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Abstract. We introduce infeasibility certificates, compact and easily
verifiable proofs that no profitable attacks exist in the considered sys-
tem model. We introduce computational methods for generation and
validation of such proofs using an enhanced weight reduction technique.
A new method for obtaining adversarial expenses by approximating an
interval within which this value resides, is an interesting approach to
tackle NP-complete tasks and allows to obtain values that require exten-
sive computations in reasonable time.

1 Introduction

Attack trees are regularly used to perform cost-benefit analysis [2, 15, 11, 13, 4, 3]
to determine if the considered system model is sufficiently protected from ratio-
nal profit-oriented adversaries. In these models, the adversarial profit as well as
the expenses, related to preparing and launching single attack steps, are known
to adversaries. If the profit exceeds expenses, the considered system is vulner-
able, as it is profitable to attack it. The objective of the defender is to deploy
security measures in a way that will make the attack process unprofitable for
attackers. According to the rationality assumption, non-profitability of attacking
is considered to be sufficient to hold rational attackers away from the considered
system.

An attack tree is a hierarchical description of targeted attacks driven by a
common goal. It is a tree-like structure where every leaf corresponds to an ele-
mentary attack step, annotated with corresponding cost to prepare and launch
the attack step. In a more formal setting, an attack tree is a monotone Boolean
function Φ(x1, x2, . . . , xn), the arguments of which are assigned with their corre-
sponding weights (costs). The goal of an attacker is to satisfy Φ in the cheapest
possible way. We denote by w(Φ) the minimal cost required to satisfy Φ.

Existing analysis techniques like the improved failure-free model [3], approach
the problem from the adversarial point of view, providing evidence about feasi-
bility of attacking by searching for the cheapest satisfying assignment to Φ the
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total weight of which does not exceed a certain threshold T . In this paper we
study the same problem from the defender’s perspective and aim at providing
evidence about infeasibility of attacking, which is equivalent to showing that
no profitable attacks exist in the model. In other words, we need to show that
w(Φ) > K, where K is the adversarial profit.

Calculating w(Φ) is computationally expensive, as we need to consider every
possible solution to find the cheapest one. We take a different approach and
approximate the interval within which w(Φ) is determined. This provides us with
a reasonable approximation of w(Φ) and lets us obtain the result in a much more
efficient way, compared to calculating w(Φ) directly. We obtain this interval by
approximating the upper wu(Φ) and lower wl(Φ) bounds of w(Φ) using genetic
algorithms.

If wl(Φ) > K, attacking is infeasible, and this is what we need to achieve by
deploying security measures. On the contrary, when wu(Φ) < K attacking is prof-
itable. If K lies somewhere between wl(Φ) and wu(Φ), it is not possible to make
reliable conclusions about feasibility of attacking, this situation would require
more detailed analysis. Relying just on wl(Φ) is insufficient – we need to obtain

both bounds of w(Φ) to be able to estimate the relative error δ = wu(Φ)−wl(Φ)
wu(Φ) of

the method. If the relative error is big then it might be that security expenses
are way too high. The less the relative error is, the less unnecessary investments
we probably make. We study how well wl(Φ) approximates w(Φ) given a specific
computational method that computes wl(Φ) for the Boolean function Φ. The
better it does, the more precise estimation of w(Φ) we can obtain. It turned out
that there are cases when wl(Φ) equals w(Φ) so that the estimation is exact, but
this is not always the case. Apart from the computational method presented in
this paper, there exist other methods which can be used to obtain wl(Φ), e.g. [8].

We need to be able to prove to the auditors that the values wu(Φ) and wl(Φ)
are correctly calculated. Given wu(Φ), it is easy to prove that this value is indeed
an upper bound. To prove it, it is sufficient to present any satisfying solution
with weight wu(Φ), as there exists efficient algorithm that calculates the weight
of a given solution. For wl(Φ), in general, such a compact proof does not exist.

Therefore we introduce infeasibility certificates that are compact and easily
verifiable proofs ξ that the number wl(Φ) is indeed a lower bound of the unknown
value w(Φ). In practice, all we need to do in order to verify the feasibility of
attacking, is to calculate the value of wl(Φ) from the Boolean function Φ and
a certificate ξ, and compare the obtained value to the adversarial profit K.
If wl(Φ) > K, attacking is unprofitable. Infeasibility certificates may be used,
for instance, to show auditors that the system is reasonably protected against
rational profit-oriented adversaries. Such a certificate provides a proof that can
be verified in a very time-efficient manner, even though the generation of such
a certificate may be computationally expensive and take several days.

The outline of this paper is the following. Section 2 outlines the state of the
art, Section 3 introduces efficient way to calculate adversarial expenses by means
of the weight reduction method. Section 4 introduces infeasibility certificates,
and their usage is demonstrated in Section 5 on a simple example. Section 6



provides relevant theorems and proofs. Section 7 outlines empirical evidence
collected throughout the experiments studying the quality of approximation.
Section 8 discusses some open questions.

