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Abstract— This paper discusses a context model developed
for medical laboratory information system of Tartu University
Hospital laboratories (in Tartu, Estonia). Due to the size,
structure and complex history of the laboratory infrastructure,
managing user communications and even achieving a common
vocabulary has become a serious task. Most of the concepts
used by the laboratory personnel depend on the particular
cultural, organizational or other types of context, thus reducing
the problem of user communications to context management.
In this paper we present a cross-linked hierarchical approach
to building a context management engine that uses open context
space and a flexible attribute value delegation mechanism. We
discuss development objectives of the laboratory information
system together with the design decisions made and summarize
the first user experience. Even though the context engine is
currently implemented for use in laboratory environment, its
architecture is general enough to support a considerably larger
variety of application domains.

Keywords: context hierarchy, information systems, self-
management

I. INTRODUCTION

The concept of context is not a very clearly specified one.
There have been several attempts to define it proposed in
the last decade. The first one, based on formal predicate
logic, was started by John McCarthy [1]. His model has
been developed by numerous authors and used in different
AI systems, see e.g. [2], [3].

The second approach was motivated by information search
domain and data warehousing. Specific problems arise here
with gigantic amounts of legacy data available on the In-
ternet, mostly without any reasonably formalized semantic
structure or metadata. A possible solution is to apply heuris-
tic algorithms and context models for backward “coding time
context” reestablishment [4], [5].

The third approach was motivated by a very simple
definition of context as the “surrounding environment” which
can be represented by a number of external attributes such
as user’s position, external temperature etc. An important
motivating scenario for this development has been guiding
people in an interactive space [6]. For example, the research
directions include context-aware pocket museum guides [7],
clever pill-boxes and smart beds in hospitals [8]. Recent
study by Kofod-Petersen and Cassens extends this research
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also by introducing context-awareness and context-sensitivity
[9]. The current status of the whole approach is well de-
scribed by Hardian [10].

All of the approaches presented above try to express the
context as a set of specific attributes, occasionally together
with some processing rules, but disregarding application data
and business logic.

This gap was filled by the process-centric view on context
management originally introduced in 1990s by Brézillon [11]
and further developed by himself and his collaborates (see
[12], [13], [14], [15]).

Brézillon uses a three-level model for context-related
knowledge, dividing it first into external (essentially irrel-
evant or unavailable) knowledge and contextual knowledge.
Parts of the contextual knowledge are in turn focused by
running processes, thus extracting a proceduralized context.

On top of this model, process modeling is carried out
using contextual graphs with arcs corresponding to sequen-
tial actions and nodes corresponding to context-dependent
branching (and later recombination of the branches).

It may happen that the available contextual knowledge
is not sufficient for selecting the branch. Some external
knowledge is then needed and it may be obtained e.g. via
user interaction. As a result of knowledge acquisition, the
contextual graph may be modified as well.

Thus, Brézillon treats context as situation-specific knowl-
edge that is partially focused by processes and at the same
time drives the process selection in the contextual graph.
The structure of the knowledge itself is not important in
the Brézillon model. However, the authors of the current
paper believe that imposing some internal structure to the
knowledge space (which it intrinsically anyway has) can
significantly support process-centric context modeling as
well.

In this paper we will consider an extensive case study of a
real medical laboratory information system and show, how,
extending the hierarchically structured context space, it is
also possible to embed process information in there to the
extent, where the process centric context graph as a separate
entity can be dropped altogether.

We will represent the available knowledge in an abstract
way as a set of relations between different basic items (called
taxons), thus forming a certain graph as well (in a way very
much like our brain does [16]). On top of that graph, the
knowledge space will be built in a way that all the process
control decisions can be taken based on the local contextual
information only. In our proposed model, processes not only
use knowledge for control, but they can also cause new



links between taxons, thus developing the knowledge space
further. As a result, neither of the processes and knowledge
can be considered superior to the other, they are rather
equally important aspects of the same phenomenon.

The paper is organized as follows. Section II describes the
background application domain of a laboratory information
system together with the development objectives. Sections
III and IV describe the design principles and several charac-
teristic subtaxonomies of LIS. Section V covers the structure
of our context space together with the process management
framework, and Section VI summarizes the results obtained
in practical implementation. Finally Section VII makes some
conclusions and sets directions for further work.

II. BACKGROUND

Our research was initially motivated by the development
needs of Laboratory Information System (LIS) for Tartu Uni-
versity Hospital (Estonia). When LIS development started,
the first analysis exhibited serious inconsistencies in user
requirements. Further analysis showed that this was just a
result of ignoring individual context of situations where these
requirements were stated and the inherent diversity of such
situations.

