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Abstract. An extended permutation is a function f : {1, . . . ,m} →
{1, . . . , n}, used to map an n-element vector a to an m-element vector
b by bi = af(i). An oblivious extended permutation allows this map-
ping to be done while preserving the privacy of a, b and f in a secure
multiparty computation protocol. Oblivious extended permutations have
several uses, with private function evaluation (PFE) being the theoreti-
cally most prominent one.
In this paper, we propose a new technique for oblivious evaluation of
extended permutations. Our construction is at least as efficient as the
existing techniques, conceptually simpler, and has wider applicability.
Our technique allows the party providing the description of f to be ab-
sent during the computation phase of the protocol. Moreover, that party
does not even have to exist — we show how to compute the private rep-
resentation of f from private data that may itself be computed from the
inputs of parties. In other words, our oblivious extended permutations
can be freely composed with other privacy-preserving operations in a
multiparty computation.
Keywords: Secure multiparty computation, Private function evaluation,
Extended permutations

1 Introduction

In Secure Multiparty Computation (SMC), k parties compute (y1, . . . , yk) =
f(x1, . . . , xk), with the party Pi providing the input xi and learning no more
than the output yi. Private Function Evaluation (PFE) is a special case of SMC,
where the function f is also private, and its description, typically in the form
of a circuit, is provided as input by one of the parties. One will thus obtain
a solution for PFE, if one designs an SMC system for a universal function f .
In SMC systems, f is usually represented as a Boolean or arithmetic circuit.
Universal circuits are large (compared to circuits they can execute), hence this
approach has not been practical so far.

Recently, Mohassel and Sadeghian [39] have split the task of oblivious circuit
evaluation into two parts — obliviously evaluating the gates, and hiding the
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topology of the circuit in a manner that allows the outputs of the gates to be
passed to the inputs of next gates. They introduce oblivious extended permuta-
tions (OEP) for the second subtask. Their approach increases the performance
of PFE over the state of the art by a couple of orders of magnitude, making the
private execution of small circuits a realistic proposition.

SMC techniques have seen significant maturation in last years, with the ap-
pearance of several frameworks [1,2,5,8,14,23,37] that allow the private compu-
tation of certain tasks with practically relevant sizes. There have been a number
of successful applications of these frameworks [3, 6, 7, 28, 33]. A common tenet
of all existing and in-progress applications is their client-server nature, where
the participating entities are partitioned into input parties providing the private
inputs to a SMC system, computing parties that execute the SMC protocols
for computing the function f , and output parties that receive the results of the
computation [4] (these sets of parties may overlap). This flexibility is certainly
required in practice, as the active participation of all input parties in all stages
of computation is unwanted both for efficiency (if the number of input parties is
large), as well as organizational (if the input parties do not have the ability to
execute complex protocols) reasons.

Mohassel’s and Sadeghian’s OEP construction does not fit into the model
with input, computing and output parties. In their construction, the party pro-
viding the description of the private function must participate in the computa-
tion, i.e. it must be both an input and a computing party.

In this paper, we propose a multiparty OEP construction that allows the ex-
tended permutation to be input to the private computation by a non-computing
input party or constructed during the computation from other private values,
thereby removing the need to treat them in any special manner. In fact, all our
constructions will be presented in the Arithmetic Black Box (ABB) model [13],
making their use in larger applications straightforward, and also greatly sim-
plifying the security proofs. Our construction is conceptually simpler than [39],
and, if the number of computing parties is small, also potentially more efficient
(even though a fair comparison is difficult due to different operational profiles).
It increases the variety of deployment scenarios for PFE applications, among
which credit evaluation and background checks have been proposed [29]. With
our construction, the private computation can be outsourced, and the evaluated
function itself may be obtained through secure computation. We have imple-
mented our proposed construction and provide benchmarking results.

This paper has the following structure. We review the related work in Sec. 2
and give the necessary preliminaries, including the ABB model, in Sec. 3. In
Sec. 4 we present the desired ideal functionality for OEPs, as well as the actual
protocol set (together with security proofs), with the most complicated protocol
appearing in Sec. 5. In Sec. 6 we present the benchmarking results of our imple-
mentation of the OEP protocol; according to our knowledge, this is the first such
implementation. In Sec. 7, we discuss some further research directions opened
up by our OEP construction.



