
High-Performance Qualified Digital Signatures
for X-Road

Arne Ansper1,2, Ahto Buldas1,2, Margus Freudenthal1, Jan Willemson1

1 Cybernetica AS, Mäealuse 2/1, Tallinn, Estonia
2 ELIKO Competence Centre in Electronics-, Info- and Communication

Technologies, Mäealuse 2/1, Tallinn, Estonia?

Abstract. In Estonia, the X-Road infrastructure for unified governmen-
tal database access has been in use for more than 10 years now. The
number of queries mediated over the X-Road has exceeded 240 million
per year. Even though all the queries and replies are signed by using
the X-Road’s own PKI facilities, the resulting signatures are not fully
qualified in the sense of the Digital Signatures Act. There are several
technical issues to be solved, most notably performance requirements,
since the operations needed to achieve qualified signatures (obtaining
OCSP responses and time stamps) require time. The topic of this paper
is to propose organisational and technical solutions to overcome these
challenges. A novel batch signature and time stamp format is proposed
allowing to perform many PKI operations by a price of one, helping to
meet the performance requirements.

1 Introduction

Recent developments in ICT have made digital communications an integral part
of our everyday life. More and more services are provided and consumed over the
Internet, and this holds true both for private and governmental sector services.

In Estonia, there are two foundational electronic frameworks that have been
running for more than 10 years now and that act as enablers for a large number
of other services.

First of them, the national ID-card infrastructure, was launched in 2002.
At the time of this writing (April 2013), there are 1,193,050 active ID-cards3.
Currently there are about 80 different public and private service providers who
make use of ID-card authentication and signature mechanisms, including all the
commercial banks and telecom companies, Estonian Tax and Customs Board,
Center of Registers and Information Systems, etc.4

? This research has been supported by European Union through European Regional
Development Fund under ELIKO Competence Center (EU30017) and EXCS Center
of Excellence in Computer Science.

3 The whole population population of Estonia is roughly 1.3 million according to the
census of 2011. The number of active ID-cards can be seen at http://www.id.ee/,
last accessed April 25th, 2013.

4 http://id.ee/index.php?id=31007, last accessed April 25th, 2013.

The second important Estonian digital infrastructure facility is called the X-
Road, and it was launched already in 2001. It acts as a unified access layer to most
of the governmental registers, allowing secure and efficient data access by both
the relevant authorities and citizens. Currently, more than 100 organizations are
providing services over the X-Road and more than 600 registers are accessible
via the infrastructure.

One of the main issues with the current X-Road implementation is that even
though the SOAP messages internally used by the X-Road are signed, these
signatures can not be considered qualified with respect to the Estonian Digital
Signatures Act. The X-Road uses its own Certification Authority and time-
stamping service, but relies on software-based signature key management and a
non-standard mechanism for distributing certificate validity information. As a
result, the legal status of X-Road messages is potentially unclear.

This paper describes the efforts made to overcome these problems. The main
issue to tackle when turning X-Road message signatures into fully qualified ones
is performance. For example, the existing ID-card infrastructure, even though
providing all the required mechanisms (hardware tokens for key management,
OCSP responder for certificate validation, etc.), is not built to handle the vol-
umes currently required by the X-Road. The number of digital signatures given
by all the ID-cards over 11 years is roughly 112 million5, but the number of
X-Road requests made per year exceeded 240 million in 2011 [Kal12], and both
the requests and their responses are signed.

This paper presents both organizational and technical measures required to
meet these performance goals. The main technical contribution of the paper is
the batch data format that can be used to give many signatures and time stamps
in one operation.

The paper is organised as follows. First, Section 2 provides the necessary
background about the X-Road, and covers the requirements for the new tech-
nical solution. It also provides a discussion of organizational measures needed.
Section 3 presents various potential technical solutions and selects the one most
suitable for the X-Road. In Section 4 we discuss its performance and implemen-
tation details. Finally, Section 5 draws some conclusions and sets directions for
further work.

2 X-Road

By early 2000s the level of computerization in the Estonian state databases
had reached both the level of sufficient technical maturity and a certain critical
volume so that the need for a unified secure access mechanism was clear. To
address that need, the development activities on the modernization of national
databases started in the beginning of 2001 [KV02,Kal02]. The first version of the
developed X-Road infrastructure was launched on December 17th 2001. Today,
already the fifth generation of the X-Road is in operation [Kal12].