In this section we discuss the application domain of LIS,
its development objectives and requirements in more detail.

A. Application domain

This subsection gives a short description of the laboratory
environment our system needs to operate within.

The main laboratory routine starts with an order from a
doctor who sends a specimen from a patient to the lab for
particular analyses. The analyses are then performed, the
results are validated, and sent back by a laboratory doctor.
Problems with communication arise mostly from the size and
heterogeneity of the medical infrastructure. Some illustrative
parameters are presented below to give the reader an idea
about the complexity of the whole system.

� Laboratory of Tartu University Hospital serves approx-
imately 1250 doctors with very different background
who work for approximately 470 medical organizations
including both private doctors in distant rural areas and
top-level medical centers in large towns.

� The list of analyses has more than 800 items, but the
taxonomy used to describe them is not very uniform.
As a general rule, laboratories describe the results of
the analyses in much more detail than the ordering
doctors expect. The situation is complicated even further
because of the need to interface with many third-party
systems using proprietary code sets instead of widely
accepted ones. Altogether 55 different code sets are used
(including LOINC [17] and SNOMED1).

� An order usually consists of much more than one analy-
sis and there is technological interference between many
combinations of analyses – common resources can be
used, they take different time or require different ways

1http://www.snomed.org

for specimen preparation, etc. As a result, besides the
well-formalized main laboratory workflow there exist
many rarely occurring exceptions that make up more
than a half of all the cases.

� LIS does not cover one single laboratory, but three 24�7
ones and nine business-hours laboratories located at the
distance of up to 5 km from one another partially in
specialized clinics. There are 62 different workplaces,
87 laboratory workers and 32 external systems that
communicate with LIS (including three large hospital
information systems of their own right).

B. Development objectives

The laboratory business processes in Tartu University
Hospital existing before LIS project were the result of a long
and complicated historical evolution. Different parts of the
laboratory had very different traditions, often non-formalized
and not uniform across the whole establishment. One of the
design goals for the new LIS was to achieve a higher level
of process specification and uniformness. Of course, it was
not possible to change the state of affairs overnight, both
because of long-standing traditions and 24�7 requirements.
Rather there was need for a system which could start from
the present state and evolve over time. Thus the respective
context model had to support this kind of evolution as well.

Based on the ideology described in the introduction, it
was clear that the knowledge base had to contain enough
information to model the whole laboratory process. A closely
related development objective was inclusion of the require-
ments concerning the communication between the clients and
the services offered by LIS. It was also envisioned that the
system should be able to manage itself to a certain extent
based on the user interaction (corresponding to external
knowledge acquisition and the implied graph rearrangement
in the Brézillon model). We will see in Section VI how it
worked out in practice.

III. DESIGN PRINCIPLES

In order to keep the context well-manageable and well-
usable, we will introduce some structure to our taxonomy.
First we define the set S of all items relevant in our context
space (see also Section V-A) and assign a suitable set of
valued attributes to each item. Next we apply a hierarchical
top-down clustering algorithm to the set S (see [18] for a
good overview of different clustering methods). The resulting
clusters will be called taxons; all taxons in our hierarchy will
thus essentially correspond to some subset of S with the root
corresponding to S itself.

Taxons may be thought of as more or less general concepts
concerning all the elements of the corresponding subset (also
called elements of the taxon). In any given business situation,
a certain set of taxons is relevant. This set will be further
referred to as context.

In order to refer to the taxons, we give every one of them
a globally unique identifier and an identifier unique in the
set of sibling taxons (also called code). The codes from the
root of the hierarchy to the given taxon make up a full path



identifier. Full path identifier fpi of a taxon has the form
fpi = fpiparent+PathSeparator+ code (where + stands
for concatenation and fpiroot is an empty string).

We can split the taxon’s concatenated fpi into two
parts at any PathSeparator obtaining fpi = fpiCS +

PathSeparator + codeCS . In such a case we say that this
taxon has the code codeCS in the codeset fpiCS .

As noted above, items of S may have valued attributes.
If all elements of some taxon have the same attribute, then
it is natural to consider this attribute being assigned to the
whole taxon. There are two types of taxon attributes. First,
an attribute may have been used as a selection criterion for
creating this taxon; we will refer to these as classification
attributes. Naturally, the value of a classification attribute is
fixed for the respective taxon and all its subtaxons.