2 Notation and Definitions

Let X = {x1, x2, . . .} be a fixed set of independent Boolean variables. For
Boolean disjunction and conjunction operations, we use the conventional ad-
dition (x1+x2) and multiplication x1x2, respectively. We use the notation Φ(X)
to denote a Boolean function that may depend on any finite set of the Boolean
variables in X. By Φ(x1, x2, . . . , xn), we mean a Boolean function that may de-
pend on the variables x1, x2, . . . , xn, but not on any other variable in X. By a
conjunction we mean any conjunction of a finite set of Boolean variables in X;
for example xi1xi2 . . . xik . By a min-term of a boolean function Φ(X), we mean
any conjunction µ which implies the truth of Φ, i.e. for which µ |= Φ(X). By
a weight function w, we mean any function w : X → R+ which for any vari-
able x ∈ X returns a non-negative real number w(x). Weight functions can be
extended to all Boolean functions as follows:

– w(µ) = w(x1) + . . .+ w(xn), if µ = x1x2 . . . xn;
– w(Φ) = min{w(µ) : µ is a min-term of Φ} for any Boolean function Φ.

A min-term µ of Φ is a cheapest min-term if w(µ) = w(Φ). The question of
whether there exist feasible (to adversary) attacks against a system can be for-
malised in terms of the Weighted Monotone Satisfiability (WMSAT) problem.

Definition 1. The WMSAT language consists of triples (Φ,w, t), where Φ is a
monotone Boolean formula (AND/OR-formula), w is a function that to every
variable in Φ associates a weight w(z), and t is a real number (threshold) so that
there is a min-term µ of Φ with w(µ) ≤ t, where w(µ) is the sum of all w(z)
such that z is a variable in µ.

In practical context, X = (Φ,w, t) represents possible attacks against the system
(via the monotone Boolean function Φ), their costs (via the weight function w),
as well as the estimated income of an adversary (via the threshold value t). It is
known that the WMSAT problem is NP-complete [3, 14]:

Theorem 1. The Weighted Monotone Satisfiability Problem is NP-complete.

Proof. We will show that the Vertex Cover problem can be polynomially reduced
to the wmsat problem. Let G be the graph with a vertex set {v1, . . . , vm}. We
define a Boolean function F (x1, . . . , xm) as follows. For each edge (vi, vj) of G
we define the clause Cij = xi∨xj . The Boolean function F (x1, . . . , xm) is defined
as the conjunction of all Cij such that (vi, vj) is an edge of G. Let the weight wi

of each xi be equal to 1. It is obvious that G has a vertex cover S of size |S| < P
iff the monotone Boolean function F (x1, . . . , xm) has a satisfying assignment
with a total weight less than P. ⊓⊔



For any language L ∈ NP, there is an efficient (poly-time) verification algo-
rithm V (X,µ), such that for every X X ∈ L ⇔ ∃µ : V (X,µ) = 1. From the
view-point of attack-trees and security, what one really wants is a proof ξ (of
size polynomial in |X|) that X ̸∈ WMSAT, which in the attack tree language
means that there are no attacks with the cost less (or equal) than t. So, ideally
we would like to have a poly-time verification algorithm W such that for every
X = (Φ,w, t) X ̸∈ WMSAT ⇔ ∃ξ : W (X, ξ) = 1, but the existence of such W
would imply NP = coNP which, as the complexity theorists tend to believe,
is not true. Hence, it is a very little hope to find such a W . We still may have
an efficient verifier W that works for some instances X, i.e. we only have the
right-to-left implication.

Definition 2. A partial infeasibility verifier for a language L is a poly-time
computable function W such that for every X : X ̸∈ L ⇐ ∃α : W (X,α) = 1 .
Any α such that W (X,α) = 1 is called an infeasibility certificate for X.

In the practical attack-tree context, L = WMSAT and α is a proof that X
is not in WMSAT which in practical context means that there exist no feasible
attacks against the system. Practical usability of W depends on for how many
useful X-s the function W works, as well as on the size of α.

3 Related Work

3.1 Attack Tree Semantics

The idea of analyzing security using the so-called attack trees was popularized
by Schneier in [18], who suggested to use attack trees as a convenient hierarchical
representation of an attack scenario. The model of Buldas et al. [2] is remarkable
for introducing the multi-parameter approach to the quantitative security risk
analysis. The model assumes rational adversaries who behave fully adaptively
and are always trying to maximize their average outcome. The authors state
that in order to assess security it is sufficient to assess adversarial utility. Their
model introduced a novel way to think about security and gave start to multi-
parameter quantitative security analysis. Jürgenson and Willemson have shown
that Buldas et al. model is inconsistent with Mauw-Oostijk foundations [15] and
introduced the so-called parallel model [11] and the serial model [12] which pro-
vided more reliable results, however in neither models the adversary behaved in
a fully adaptive way. Also, these models were intractable from the computational
point of view, which is why Jürgenson and Willemson developed genetic approx-
imation methods [13]. All the previously described models tried to approach the
problem of estimating adversarial expenses from above considering only the up-
per bound of adversarial expenses. Buldas-Stepanenko fully adaptive model [4]
was the first model which tried to take a different view on the problem and
aimed at estimating adversarial expenses from below considering lower bounds
of expenses. Their failure-free model is similar to the fully adaptive model with
the only difference that in the failure-free model success probabilities of the at-
tack steps are equal to 1. The most significant contribution of the paper [4]