5 http://www.id.ee/, last accessed April 25th, 2013.

Since the first version of the X-Road, several requirements were governing its
development [ABFW03,Kal12]:

– Integrity and authenticity. Since information received over the X-Road will
potentially be used to take legally binding actions, information integrity and
authenticity are the primary security requirements.

– Confidentiality and authentication. Most (though not all) the data trans-
ferred over the X-Road is meant to be processed only by certain authorities.
Thus, strict access control mechanisms had to be built into the system.

– High availability and scalability. Operating as an overlay network on the
Internet, the X-Road is a subject to availability threats. Hence it had to be
designed to work even if some central services were unavailable. As a result,
the X-Road is very distributed with only a very limited number of central
services (like certification, directory and logging). This architecture has also
allowed the infrastructure to scale extremely well. As noted above, in 2011,
the number of queries made over the X-Road per year reached 240 million.

To ensure integrity and access control, the X-Road is provided with its own
public key infrastructure (PKI) solution, where all the service providers have
public key certificates, all the queries and replies are digitally signed and time-
stamped [WA08].

By the time the first version of the X-Road was launched, the Estonian
national PKI was still in its infancy (the first ID-cards were issued only in 2002,
i.e. the next year after the X-Road was deployed). Hence, the X-Road PKI and
the national PKI were developed independently, and have remained so for 10
years.

This has caused the problem of signatures on the X-Road queries and re-
sponses having unclear legal status in the light of the Estonian Digital Signa-
tures Act. Although no X-Road signature has ever been disputed in court, it
does not make sense to use an underlying technology that leaves the room for
such disputes.

The first issue to resolve when trying to turn X-Road signatures into legally
valid ones is the matter of key management. Currently, the service providers
keep the signature keys in the software of X-Road security servers. Security
server is a component that encapsulates security-related functionality of an or-
ganisation connected to the X-Road infrastructure. It is responsible for signing
the outgoing messages, verifying signatures on incoming messages, maintaining
a secure transaction log, and enforcing access control. Security server acts as
a gateway between the organisation connected to the X-Road and the X-Road
infrastructure.

Even though signing by a security server does not directly contradict the
current wording of the Digital Signatures Act, there are several indications that
in the near future, it will not be possible to comply with the legal requirements
without keeping the signature keys in a physically protected hardware environ-
ment.

For example, Annex III of the Directive 1999/93/EC of the European Par-
liament and of the Council on a Community framework for electronic signatures

states the requirements put onto secure signature-creation devices. Namely, the
directive states that

Secure signature-creation devices must, by appropriate technical and pro-
cedural means, ensure at the least that:

(a) the signature-creation-data used for signature generation can practi-
cally occur only once, and that their secrecy is reasonably assured;

(b) the signature-creation-data used for signature generation cannot, with
reasonable assurance, be derived and the signature is protected against
forgery using currently available technology;

(c) the signature-creation-data used for signature generation can be reli-
ably protected by the legitimate signatory against the use of others.

Even though to the best of the authors’ knowledge no legal act explicitly
states that these requirements can only be met by hardware-protected signature
keys, we argue that given the current development and sophistication of malware
attacks, software-only protection mechanisms are no more adequate to meet the
above-cited requirements. Hence, a design decision was taken to provide the next
generation of the X-Road with the hardware-enabled signature creation devices.

Currently, there are roughly two kinds of cryptographic hardware devices
available on the market.

– Hardware Security Modules (HSM) provide high throughput for crypto-
graphic operations like signing, but are also rather expensive. Some of the
organizations who have joined the X-Road infrastructure already make use
of HSMs, but it is clear that HSMs are not cost-efficient for most of the
smaller service providers.

– Chip card or USB token based devices are considerably cheaper, but their
performance is considerably slower as well. A typical device of this kind is
capable of giving only a few signatures per second, which is clearly insufficient
given the current volumes of the X-Road traffic (please refer to Section 4 for
some more detailed performance estimates).