Second, if an attribute was not used for classification, it
can still be evaluated for the whole taxon. This value is
automatically delegated to all the elements and subtaxons
of the given taxon. This value can be overridden for some
subtaxon by simply giving that attribute a new (say, more
specific) value.

NULL is an acceptable value for non-classification at-
tributes and its semantics is blocking the value delegation
coming from higher taxonomy levels. Note that value dele-
gation is not implemented by copying the values, but rather
by runtime hierarchy traversal. This approach allows us to
consider parts of the taxonomy tree in different contexts and
evaluate the attributes accordingly.

As an example use scenario of value delegation approach
consider the case of organizational relocation of a laboratory
within the institution. All the internal relations between
employees remain the same, but relations to the new manage-
ment are introduced automatically with the described value
delegation mechanism.

Taxonomic hierarchy in our approach is not a fixed entity.
As noted in Section II-B, the LIS system is meant to
support natural evolution of context space; hence the users
must be provided with means to modify the taxonomic
hierarchy themselves. In our framework, these modifications
are generally performed by changing classification criteria
in the nodes or by further classification of leaf nodes. As
a result, new branches of the tree can be introduced or old
ones moved to other locations.

User credentials for changing the classification are de-
termined by the type of the classifier. In our taxonomic
hierarchy, three types of classifiers can occur.

a) Fixed: Fixed classifier means that the classification
for the particular node is predefined and can not be changed
by the user.

b) List-based: List-based classifiers are used when it
is natural to list all the possible values of the attribute. The
user can add classifier values to the list and move elements
between the lists. As a result, new branches of the hierarchy
are created or some existing ones are relocated.

c) Value-based: Value-based classifiers are mostly used
for numerical attributes. The classification is represented by
non-intersecting union of intervals of real numbers. The
user may extend the intervals and split them, inducing the

respective changes in the underlying hierarchy as well.
One may note that deletion of the nodes (and the respective

branches in the tree) is currently not supported at all. There
are two reasons for that. First, functionality of our taxonomy
is not affected if it contains some unnecessary nodes. Second,
determining unnecessity of nodes may turn out to be rather
complicated. It is, however, possible to join two existing
sibling nodes in our hierarchy if their common parent uses
list-based classification. Another way to get rid of an unused
taxon in a given context is to link it somewhere else in the
hierarchy.

Besides attribute values, taxons may also have some meta-
parameters. First, effective lifetime of a taxon may be given
using valid since and valid until parameters. Second, in
our taxonomic hierarchy it is possible to use a depth modifier
that hides all sub-levels below the depth determined by the
modifier value. This property is useful when building up
a selection list for the user interface based on the given
taxonomy or when the taxonomy has a large number of
taxons on deeper levels. See Section VI-A for a more detailed
description of the class model for context data.

IV. HIERARCHICAL TAXONOMY OF LIS
In this section we will describe some subtaxonomies of our

hierarchical LIS taxonomy relevant in the context model.

A. Taxonomy of locations
Human actions mostly take place in some physical location

and this location is often an important piece of contextual
information. However, the level of detailization of location
data may greatly vary depending on the particular context.
For example, when addressing a message to a neighboring
office we rarely tend to start the address with something like
“Europe, European Union, Estonia . . . ”. At the same time,
when sending a letter from a different continent to the same
office, this prefix becomes essential.

Our context model provides a convenient solution for this
addressing problem. Noting that locations can be hierarchi-
cally described in a very natural way, initializing the location
taxonomy is rather an easy task. Each user operates in his/her
own context that usually also determines the current location
taxon (office table, part of the laboratory, etc). If the address
of some remote taxon is needed, we can follow the two paths
from these taxons towards the root of the hierarchy until we
hit a common node on both paths. The taxon corresponding
to that node determines the common codeset fpiCS that does
not need repeating in the address.

B. Taxonomy of attributes
We have declared a number of attributes for location

taxonomy above and obviously we need to add other at-
tributes, too. It will be helpful if we will be able to handle
attributes in a systematic manner. Our approach is to create a
separate taxonomy “attribute” classifying all attributes used
to describe some properties of taxons.

Figure 1 illustrates our taxonomic hierarchy of attributes
created at system startup. It can later be extended by the
users according to business logic and user requirements.



Fig. 1. Initial fragment of the attribute type taxonomy

C. Taxonomy of human languages
When building user interfaces for information systems,

the problem of adequate object naming often occurs. This
problem is especially important in a heterogeneous and
multi-cultural environment, as is the case with our LIS
example.

In order to carry human-language information about the
taxons, our taxonomy allows a special subclass of attributes,
namely textual attributes. Besides containing a (textual)
value, such an attribute must also refer to a specific language
(see Figure 3 in Section VI-A for a more detailed class
model).