is the upper bounds ideology by which the models should estimate adversarial
utility from above, trying to avoid false-positive security results. The improved
failure-free model [3] improves the Buldas-Stepanenko failure-free model [4] by
eliminating the force-failure states. In the improved model the adversarial be-
havior more fully conforms to the upper bounds ideology introduced in [4]. It
turned out that the elimination of the force failure states has made the model
computationally easier. The authors show that finding an optimal strategy in the
new model is NP-complete and introduced the cost reduction and propagation
methods to get an estimation of the lower bound of adversarial expenses.

3.2 Infeasibility Certificates

Here we list several possible methods that could be used to certify infeasibility
of a WMSAT instance.

There exist satisfiability modulo theories (SMT) solvers, like Z3 [16], which
can generate proofs of unsolvability for infeasible SMT instances. A WMSAT
instance may be encoded as an SMT instance and an infeasibility proofs may
be obtained from the solvers, however these proofs cannot be easily verified and
require proof assistants, such as Coq [7], to verify them. Additionally, the perfor-
mance of solving WMSAT instances encoded as SMT instances is questionable.
Infeasibility of a system of linear equations may be certified by an infeasibility
certificate the existence of which follows from the Range/kernel theorem [5] for
complex domain and from the Farkas’ lemma [6] for the real domain. We can rep-
resent the WMSAT problem in the form of a system of linear equations with real
coefficients and theoretically generate an infeasibility certificate for it. However,
in practice this approach is inefficient, as this involves converting an arbitrary
propositional Boolean formula Φ into CNF, which is computationally expensive,
and besides that, the size of the matrix A of coefficients of linear constraint in-
equalities (A·x ⩾ b in the canonical representation of LP) grows exponentially in
the number of variables in Φ. Two notable results from semialgebraic geometry
and convex optimization, Hilbert’s Nullstellensatz [19] and Stengle’s Positivstel-
lensatz [20, 21], state that for every infeasible system of polynomial equations
and inequalities there exist a simple algebraic identity that directly certifies the
infeasibility of the system. Nullstellensatz deals with polynomial equations in
complex variables, and has been studied for the 3-colorability problem [8]. Null-
stellensatz seems not to fit well for certifying infeasibility of a WMSAT instance,
as it cannot be encoded as a system of polynomial equations. Positivstellen-
satz deals with arbitrary systems of polynomial equations and inequalities and
therefore is a promising approach. Generating a Positivstellensatz infeasibility
certificate is a convex feasibility problem. Finding bounded degree solutions to
the Positivstellensatz is a semideinite problem. This gives a hierarchy of syntacti-
cally verifiable certificates, the validity of which may be easily checked. However,
solving semidefinite programs (SDPs) is NP-hard for quartic and higher degree
polynomials [1, 10]. A computational tractable replacement for this is to apply
sum-of-squares (SOS) relaxation to obtain an optimization problem over affine



families of polynomials, subject to SOS constraints. It is known that SOS pro-
grams may be solved in polynomial time [9, 17]. This approach provides a com-
putational method to generate a bounded degree Positivstellensatz infeasibility
certificates for given WMSAT instances in polynomial time, and is therefore a
promising solution, which will be considered for future research. In this paper
we focus on computational methods for generating and verifying infeasibility
certificates for WMSAT instances, which use attack trees and does not require
any conversions between attack trees and other equivalent representations, e.g.
systems of polynomials.

4 Efficient adversarial expenses calculation
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Fig. 1. Adversarial expenses calculation: an attack tree (a), propagation method (b),
cost reduction (c) and (d).

An attack tree shown on the left-hand side in Fig. 1a corresponds to the
Boolean function ϕ(x, y, z) = (x+z)(z+y), where logical conjunction is denoted
as multiplication, and logical disjunction is denoted as sum. Each argument of
the function is annotated with a weight. Let the arguments have the following
weights: w(x) = 2, w(z) = 6, and w(y) = 4.

In order to find w(ϕ) we need to find the weight of the cheapest satisfying
assignment. ϕ has five min-terms: (xz), (zy), (xy), (xzy), and (z). Hence, w(ϕ) =
min{w(xz), w(zy), w(xy), w(xzy), w(z)} = min{8, 10, 6, 12, 6} = 6. Calculating



the weight of the function this way is computationally expensive for large trees
and not quite practical. The tree structure of an attack tree facilitates the usage
of the efficient propagation methods [3, 14] that allow to calculate wl(ϕ) in time
O(n), where n is the number of attack tree nodes.