Hence one of the key problems to address is enabling the low-end crypto-
graphic hardware to improve the throughput by several orders of magnitude.
This can be done by batching several signature requests into one data structure
and taking just one signature per batch. The details of this solution will be
presented in Section 3.

There are also other aspects to consider when making the X-Road signatures
compatible with the ones acceptable from the viewpoint of the Digital Signatures
Act and the Estonian national PKI.

First, all the digital signatures require a time-stamp. Given that the number
of X-Road queries per day can reach up to one million [Kal12], the time-stamping
service of the Estonian national PKI would not be able to handle this. Similarly,
the OCSP-based certificate validity confirmation service would not be able to

provide sufficient throughput. Second, both the time-stamping and OCSP ser-
vices may be subjects to availability problems, and their temporary unavailabil-
ity should not block the core operations of the X-Road infrastructure. We will
discuss these issues in more detail in Section 2.1.

Finally, the signature format currently used by X-Road differs from the one
used in the national PKI. This makes X-Road signatures impossible to verify
with the software available for the standard ID-card operations. As a part of the
projects of updating both the X-Road infrastructure and the Estonian national
PKI, it was decided to improve their interoperability by moving to a unified
signature format.

This process was first started by the developers of the national PKI. After
studying different standards suggested by European Commission [EC211] it was
decided to base the next Estonian digital signature standard on XAdES format
and ASiC container [XAd10,ASi12].

Given the current state of standards, these choices are indeed reasonable.
However, they do not provide a solution for the high availability requirements
listed above. Presenting such a solution will be the main contribution of this
paper.

2.1 X-Road Message Signature Validation Workflow

X-Road communication operates by exchanging queries and responses, both of
which are signed messages. Signatures are used to provide both authenticity
and integrity, and hence their validity is essential in order to meet the security
requirements put onto the whole infrastructure.

Two main mechanisms are used in conjunction to ensure the validity of the
public key certificate at the moment of signing. First, Online Certificate Status
Protocol (OCSP) is used to make a statement concerning the validity interval
of the certificate, and second, a time-stamp is used to prove that the signature
existed at some moment in time. If this moment falls into the validity interval
granted by the OCSP statement, the certificate and the corresponding signature
are considered to be valid.

In its current setting, the Estonian national PKI solution makes one OCSP
query per signature. By using the hash of the signature as OCSP nonce, it is
possible to obtain behaviour similar to time-stamping (in [ABRW01] it is called
notarization). However, in its vanilla form it has several performance issues.

1. The OCSP responder is a single point of failure. Even short-term unavail-
ability of the service would block the operations of the entire X-Road if every
message would need a dedicated OCSP response.

2. The OCSP server will be overloaded. If an OCSP confirmation would be
required for all the X-Road messages, the OCSP server would not be able
to handle this volume.

3. The requirement to make one OCSP request per X-Road message also in-
troduces latency. When the latencies start accumulating in case of complex
X-Road queries, this poses a serious availability threat.

All these issues can be efficiently solved by caching the OCSP responses at the
message sender’s side. This will guarantee the availability of signing functionality
even in case of OCSP responder’s temporary malfunctioning. It will still be
possible to give valid signatures as long as the cached OCSP response remains
fresh. The length of the freshness interval depends on the policy, but it could
be, say, a couple of hours. When a temporarily unavailable OCSP responder
becomes functional again during this period, service continuity is not harmed.

Regarding the possible overload of the OCSP server, pre-caching the re-
sponses allows to use one response for several signatures, hence the number of
the responses does not depend on the number of signatures any more, but rather
on the number of currently valid certificates, the number of which is significantly
lower.

And third, a pre-cached copy of OCSP response allows for immediate message
signing, removing the potential threat of latency.

The problems with the time-stamping service are similar. If the signer would
need to wait for the time-stamping server’s reply, this would again create a
single point of failure together with the latency issues and the potential overload
if every message would be required to have a separate time stamp.

Solution to this problem starts from the observation that it is actually the
message receiver who is interested in the validity of the signature, since he is
the one who may need to prove that the actions he took were a consequence of
a valid message. Hence we let the message receiver to take care of obtaining the
time stamp. The above-mentioned three problems still stand, but are easier to
solve in the message receiver’s end.