It is of course natural to include language information
into the current context, but defining what exactly is a
language is far from being trivial. Languages may have
different variations (dialects, slangs, local terminology) that
are understood only within a limited context (e.g. in one
particular laboratory or by a certain group of users). Some
words may have different meanings or even have no meaning
at all in some language variants.

In order to address these problems, all the identified
language variations can be gathered into the hierarchical
taxonomy of human languages. Each user may be given
his/her preferred language from the taxonomy. If the user
does not have the preferred language attribute set, the
working-language attribute of location taxonomy defined for
the particular work place is used. If the value of some textual
attribute is not found in a lower level language variation, we
can keep moving up the hierarchy until we find the first
suitable language and use the name in that language for user
communication.

Figure 2 illustrates a fragment of the language taxonomy
of our LIS.

V. KNOWLEDGE AND PROCESSES

In this section we will discuss the structure of our knowl-
edge/context space and the corresponding process manage-

Fig. 2. Fragment of the taxonomy of human languages

ment framework.

A. Context space

In Sections IV-A, IV-B and IV-C we saw several mecha-
nisms that help us building up individual taxonomies. There
are still a few other steps required to reach the full context
space.

First we need to take into account third party code
sets/taxonomies. For example, our LIS uses Logical Observa-
tion Identifiers Names and Codes (LOINC) code set [17] for
external communications. Such code sets can also be viewed
as subtaxonomies in our taxonomic hierarchy. However, they
can of course not be changed by the users run-time and hence
the framework of context evolution is not applicable to them.

The second step is creating just one taxonomy that con-
tains all others as subtaxons somewhere in it. There are
several ways of doing so – one can create a large taxonomy
just by adding the component taxonomies as descendants
under a common root, but also by including some taxonomies
into others, etc.

Additionally, it may be appropriate to create links between
some taxons in different subtaxonomies, hence establishing
some extra structure besides the basic one. For example, in
our LIS case we may need to exhibit the fact that some piece
of equipment is able to perform certain analyses on some
specimen using certain chemical reactives. In such a way
we may even define several parallel hierarchies on the same
set of taxons, and our LIS uses such alternative taxonomies
extensively e.g. to achieve greater flexibility for the process
management framework (see Section V-B)

Given the current state of the research, no good general
methodologies are proposed for the procedure of joining
different taxonomies into one and this remains the subject for
future research. In the case of LIS, human expert knowledge
was used when creating and joining the taxonomies.

B. Process management

As stated already in the introduction, our model does not
really have a notion of a business process. The actual effect



of a process is achieved as a result of communication with the
involved parties (human users, other ISs, lab devices, etc.).
Such a communication act begins by obtaining a message
from some actor and ends after processing the message and
giving a reply. The incoming messages carry information
concerning the surrounding environment (e.g. sensor read-
ings) and outgoing messages endeavor some changes there
(e.g. contain actuator control commands).

Processing of all the messages in the system is carried out
independently. During the processing, the taxons referred to
by the incoming message get a focus in the context space.
Additionally, some new taxons or links may be created as
well in order to keep the description of the surrounding en-
vironment (i.e. the knowledge base) adequate and consistent.
The default target of message processing is to free the objects
in focus from the encumbrance of the associated links.

For example, we may have a message “In the workplace
wp there is a lab worker p holding an object with bar code
bc in his/her hand”. Assuming that all the referred taxons
are known in the system, they will be focused forming the
current context. Within this context, the most encumbered
taxon is selected. In the given example, this turns out to be
the lab worker’s hand, since it can only have up to one link
with the bar-coded objects. The system draws a conclusion
that the object with bar code bc (say, a test tube) must
be moved somewhere else, and by possibly extending the
context using the available links, reply message of the form
“the object with bar code bc should be moved to location c”
is generated. If location c is, say, a stand, the lab worker may
get this message e.g. by seeing the stand led flashing. The
system gets the information about successful movement of
the test tube from another message of the form “the object
with bar code bc reached the machine g” or a message stating
that the lab worker now has something else in his/her hand.

Our experience with the LIS shows that this kind of “lo-
cal” process management enables one to describe arbitrarily
complex work flows. At the same time, the hierarchical
nature of our knowledge space allows us to tune the level of
detailization in user communication very flexibly.

VI. IMPLEMENTATION

A. Core class model for context data

The core part of our context engine data model is shown
in Figure 3.