Definition 3. A propagation method is a pair (
∧
,
∨
) of real-valued binary op-

erations such that for every two Boolean functions F and G:∧
(w(F ), w(G)) ⩽ w(FG) and

∨
(w(F ), w(G)) ⩽ w(F +G)

For instance, the pair (max,min) is a propagation method, because

max(w(F ), w(G)) ⩽ w(FG) and min{w(F ), w(G)} = w(F +G)

However, it can be seen in Fig 1b that the max operator is a very rough
estimation of w(ϕ) and one could think of using (+,min) instead. The problem
is that this is not a propagation method because it is possible that w(F )+w(G) >
w(FG). However, we are able to convert the function FG into a function F ′G′ for
which (+,min) is a propagation method in terms of Def. 3. This can be done by
using the technique known as weight reduction [3, 14]. The rule w(F ) +w(G) ⩽
w(FG) holds only if F and G have no common variables. The weight reduction
technique eliminates the common variables in the following way. If z is a common
variable of F and G, then we first replace z with new independent variables z′

in F and z′′ in G, and define the weights so that w(z′) + w(z′′) = w(z). It can
be shown that w(F ′G′) ⩽ w(FG) according to Thm. 4.5.5 in [14]. The functions
F ′ and G′ now have one less common variable, and we can repeat the procedure
with other common variables.

As the Boolean function in Fig. 1b contains a common variable z, and there-
fore the propagation method (+,min) cannot be applied directly, and weight
reduction must be done first. The common variable z is substituted with its
independent copies z 7→ z′ and z 7→ z′′, and their corresponding weights are dis-
tributed in a way that w(z′) + w(z′′) = w(z). This distribution may be done in
a variety of ways, as illustrated in Fig. 1c and 1d, both representing the reduced
function ϕ(x, z′, z′′, y) = (x + z′)(z′′ + y). Independently on how we distribute
weights, the rule w(z′) + w(z′′) = w(z) must hold. In the case of a symmetric
distribution w(z′) = 3 = w(z′′) the result is underestimated, as can be seen in
Fig. 1c, however, asymmetric distribution w(z) = 2 and w(z′′) = 4 produces the
exact result for w(ϕ) as can be seen in Fig. 1d. Thus, the choice of a distribution
sets the precision with which the exact result can be approximated.

The main idea behind weight reduction is that every instance of the common
variable in a Boolean formula is substituted with an independent copy of this
variable with reduced weight. The sum of the weights of the reduced variables
must never exceed the initial weight of the common variable, thus guaranteeing
that this method will not over-estimate the weight of the function, according
to Thm. 4.5.5 in [14]. We will show that in the case of Boolean functions with
1 common variable, the result is always exact. We refer the reader to Thm. 4
for details. If the Boolean function contains 2 or more common variables, this



does not hold due to the existence of the so-called reduction defect. For example,
the function (vc + auz)(uy + bz) with unit costs for its variables, always has a
reduction defect.

4.1 Infeasibility Certificates for WMSAT

In this subsection we present a method of constructing infeasibility certificates
for WMSAT that uses weight reduction and propagation described above. The
certificate α consists of instructions for a complete weight reduction of Φ. For
any conjunction-type sub-formula Ψ = FG of Φ for any common variable z of
F and G we have to describe how we distribute the weight of z between F and
G. For this, we have to define a real number αΨ,z ∈ [0, 1] which means that if
the weight of z was w, then it will be redefined to αw in F and (1− α)w in G.
We call a pair (Ψ, z) a decision point of Φ. All the values αΨ,z together form a
certificate. Formally, the certificate is a function α that assigns to each decision
point (Ψ, z) of Φ a real number α(Ψ, z) from the unit interval [0, 1].

Definition 4. By a decision point of a Boolean formula Φ we mean a pair
(Ψ, z) where Ψ is a conjunction-type sub-formula FG of Φ so that z is a common
variable of F and G. The set of all decision points of Φ is denoted by D(Φ).

Definition 5. By a certificate for a Boolean formula Φ we mean a function
α : D(Φ) → [0, 1].

As described above, the certificate consists of instructions how to weight-reduce
(Φ,w) to (Φ′, w′) so that the propagation method (+,min) computes the exact
value of w′(Φ′) that of course may be smaller than w(Φ).

4.2 Computational Methods

The algorithm Desp that for a Boolean formula Φ computes the list D = D(Φ)
of decision points. The list D is initially empty.
The evaluation algorithm Eval that applies the propagation method (+,min) to
the weight-reduced Boolean formula Φ′ (and computes w′(Φ′)) can be defined as
follows. It uses the list of decision points D, and the weight function w as global
parameters and α as an oracle. The input parameters are a Boolean function Φ
and an adjustment list A which is needed for adjusting the weight function w.

The verification algorithm W (X,α), given a triple X = (Φ,w, t) and the certifi-
cate α is shown in Alg. 4.3.

5 Analysis

The more close is ℓ = w′(Φ′) to the exact value w(Φ), the more valuable is
the result. We show (Theorem 1) that if Φ = FG and z is the only common
variable of F and G, then we can divide the weight w(z) of z between F and



Algorithm 4.1: Algorithm Desp(Φ) for generating a list of decision points.