Since the OCSP response has a validity interval, taking a time-stamp is
not a time-critical action. In fact, the decision whether to request the time
stamp instantly or to queue the request for later, is a policy issue. As such, it
will constitute a trade-off between service availability and the risk of potential
inability to prove the signature validity at a later time in case the time-stamping
server will become unavailable.

Request queueing also allows us to solve the problem of time-stamping server’s
overload. This way it will be possible to aggregate the time-stamping requests
into one batch data structure and letting the server to time-stamp this instead
of time-stamping all the requests separately.

It turns out that for this purpose, the same data structure can be used as for
batching several signature requests. We will now discuss this solution in detail
in Section 3.

3 Batch Signatures and Timestamps

Signature schemes such as RSA are time-consuming compared to other crypto-
graphic operations like symmetric encryption or hashing. For servers that have
to generate hundreds or thousands of signatures per second it would be desir-
able to have methods that enable more efficient signing than just signing every
message separately.

By a batch signature we mean an algorithm S that, having as input a list
M1, . . . ,M` of messages, creates signatures s1, . . . , s`, so that there is an effi-
cient verification algorithm V , so that V (si,Mi) = 1 whenever (s1, . . . , s`) ←
S(M1, . . . ,M`). Batch signature schemes make sense if S uses less computational
resources than signing all messages separately with ordinary signature schemes.
There are several methods known for batch signatures.

3.1 Fiat’s Batch RSA

The first batch signature scheme—batch RSA—was proposed by Amos Fiat in
1989 [Fia89,Fia97]. It enables to effectively perform several modular exponentia-
tions at the cost of a single modular exponentiation, which is very useful if many
RSA signatures (or pure-RSA encryptions instead of hybrid encryptions) must
be performed at some central site. A batch RSA signature looks like an ordinary
RSA signature except that the choice of public exponents is different—instead
of one fixed public exponent, a batch signature scheme uses many public expo-
nents e1, . . . , e` that are relatively prime to ϕ(N) and to each other. For signing
a batch (M1, . . . ,M`) of messages, the batch RSA computes

M
1
e1
1 mod N, M

1
e2
2 mod N, . . . ,M

1
e`

` mod N ,

at a time using just one full-size modular exponentiation, where N is the RSA
modulus. There are several restrictions when using such a scheme for encryption.
For example, one must take care that the same message M is not encrypted with
two different relatively prime public exponents ei and ej because M can easily
be computed from the two cryptograms Mei mod N and Mej mod N .

One more obstacle of using such a scheme in practice is that the public-key
certificates we have to use either have to contain many public exponents instead
of one, which is not supported by standards, or there have to be many different
public-key certificates issued with different public exponents that all correspond
to the same secret key, which again is not foreseen by standard PKI solutions.
More universal solutions for batch signatures are thereby necessary.

3.2 Simple Batching with Hash Lists

There is a very simple method for converting any conventional signature scheme
to a batch signature scheme which is not that size economic as the Fiat’s batch
RSA, but is simple and universal. The so-called hash list scheme works as follows.
In order to create a batch signature for a batch M1, . . . ,M`, the signer

1. Hashes all the messages: mi = h(Mi) for all i = 1 . . . `.
2. Creates the hash list L = (m1,m2, . . . ,m`) and computes the hash value
m = h(L) of the list.

3. Signs the hash value m by using an ordinary signature scheme: s = σ(m).
4. The signature si for any Mi is a pair si = (s, L) that consists of the ordinary

signature and the hash list L.

In order to verify (s, L) as the signature of Mi, the verifier:

1. Computes mi = h(Mi);
2. Checks if mi ∈ L;
3. Computes m = h(L); and
4. Verifies the ordinary signature s = σ(m) on m.

This scheme is very easy to implement and is feasible if the batch size is relatively
small. The size of the signature is `· | h | + | s |, where | s | is the size of the
conventional signature and |h | is the number of output bits of h.

A batch signature scheme based on hash lists was recently implemented in
Azerbaijan in a system very similar to X-Road [Kal12]. However, due to its
performance limitations, a more sophisticated solution was required for Estonia,
and we will present this solution in the next Section.

