
sible measures are usually targeted towards loweringettamess prob-
ability or increasing expected penalties (e.g. by increaprobability of
getting caught). When some set of protection measures sdaened, the
tree computations can be performed again for a new settidgfahe
security level becomes acceptable, we know that the set afumes is
sufficient. It only remains to pick the most adequate set ofisneasures
(this step is identical to the one described in [16]).

Following the tree computation routine, we can also find oliclv
nodes of the tree are critical ones and must be addresseduwvisiecurity
enhancements. E.g. in the example presented above we spariae-
ters of the root node are derived from the parameters of #iéRegular
espionage”, which is thus the most vulnerable node in thigge

6 Conclusions and Further Work

We presented an extension of the multi-parameter threatnredel to
the case where the parameters of elementary attacks are agviater-



val estimations rather than exact values. Clearly, suctobl@m setting
implies the need to compute the values of primary threatrpatars as
estimations as well. A suitable method for defining necgsalyebraic
operations and relations on evaluations was developedsmpé#per and
illustrated with a simple attack scenario.

There are still several directions our research can be roosdi in.
First, our current heuristic used to compute with estinreis to con-
sider all the parameters as normally distributed with flgt@arameters.
This simplification can turn out to be too restrictive for so@pplica-
tions, hence further studies are needed to find out how otseibaitions
behave under the given tree computation rules.

Second, our tree computation routine can give out-of-bewadues
for some parameters (e.g. probabilities) in some nodeseTldre several
possible solutions to this problem and selecting the bestremains the
subject for future research as well.

And, last but not least, even though the authors have usackdtee
approach successfully in several security analyses, iénsion to inter-
val estimations still needs further practical evaluation.
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