Data: Boolean formula Φ
Result: A list D of decision points

1 if Φ = z (an atomic variable) then
2 return {z};
3 else if Φ ∈ {FG,F +G}
4 SF := Desp(F ) and SG := Desp(G);
5 if Φ = FG then
6 forall z ∈ SF ∩ SG do
7 append (Φ, z) to D;

8 return SF ∪ SG;

Algorithm 4.2: Algorithm Evalα(Φ,A) : for evaluating the weight reduced
Boolean function Φ′.
Data: Boolean formula Φ
Result: Lower bound of w(Φ)

1 if Ψ = z (an atomic variable) then
2 return w(z) ·

∏
(z,β)∈A β;

3 if Ψ = F +G then
4 return min{Evalα(F,A),Evalα(G,A)};
5 if Ψ = FG then
6 AF := AG = A;
7 forall (Ψ, z) ∈ D do
8 append (z, α(z)) to AF ;
9 append (z, 1− α(z)) to AG;

10 return Evalα(Ψ,AF ) + Evalα(Ψ,AG);

G such that the resulting modified function F ′G′, where z is replaced with z′

in F ′ and with z′′ in G′ has the same weight than the original function, i.e.
w′(F ′G′) = w(FG). This means that if in all conjunction type sub-formulae FG
of Φ the sub-formulae F and G do not have more than one common variable,
the certificate α can be chosen so that Evalα(Φ,A) = w(Φ), i.e. the lower bound
is exact.

Unfortunately, as we show in Theorem 3 that this property does not generalise
to the case of more than one common variable. We show that if F and G contain
two common variables, then it might be that Evalα(Φ,A) < w(Φ) for every
possible certificate α, i.e. the reduction defect δ = w(Φ) − maxα Evalα(Φ,A) is
positive.

Theorem 2 gives necessary and sufficient conditions for the positive reduction
defect for a single decision point reduction and shows that the defect a single
decision point (Ψ, z) may create is upper bounded by w(z)/2.



Algorithm 4.3: Algorithm W ((Φ,w, t), α) for verifying the infeasibility
certificate α.
Data: Boolean formula Φ
Result: 1 or 0

1 Compute the decision list D using Desp(Φ);
2 Compute ℓ = Eval(Φ, ()), where () is the empty list;
3 if ℓ > t then
4 return 1;

5 else
6 return 0;

As the weight function w is uniquely defined by its values w(x1), w(x2), . . .
on the Boolean variables, we denote by wξ1,ξ2,... the weight function w for which
ξ1 = w(x1), ξ2 = w(x2), . . .. Hence, for any Boolean function Φ, we can define
a real-valued function fΦ(ξ1, ξ2, . . .) = wξ1,ξ2,...(Φ). It is easy to see that fΦ is
continuous, because w(µ) is a continuous function of the weights, the number
of min-terms is finite, and for any continuous functions f(X) and g(X), the
function φ(X) = min{f(X), g(X)} is also continuous.

5.1 The Case of One Common Variable

For convenience, we add additional variables z, z′, z′′, . . . , y1, y2, . . . to X. Let
F (x1, . . . , xn, z) and G(z, y1, . . . , ym) be monotone Boolean functions. Let z be
the only common variable in F and G. Let F ′(x1, . . . , xn, z

′) and G′(z′′, y1, . . . ,
ym) be the modified Boolean functions where z has been replaced with z′ and
z′′, respectively. Note that F ′ and G′ have no common variables. We always
assume that w(z) = w(z′) + w(z′′) even if we change the values of w(z′) and
w(z′′). Thereby, we use a parameter α ∈ [0, 1] so that w(z′) = αw(z) and
w(z′′) = (1 − α)w(z). By wα, we mean a weight function that behaves exactly
like w, but for which w(z′) = αw(z) and w(z′′) = (1− α)w(z). A min-term µ of
a Boolean function Φ is said to be α-cheapest if wα(µ) = wα(Φ).

Lemma 1. wα(F
′) + wα(G

′) = wα(F
′G′) ≤ w(FG) for any α ∈ [0, 1].

Proof. As F ′ and G′ have no common variables, we have that wα(F
′G′) =

wα(F
′) + wα(G

′). For any min-term µ of FG, there is a min-term µ′ of F ′G′

obtained from µ by replacing z with z′z′′. From w(z) = w(z′) +w(z′′) it follows
that wα(µ

′) = wα(µ). Hence, wα(F
′G′) ≤ w(FG). ⊓⊔

For any conjunction µ, we define two subsets of the unit interval I = [0, 1]:

OF,µ = {α ∈ I : wα(µ) > wα(F
′) and OG,µ = {α ∈ I : wα(µ) > wα(G

′)}



For any Boolean function Φ, let Mz(Φ) denote the set of all min-terms of Φ that
contain z, and Mz(Φ) the set of all min-terms of Φ without z.