3.3 Signatures with Batch Residue

In 1999, Pavlovski and Boyd [PB99] proposed a general technique for converting
any public-key signature scheme (with appendix) efficiently to a batch signature
scheme by using Merkle hash trees [Mer80]. Their batch signatures s1, . . . , s` for
a batch M1, . . . ,M` consist of an ordinary signature s that depends on all Mi,
and a batch residue ri which varies with every message, i.e. si = (s, ri). Signature
verification consists of recalculating the input to the ordinary signature s using
the message Mi and batch residue ri, and then verifying the ordinary signature s.

The calculation of the batch residue and its verification only use hash compu-
tations. Therefore, creating a batch signature is almost as efficient as generation
of a single ordinary signature. Batch signatures are somewhat longer than ordi-
nary signatures because they contain batch residues of size |h | · log `, where |h |
is the number of output bits of the hash function h.

m

m12

m1 m2

m34

m3 m4

Fig. 1. A Merkle hash tree for m1, . . . ,m4.

For example, in case of ` = 4, the batch signature of [PB99] for a batch
M1,M2,M3,M4 is created (by using a hash function h and an ordinary signature
scheme σ) via the following steps:

1. All the messages are hashed: mi = h(Mi) for all i = 1 . . . 4.
2. The Merkle hash tree (Fig. 1) is computed: m12 = h(m1,m2), m34 =
h(m3,m4), m = h(m12,m34).

3. The root hash value m is signed by using the ordinary signature scheme:
s = σ(m).

4. The batch residues are composed as follows: r1 = {m2,m34}, r2 = {m1,m34},
r3 = {m4,m12}, r4 = {m3,m12}.

In order to verify s3 = (s, r3) = (s, {m4,m12}) as the signature of M3, the
verifier:

1. Computes m3 = h(M3);
2. Computes m = h(m12, h(m3,m4)); and
3. Verifies the ordinary signature s = σ(m) on m.

All specific Fiat type batch signatures schemes have some restrictions, in terms
of batch size limitations, being for verification only, having no support for hetero-
geneous signature generation for different recipients, etc. The scheme of [PB99]
has obvious advantages over the Fiat-type schemes, including an improved sig-
nature size, the ability to batch-sign for independent recipients, and unlimited
batch size. Hence, we propose using it to meet the performance requirements set
by the X-Road.

Next, Section 4 discusses the gains of this approach. In the end of the paper
the reader will also find Appendix A presenting the data structure for batch
signatures and time stamps in XML XSD format, and Appendix B with the
corresponding example XML data structures.

4 Discussion

Concluding from Section 2, we had two major improvement targets for the X-
Road.

The first target was achieving a clear legal status of the X-Road message
signatures as qualified ones in terms of the Estonian Digital Signatures Act.
This is achieved by satisfying the main requirement unsatisfied this far and
enabling hardware-based signature key management. Section 2.1 also discussed
the organizational mechanisms needed to support standard signature validation
mechanisms (OCSP responses and time stamps). Hence we can conclude that the
first target has been met (at least as far as the technical aspects are concerned).

The second target was dealing with the performance issues caused by the
heavy and increasing volume of X-Road traffic. As noted in Section 2, affordable
chip card or USB token based solutions do not provide sufficient throughput. For
example, SafeNet’s Smart Card 400 chip card is able to produce one RSA1024
signature in 0.45 and one RSA2048 signature in 1.23 seconds6. At peak loads,
this is performance is insufficient7.

6
http://www.safenet-inc.com/products/data-protection/two-factor-authentication/smart-card/,
last accessed April 29th, 2013.

7 According to the statistics obtained from the X-road manager Heiko Vainsalu, the
current documented peak occurred on April 5th, 2013, when the Digital Prescription

By using the Merkle tree, we will be able to aggregate a large number of
messages into one batch. It is clear that in order to produce a Merkle tree on `
leaves, ` − 1 hash evaluations need to be computed. We will use the ECRYPT
II project benchmarks on SHA-3 candidates to evaluate the time needed for
hash computations8. According to this source, Keccak-256 (a member of the
contest-winning SHA-3 family) uses 101.3 cycles per byte for a 64-byte message
on a 2400MHz AMD Athlon processor. This corresponds exactly to our scenario
where the Merkle tree is built stepwise by hashing two values into one digest.
By selecting 64-byte input and 256-bit output, we obtain exactly the required
2-to-1 compression rate at a high security level. In one second, this setup allows
us to perform