There are two central classes.
� “Taxon” class contains all taxonomies we have in the

system and they are joined into just one taxonomy. The
primary tree structure is set up by the relation belongs to
and there are only three original mandatory attributes:
code, id and description. The description
attribute is used as a default value for the textual
attributes of the taxon if some attribute’s name is not
set in the language of current context, nor any of the
higher level languages.

� All possible attribute values are collected into the sec-
ond context engine core class “Attribute”. This class
has two mandatory relations to the Taxon class. Note

Fig. 3. Context engine core

that the belongs to link uses taxon’s id, but the links
with uses taxon’s full-path id. This keeps attributes “on
place” even if taxons are moved within the taxonomic
hierarchy. The attributes valid since and valid until con-
trol the actuality of the attribute value at a particular
time. The parameter modifier is optional and can modify
the taxonomy pointed by value as described in Sec-
tion IV.

B. Practical results

The described hierarchical taxonomy management mech-
anism was implemented for LIS of Tartu University Hospital
and released in December 2006. The release took place in
two 24�7 and one smaller business-hours laboratory. By the
time of this writing (January 2008) three more laboratories
have implemented the system and two launches are currently
being prepared.

It was originally envisioned that the end users will manage
the taxonomies themselves and they were provided with the
appropriate software tools. However, taxonomic hierarchy as
a concept for context management turned out to be rather a
dramatic paradigm shift in practice, and the users in Hospital
did not adopt it easily. Therefore, an initial taxonomy was
created for system release time. After some acquaintance
period (about 3 months), the users started to feel more
comfortable with LIS and started developing the taxonomic
hierarchy themselves.

Table I summarizes development of the taxonomic hierar-
chy during the first year of use. The first row indicates the
number of taxons, the next two rows display the numbers
of two ’simple’ (i.e. textual and non-textual) types of taxon
attributes and the last one the number of link attributes
between the taxons in the whole hierarchy.

Category Release-time After 12 months Increase %
Taxons 3377 6038 78.8
Non-text attributes 20010 28050 40.2
Text attributes 4928 7844 59.2
Links 29586 46866 58.4

TABLE I
EVOLUTION OF THE TAXONOMIC HIERARCHY



The hierarchic nature of the context space also enables
evolutionary optimization of the underlying graph. For ex-
ample, if all subtaxons of a higher level taxon are connected
to some other taxon, the links from the lower level can be
dropped in favor of one link from the higher level taxon.
Via user interaction, it is also possible to unlink unused
taxons and move them outside of the active hierarchy. As
a result, the hierarchy becomes smaller and more efficient
to process. For example, consider the numbers of containers
and materials together with the links between these two types
of taxons. Besides these numbers Table II also contains the
product of the numbers of different containers and materials
(i.e. the potential number of links), which has basically
remained unchanged, but nevertheless the number of actual
links has decreased more than two times.

Category Release-time After 12 months Increase %
Containers 86 63 -26.7
Materials 231 317 37.2
Cont.�Mat. 19866 19971 0.5
Links 755 312 -58.7

TABLE II
SELF-OPTIMIZATION OF THE HIERARCHY

VII. CONCLUSIONS AND FUTURE WORK

This paper discussed a data model created for context
space management in context-aware Laboratory Information
System. The model has been implemented in the laboratory
infrastructure of Tartu University Hospital (Estonia). The
user feedback has been mixed, mainly due to long-standing
habits and traditions in many laboratories. However, the users
are gradually starting to accept the context management
based on hierarchical taxonomies. It is the belief of the
authors of the current paper that this approach will eventually
turn out to be much more powerful and this power will be
appreciated by the end users as well. Of course, improving
usability of hierarchical taxonomies from user perspective is
the key prerequisite for wider appreciation.

There are several theoretical issues that will need further
studies as well. First, the data model needs to be formalized
better in order to allow development and analysis of more
complicated attribute value delegation mechanisms.

Second, even though our present research was motivated
by the laboratory environment, the authors feel that the
resulting hierarchical context model is applicable for a larger
variety of settings. Still, it is necessary to conduct more case
studies and to find out whether one can state good general
rules for composing larger taxonomies out of smaller ones.

Third, the issue of deletion of certain attribute values
together with the respective branches of the hierarchy re-
mained outside of the scope of this paper. This feature
was not needed for functionality of the system; however,
deletion operation may be required for refactoring purposes
and achieving better usability of the taxonomy. Deleting
something from the taxonomic hierarchy must be done with
extreme care – even if some branch is not needed in the

local fragment of the hierarchy, there may be some links or
context pointers to it from other taxons. Handling these kinds
of situations remains the subject for future research as well.
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