OF =
∩

µ∈Mz(F )

OF,µ = {α ∈ I : All α-cheapest min-terms of F ′ contain z′}

OG =
∩

µ∈Mz(G)

OG,µ = {α ∈ I : All α-cheapest min-terms of G′ contain z′′}

UF =
∩

µ∈Mz(F )

OF,µ = {α ∈ I : No α-cheapest min-term of F ′ contains z′}

UG =
∩

µ∈Mz(G)

OG,µ = {α ∈ I : No α-cheapest min-term of G′ contains z′′}

Lemma 2. In terms of topology, OF ,OG,UF ,UG ore open subsets of I.

Proof. As fµ(α) = wα(µ)−wα(F
′) and gµ(α) = wα(µ)−wα(G

′) are continuous
functions, OF,µ = f−1

µ [(0,∞)], and OG,µ = g−1
µ [(0,∞)], the sets OF,µ and OG,µ

as pre-images of an open set (0,∞) are open. As finite intersections of open sets,
the sets OF ,OG,UF ,UG must also be open. ⊓⊔

Lemma 3. If UF ∪ UG ̸= I, then wα(F
′G′) = w(FG) for an α ∈ I.

Proof. Let α ∈ I\(UF ∪ UG), i.e. there are α-cheapest min-terms µF and µG of
F ′and G′, respectively, such that µF = xi1xi2 . . . xikz

′ and µG = yj1yj2 . . . yjmz′′.
Hence, µ = xi1xi2 . . . xikzyj1yj2 . . . yjm is a min-term of FG and

wα(F
′G′) = wα(F

′) + wα(G
′) = wα(µF ) + wα(µG)

= w(xi1 . . . xik) + wα(z
′) + wα(z

′′) + w(yj1 . . . yjm)

= w(xi1 . . . xik) + w(z) + w(yj1 . . . yjm) = w(µ) ≥ w(FG) ,

and hence wα(F
′G′) = w(FG) by Lemma 1. ⊓⊔

Lemma 4. If OF ∪ OG ̸= I, then wα(F
′G′) = w(FG) for an α ∈ I.

Proof. Let α ∈ I\(OF ∪ OG), i.e. there are α-cheapest min-terms µF and µG

of F ′and G′, respectively, such that µF = xi1xi2 . . . xik and µG = yj1yj2 . . . yjm .
Hence, µ = xi1xi2 . . . xikyj1yj2 . . . yjm is a min-term of FG and

wα(F
′G′) = wα(µF ) + wα(µG) = w(µF ) + w(µG) = w(µ) ≥ w(FG) ,

and hence wα(F
′G′) = w(FG) by Lemma 1. ⊓⊔

Lemma 5. If OF ∪ OG = I and OF or OG is empty, then wα(F
′G′) = w(FG)

for an α ∈ I.

Proof. By OF ∪ OG = I, for any α ∈ I, either: (a) all α-cheapest min-terms of
F ′ contain z′, or (b) all α-cheapest min-terms of G′ contain z′′.

If OF = ∅, then this means that for every α ∈ I there is an α-cheapest min-
term of F ′ without z′ contradicting (a), and hence (b) is true. Take α = 0 and



let µF = xi1xi2 . . . xik be an α-cheapest min-term of F ′ and µG be an α-cheapest
min-term of G′. This also means that µ = µFµG is a min-term of FG, whereas
w(µ) = w(µF ) + w(µG). As wα(µF ) = w(µF ) and by the choice of α, we have
wα(µG) = w(µG), we have

wα(F
′G′) = wα(µF ) + wα(µG) = w(µF ) + w(µG) = w(µ) ≥ w(FG) ,

and hence, wα(F
′G′) = w(FG) by Lemma 1.

If OG = ∅, then this means that for every α ∈ I there is an α-cheapest min-
term of G′ without z′′ contradicting (b), and hence (a) is true. Take α = 1 and
let µG = yj1yj2 . . . yjm be an α-cheapest min-term of G′ and µF be an α-cheapest
min-term of F ′. This also means that µ = µFµG is a min-term of FG, whereas
w(µ) = w(µF ) + w(µG). As wα(µG) = w(µG) and by the choice of α, we have
wα(µF ) = w(µF ), we have

wα(F
′G′) = wα(µF ) + wα(µG) = w(µF ) + w(µG) = w(µ) ≥ w(FG) ,

and hence, wα(F
′G′) = w(FG) by Lemma 1. ⊓⊔

Lemma 6. If UF ∪ UG = I and UF or UG is empty, then wα(F
′G′) = w(FG)

for an α ∈ I.