2400 · 106

101.3 · 64
≈ 370000

hash operations on this relatively modest hardware.
To estimate the actual throughput of the signature creation device, we also

need to take the time required to compute the digests mi from the documents Mi

into account. As the messages Mi may be of different size, we have to measure
their hashing time in terms of elementary 64-byte hashing operations. For that,
we imagine that the messages Mi consist of mi blocks of 32-byte in length
and every elementary hashing operations decreases the number of such blocks
by one, until one single hash value remains which is the output of the hash
function. Exactly mi − 1 such operations are needed for that. Note that this
is not the way the hash is actually computed, but gives an upper bound for
the hash computation time—hashing a long message is more efficient in practice
than hashing a number of short messages.

Let ` be the batch size and let the smart-card used for batch signatures
be capable of creating one signature per second. If the messages M1, . . . ,M`

have lengths 32 · m1, . . . , 32 · m` bytes, respectively, then hashing them takes
(m1 − 1) + . . . + (m` − 1) = m1 + . . . + m` − ` hash operations (with 64-byte
input). In addition, the Merkle tree requires `− 1 such hash operations. Hence,
the total number of hash computations is m1 + . . . + m` − 1. If we create one
batch per second, then

m1 + . . .+m` − 1 ≈ 370000 , (1)

whereas the total throughput of the batch signing device is 32(m1 + . . . + m`)
bytes per second, i.e. m1 + . . .+m` blocks (of 32-bytes) per second. Hence, from
(1) the througput f of the signing device is

f = 32(m1 + . . .+m`) ≈ 32 · 370000 = 11.84 MB/s ,

which is sufficient considering that the communication lines between the X-Road
security servers would not allow much more traffic anyway.

Center had to process 4194 messages during a 5-minute period (11:45-11:50). This
amounts to roughly 14 messages per second on average. However, X-Road load is
expected to grow continuously, and this record is likely to be beaten in the near
future.

8 http://bench.cr.yp.to/results-sha3.html, last accessed on April 29th, 2013.

5 Conclusions and further work

This paper discussed some of the problems encountered during the first 11 years
of deployment of the X-Road infrastructure together with possible solutions.
Two central issues we covered were the legal status of the X-Road messages and
rapidly growing performance requirements.

In order to make the signatures on the X-Road messages compliant with the
requirements of the Estonian Digital Signatures Act, two main aspects need to be
improved. First, signature key must be managed in a hardware-protected envi-
ronment (chipcard or HSM), and second, standard signature validation methods
(OCSP and time stamps) must be used. These improvements have their inherent
technical limitations, as the currently available and affordable solutions are not
built to handle the current X-Road communication volumes.

In order to meet these requirements, this paper proposed a set of solutions.
First, to reduce the workload of OCSP and time-stamping servers, OCSP pre-
caching and time-stamp batching were discussed. Second, to allow low-end hard-
ware (chipcards) to produce more signatures per second, signature batching was
proposed.

It turns out that time stamp and signature batches can be built on top of
the same Merkle tree structure. We presented a suitable structure as and XML
schema and evaluated the performance gains it provides. We concluded that us-
ing even a moderate hardware, we can achieve signature device throughput up
to 11.84 MB/s. Clearly, this number can be increased even further by deploying
more advanced hardware. On the other hand it is also clear that for a full imple-
mentation, other operations besides hashing also require time. Hence, the actual
performance benchmarking must still be performed after the implementation of
the proposed scheme.

Implementation of this scheme is already in the works at the time of this
writing. Real benchmarking will remain part of the future work once the imple-
mentation will be finished.

Another interesting future challenge will be deployment of this solution in an
environment other than Estonia, where the legal framework, existing PKI, etc.
might differ considerably. A system based on the Estonian X-Road experience
was recently launched in Azerbaijan [Kal12], but other similar deployments will
depend more on political, rather than the technical issues.

References

[ABFW03] Arne Ansper, Ahto Buldas, Margus Freudenthal, and Jan Willemson. Scal-
able and Efficient PKI for Inter-Organizational Communication. In Proceed-
ings of the 19th Annual Computer Security Applications Conference ACSAC
2003, pages 308–318, 2003.