Proof. By UF ∪UG = I, for any α ∈ I, either: (a) no α-cheapest min-term of F ′

contains z′, or (b) no α-cheapest min-term of G′ contains z′′.
If UF = ∅, then for every α ∈ I there is an α-cheapest min-term of F ′ with z′

contradicting (a), and hence (b) is true. Take α = 1 and let µF = xi1xi2 . . . xikz
′

be an α-cheapest min-term of F ′ and µG be an α-cheapest min-term of G′.
Also, µ = µFµG is a min-term of FG, whereas w(µ) = w(µF ) + w(µG). As
wα(µG) = w(µG) (µG does not contain z′′) and by the choice of α, we have
wα(µF ) = w(µF ), we have wα(F

′G′) = wα(µF ) + wα(µG) = w(µF ) + w(µG) =
w(µ) ≥ w(FG), and hence, wα(F

′G′) = w(FG) by Lemma 1.
If UG = ∅, then for every α ∈ I there is an α-cheapest min-term of G′ with z′′

contradicting (b), and hence (a) is true. Take α = 0 and let µG = yj1yj2 . . . yjmz′′

be an α-cheapest min-term of G′ and µF be an α-cheapest min-term of F ′. This
also means that µ = µFµG is a min-term of FG, whereas w(µ) = w(µF )+w(µG).
As wα(µF ) = w(µF ) (µF does not contain z′) and by the choice of α, we have
wα(µG) = w(µG), we have wα(F

′G′) = wα(µF ) + wα(µG) = w(µF ) + w(µG) =
w(µ) ≥ w(FG), and hence, wα(F

′G′) = w(FG) by Lemma 1. ⊓⊔

Theorem 2. There is α ∈ I, so that wα(F
′G′) = w(FG).

Proof. Assume on the contrary that the statement is false. Then by the lemmas
above, OF ∪OG = I, UF ∪UG = I and all OF ,OG,UF ,UG are non-empty. As I
is connected, we have OF ∩ OG ̸= ∅ and UF ∩ UG ̸= ∅.

If there is a cheapest min-term of FG that contains z and µ = xi1xi2 . . . xik

zyj1yj2 . . . yjm is such a min-term, and α ∈ UF ∩ UG, then no α-cheapest min-
terms of F ′ and G′ contain z′ or z′′ and hence wα(F

′) = w(F ) and wα(G) =
w(G). As µF = xi1xi2 . . . xikz

′ and µG = z′′yj1yj2 . . . yjm are min-terms of F ′



and G′, respectively (but not α-cheapest, as they contain z′ and z′′), then we
have a contradiction:

w(FG) = wα(µF ) + wα(µG) > wα(F
′) + wα(G

′) = w(F ) + w(G) ≥ w(FG) .

If no cheapest min-term of FG contains z, and α ∈ OF ∩OG, then all α-cheapest
min-terms of F ′ and G′ contain z′ or z′′. Let µF = xi1xi2 . . . xikz

′ and µG =
z′′yj1yj2 . . . yjm be α-cheapest min-terms of F ′ and G′, respectively. As then
µ = xi1xi2 . . . xikzyj1yj2 . . . yjm is a min-term of FG (but not the cheapest, as
it contains z), we again have a contradiction: wα(F

′G′) = wα(µF ) + wα(µG) =
w(µ) > w(FG) ≥ wα(F

′G′). ⊓⊔

5.2 Two or More Common Variables

Let z be any common variable of F and G, such that F = F0 + z∂F and
G = G0 + z∂G, where ∂F, ∂G, F0, G0 do not depend on z. The functions ∂F
and ∂G are the so-called Boolean derivatives ∂F = ∂

∂zF and ∂G = ∂
∂zG. Let

F ′ = F0+z′∂F and G′ = G0+z′′∂G, where w(z′)+w(z′′) = w(z); w(z′) = αw(z)
and w(z′′) = (1−α)w(z), where α ∈ [0, 1]; andm0 = min{w(F0G0), w(z∂F∂G)}.
As

FG = (F0 + z∂F )(G0 + z∂G) = F0G0 + z∂F∂G+ zG0∂F + zF0∂G

F ′G′ = (F0 + z′∂F )(G0 + z′′∂G) = F0G0 + z′z′′∂F∂G+ z′G0∂F + z′′F0∂G

and w(z′z′′∂F∂G) = w(z∂F∂G), we have

w(FG) = min{w(F0G0), w(z∂F∂G), w(zG0∂F ), w(zF0∂G)}
= min{m0, w(zG0∂F ), w(zF0∂G)}

w(F ′G′) = min{w(F0G0), w(z∂F∂G), w(z′G0∂F ), w(z′′F0∂G)}
= min{m0, w(z

′G0∂F ), w(z′′F0∂G)} .

The difference δ = w(FG) − maxα w(F ′G′) is called the reduction defect. It is
non-negative, as w(FG) ≥ w(F ′G′).

Theorem 3. The reduction defect δ is non-zero (δ > 0) if and only if the fol-
lowing inequalities hold:

| w(G0∂F )− w(F0∂G) |< w(z) < 2m0 − w(G0∂F )− w(F0∂G) , (1)

and has upper bound δ ≤ w(z)
2 − 1

2 | w(G0∂F )− w(F0∂G) |≤ w(z)
2 .

Proof. Note that δ is non-zero if and only if for any α:

m′ = min{w(z′G0∂F ), w(z′′F0∂G)} < min{w(zG0∂F ), w(zF0∂G)} (2)

m′ < m0 = min{w(F0G0), w(z∂F∂G)} (3)

The quantitym1(α) = min{w(z′G0∂F ), w(z′′F0∂G)} gains maximum if w(z′G0∂F ) =
w(z′′F0∂G). We study two cases: (a) w(G0∂F ) ≥ w(F0∂G) and (b) w(G0∂F ) ≤
w(F0∂G).