[ABRW01] Arne Ansper, Ahto Buldas, Meelis Roos, and Jan Willemson. Efficient
long-term validation of digital signatures. In Advances in Cryptology –
PKC 2001, volume 1992 of LNCS, pages 402–415, 2001.

[ASi12] Electronic Signatures and Infrastructures (ESI); Associated Signature Con-
tainers (ASiC), February 2012. ETSI TS 102 918.

[EC211] European Commission Decision of 25 February 2011 establishing minimum
requirements for the cross-border processing of documents signed electron-
ically by competent authorities under Directive 2006/123/EC of the Eu-
ropean Parliament and of the Council on services in the internal market.
2011/130/EU, February 2011.

[Fia89] Amos Fiat. Batch RSA. In Proceedings on Advances in cryptology,
CRYPTO ’89, pages 175–185, New York, NY, USA, 1989. Springer-Verlag
New York, Inc.

[Fia97] Amos Fiat. Batch RSA. J. Cryptology, 10(2):75–88, 1997.

[Kal02] Ahto Kalja. The X-Road Project. A Project to Modernize Estonia’s Na-
tional Databases. Baltic IT&T review, 24:47–48, 2002.

[Kal12] Ahto Kalja. The first ten years of X-road. In Estonian Information So-
ciety Yearbook 2011/2012, pages 78–80. Department of State Information
System, Estonia, 2012.

[KV02] Ahto Kalja and Uuno Vallner. Public e-Service Projects in Estonia. In Hele-
Mai Haav and Ahto Kalja, editors, Databases and Information Sustems,
Proceedings of the Fifth International Baltic Conference, Baltic DB&IS
2002, volume 2, pages 143–153, June 2002.

[Mer80] Ralph C. Merkle. Protocols for public key cryptosystems. In Proc. of the
1980 IEEE Symposium on Security and Privacy, pages 122–134, 1980.

[PB99] Christopher J. Pavlovski and Colin Boyd. Efficient batch signature gener-
ation using tree structures. In International Workshop on Cryptographic
Techniques and E-Commerce: CrypTEC’99, pages 70–77. City University
of Hong Kong Press, 1999.

[WA08] Jan Willemson and Arne Ansper. A Secure and Scalable Infrastructure
for Inter-Organizational Data Exchange and eGovernment Applications. In
Proceedings of The Third International Conference on Availability, Relia-
bility and Security ARES 2008, pages 572–577. IEEE Computer Society,
2008.

[XAd10] Electronic Signatures and Infrastructures (ESI); XML Advanced Electronic
Signatures (XAdES), December 2010. ETSI TS 101 903.

A XML XSD for Batch Signatures and Timestamps

In this Section, we present the XML XSD that supports presenting the Merkle
hash tree structure for batch signatures and time stamps. The data structure
does not actually contain the whole tree (it may be too large to handle), but just
the minimal part of it to be able to prove that the given leaf item participated
in forming the root value.

For the example presented in Figure 1, in order to prove that the root value
m depends on the leaf m3, we need to add the the batch residue values m4 and
m12, as explained in Section 3. The resulting data structure (m3,m4,m12) is
called a hash chain, and this is essentially what we will formally describe next.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/hashchain"

xmlns:tns="http://www.example.org/hashchain"

elementFormDefault="qualified

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<import schemaLocation="xmldsig-core-schema.xsd"

namespace="http://www.w3.org/2000/09/xmldsig#"></import>

The schema defines a new namespace http://www.example.org/hashchain

used to describe the hash tree structure. As a base schema, XMLDsig is used,
as indicated by the ds namespace.

<complexType name="HashChainType">

<sequence>

<element name="DefaultTransforms"

type="ds:TransformsType" minOccurs="0">

</element>

<element name="DefaultDigestMethod"

type="ds:DigestMethodType" minOccurs="0">

</element>

<element name="HashStep" type="tns:HashStepType"

minOccurs="0" maxOccurs="unbounded">

</element>

</sequence>

</complexType>

The main data structure for representing hash computations is hash chain (of
type HashChainType), consisting of a series of hash steps (of type HashStepType).
Before the actual hash function application, some standard canonization trans-
formations (of type TransformsType) may be used. It is also possible to specify
the default hash algorithm (of type DigestMethodType) to the whole tree.

<complexType name="HashStepType">

<sequence>

<choice maxOccurs="unbounded" minOccurs="0">

<element name="HashValue" type="tns:HashValueType"/>

<element name="RefValue" type="tns:RefValueType"/>

</choice>

</sequence>

<attribute name="id" type="ID" use="optional"/>

</complexType>

One hash step (of type HashStepType) can be used to hash together a series
of values (represented either by elements HashValue or RefValue). The values
have the base type AbstractValueType that defines the common elements and
attributes.

<complexType name="AbstractValueType">

<sequence>

<element name="Transforms"

type="ds:TransformsType" minOccurs="0"></element>

<element name="DigestMethod"

type="ds:DigestMethodType" minOccurs="0"></element>

</sequence>

</complexType>

If necessary, it is possible to define non-default transformations and hash
algorithms for some particular hash steps

<complexType name="RefValueType">

<complexContent>

<extension base="tns:AbstractValueType">

<attribute name="URI" type="anyURI"></attribute>

</extension>

</complexContent>

</complexType>

One of the possible value types to be used as the input for a hash step is
RefValueType. Its value is an URI referring to the leaf data item of the Merkle
tree (m3 in the example above), or to another branch of the tree.

<complexType name="HashValueType">

<complexContent>

<extension base="tns:AbstractValueType">

<sequence>

<element name="DigestValue"

type="ds:DigestValueType">

</element>

</sequence>

</extension>

</complexContent>

</complexType>

The other possible value type to be used as the input for a hash step is
HashValueType. Its values may be the other hash values used in the hash chain
computation (m12 in the example above) or other leaf data items in the Merkle
tree (m4 in the example above).

<element name="HashChain" type="tns:HashChainType"></element>

<element name="HashChainResult" type="ds:ReferenceType"></element>

</schema>

Finally, elements of the defined types are declared. The HashChainResult el-
ement contains the root hash value (m in the example above) and the HashChain
element contains the hash chain itself ((m3,m4,m12) in the example above).

B Examples of the Data Structures

First we will give an example hash chain for the Merkle tree in Figure 1. The
hash chain contains two hash steps. The first step, m, represents the computation
m = h(m12,m34). Its first hash value is m12 = h(m1,m2), representing the left
subtree. The second hash value in turn refers to the step m34, i.e. the right
subtree. This step represents the computation m34 = h(m3,m4). The first value
in this step is a reference to the concrete message M3 (the file m3datafile.dat),
whereas the second value is the digest m4 = h(M4).

<HashChain xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns="http://www.example.org/hashchain">

<DefaultTransforms>

<ds:Transform

Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>

</DefaultTransforms>

<DefaultDigestMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

<HashStep id="m">

<HashValue> <!-- Digest m12=h(m1, m2) -->

<DigestValue>8dLS+STphqy...</DigestValue>

</HashValue>

<RefValue URI="#m34"/> <!-- Reference to digest m34 -->

</HashStep>

<HashStep id="m34">

<!-- Reference to data file containing M3 -->

<RefValue URI="/m3datafile.dat"/>

<HashValue> <!-- Digest m4=h(M4) -->

<DigestValue>4kLtO//M3yc...</DigestValue>

</HashValue>

</HashStep>

</HashChain>

The second example shows the file representing the result of the Merkle tree
computation. It contains the result of the hash step m and also a reference to the
corresponding XML element. This file can be signed and verified by standard
digital signature software. Additional software is needed to verify that the signed
Merkle tree top refers to correct hash chain that proves validity of the message
in the file m3datafile.dat.

<?xml version="1.0" encoding="UTF-8"?>

<!-- The URI attribute refers to step m in the hash chain -->

<hc:HashChainResult xmlns:hc="http://www.example.org/hashchain"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

URI="/hashchain3.xml#m">

<ds:Transforms>

<ds:Transform

Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>

</ds:Transforms>

<ds:DigestMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">

</ds:DigestMethod>

<ds:DigestValue>qiTak6MdcsN...</ds:DigestValue>

</hc:HashChainResult>