From (a), it follows that the maximum occurs if

w(z)− 2w(z′) = w(z′′)− w(z′) = w(G0∂F )− w(F0∂G) ,

i.e. if w(z′) = w0 = w(z)
2 − 1

2 (w(G0∂F )− w(F0∂G)). Hence,

M = max
α

m1(α) = max
α

min{w(z′G0∂F ), w(z′′F0∂G)} = w0 + w(G0∂F )

=
w(z)

2
− 1

2
(w(G0∂F )− w(F0∂G)) + w(G0∂F )

=
w(z)

2
+

1

2
(w(G0∂F ) + w(F0∂G)) .

Considering that min{w(zG0∂F ), w(zF0∂G)} = w(z)+w(F0∂G) and | w(G0∂F )−
w(F0∂G) |= w(G0∂F ) − w(F0∂G) by (a), the conditions (2) and (3) transform
to

w(z)

2
+

1

2
(w(G0∂F ) + w(F0∂G)) < w(z) + w(F0∂G)

w(z)

2
+

1

2
(w(G0∂F ) + w(F0∂G)) < m0 ,

which is equivalent to (1). The reduction defect is:

δ = w(FG)−max
α

w(F ′G′) = min{m0, w(zG0∂F ), w(zF0∂G)} −M

≤ min{w(zG0∂F ), w(zF0∂G)} −M

= w(z) + w(F0∂G)− w(z)

2
− w(G0∂F ) + w(F0∂G)

2

=
w(z)

2
− 1

2
(w(G0∂F )− w(F0∂G)) =

w(z)

2
− 1

2
| w(G0∂F )− w(F0∂G) | .

From (b), it follows that the maximum occurs if

w(z)− 2w(z′′) = w(z′)− w(z′′) = w(F0∂G)− w(G0∂F ) ,

i.e. if w(z′′) = w′
0 = w(z)

2 − 1
2 (w(F0∂G)− w(G0∂F )). Hence,

M = max
α

m1(α) = max
α

min{w(z′G0∂F ), w(z′′F0∂G)} = w′
0 + w(F0∂G)

=
w(z)

2
− 1

2
(w(F0∂G)− w(G0∂F )) + w(F0∂G)

=
w(z)

2
+

1

2
(w(F0∂G) + w(G0∂F )) .

As min{w(zG0∂F ), w(zF0∂G)} = w(z)+w(G0∂F ) and | w(G0∂F )−w(F0∂G) |=
w(F0∂G)− w(G0∂F ) by (b), the conditions (2) and (3) transform to

w(z)

2
+

1

2
(w(G0∂F ) + w(F0∂G)) < w(z) + w(G0∂F )

w(z)

2
+

1

2
(w(G0∂F ) + w(F0∂G)) < m0 ,



which is equivalent to (1). The reduction defect is:

δ ≤ w(z) + w(G0∂F )− w(z)

2
− w(G0∂F ) + w(F0∂G)

2

=
w(z)

2
− 1

2
(w(F0∂G)− w(G0∂F ))

=
w(z)

2
− 1

2
| w(F0∂G)− w(G0∂F ) | . ⊓⊔

Theorem 4. There are F and G with two common variables and a suitable
distribution weights, so that the weight reduction always has a defect.

Proof. Let F = vx+auz and G = uy+bz, i.e. the common variables are z and u.
Assume that all weights are equal to 1. Hence, w(FG) = w(xyvu+xvbz+ayuz+
abuz) = min{w(xyvu), w(xvbz), w(ayuz), w(abuz)} = 4. If w(u′)+w(u′′) = w(u)
and w(z′) + w(z′′) = w(z), we have F ′G′ = (vx+ au′z′)(u′′y + bz′′) = vxyu′′ +
xvbz′′ + ayu′u′′z′ + abuz′z′′. Hence,

w(F ′G′) = min{w(vxyu′′), w(xvbz′′), w(ayu′u′′z′), w(abuz′z′′)}
≤ min{w(xvbz′′), w(ayu′u′′z′)} = min{w(xvbz′′), w(ayuz′)}
= min{w(xvb) + w(z′′), w(ayu) + w(z′)}
= 3 +min{w(z′), w(z′′)} ≤ 3.5 . ⊓⊔

6 Conclusions and Open Questions

The results show that the new method is applicable in practice, as real-life
attack trees tend to be flat with relatively small number of decision points,
which makes it possible to generate infeasibility certificates for such trees. Even
the relative error is close to 0.5 may be acceptable in practice because the attack
tree parameters often cannot be measured with high precision.

Theorem 2 may be pessimistic in its assessment because it considers a partic-
ular way of choosing the certificate. For any decision point (Ψ, z) it tries to choose
α(Ψ, z) so that it minimizes the defect of a single step of the reduction. Global
methods of choosing the values of α may obtain better results than what can be
achieved by minimizing the local reduction defects. More precise estimations of
reduction defect would be in place.
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