2 Related Work

A number of existing OEP constructions are based on switching networks em-
ploying 2 × 2 switches that may either pass their inputs unmodified, swap the
inputs, or copy one input to both outputs. The network is commonly obtained
from Waksman’s construction [42]; it is evaluated with SMC techniques. Such
constructions appear in [24, 29, 39]. In [38], the construction of [39] is amended
to give it security against malicious adversaries. All such constructions require
one of the computing parties to know the extended permutation.

An OEP can also be constructed with homomorphic encryption [24, Sec. 5.3.2].
This construction has better asymptotic complexity than the ones based on
switching networks, but it requires many expensive public-key operations. Again,
one computing party has to know the extended permutation.

Oblivious RAM (ORAM) [17, 19, 41] is a functionality that allows a server’s
memory to be read and written according to a client’s private address. It is a
more flexible construction than OEP, which fixes the indices ahead of time and
performs many reads in parallel. The implementation of ORAM algorithms on
top of SMC (which would be necessary to emulate OEP) is non-trivial and brings
high overheads [12,36].

A very simple construction for shuffling (permuting) the elements of a vector
is given by Laur et al. [34]. Hamada et al. [21, 22] have used this construction
to give fast sorting algorithms. Our constructions are also based on this form of
shuffling protocols.

3 Preliminaries

Universal composability (UC) [9] is a standard theoretical framework for stating
and proving security of cryptographic constructions. In this framework, a proto-
col π is defined secure if it is as secure as some ideal functionality F embodying
the desired functional and non-functional properties of π in an abstract manner.
A functionality F1 is at least as secure as F2, if for every user of these function-
alities, and every adversary of F1, there is an adversary of F2, such that the user
cannot see the difference in interacting with F1 or F2. UC framework derives
its usefulness from the composability of the “at least as secure as” relation: If
protocol π1 is at least as secure as the (ideal) functionality F1, and protocol π2
incorporating F1 (i.e. π2 has been realized in the F1-hybrid model) is at least
as secure as F2, then π2, where the calls to F1 have been replaced with the
invocations of π1, is also at least as secure as F2.

Arithmetic black box. For SMC, the standard ideal functionality is the Arithmetic
Black Box (ABB) FABB [13]. It provides an interface for users P1, . . . , Pk, up to t
of which may be corrupted (for simplicity, we only consider static corruptions),
to perform computations without revealing intermediate values. Here t depends
on the protocol set πABB implementing FABB. The functionality FABB is given
in Fig. 1. Depending on the implementation πABB, the adversary and/or certain



Internal state: a finite map S from variable names to values (initially empty)
Exposed commands:

Input data. On input (input, v, x) from some Pi and (input, v) from all other parties,
add {v 7→ x} to S.

Classify. On input (classify, v, x) from all parties, add {v 7→ x} to S.
Compute. On input (compute,⊗, v1, v2, v3) from all parties, look up x1 = S(v1) and

x2 = S(v2), and add {v3 7→ x1 ⊗ x2} to S.
Declassify. On input (declassify, v) from all parties, answer with S(v) to all parties.

When receiving any command except input, the whole command, as well as its answer
is also sent to the adversary. For input-commands, (input, v) is sent to the adversary. I.e.
one does not attempt to hide from the adversary, which protocols are executed (who
could determine it through traffic analysis). Only the processed values are hidden.
Some of the parties may be corrupted. For any command (c, . . .) listed above, FABB

accepts the command (masqi, c, . . .) from the adversary, for a corrupted party Pi. Such
commands are processed as commands (c, . . .) from Pi.
The execution of FABB takes place in rounds, with each party submitting its command
for the current round, and the adversary submitting commands for corrupt parties. In
implementations πABB, many rounds may take place in parallel.

Fig. 1: The ideal functionality FABB

coalitions of users may also be able to stop the execution of FABB. We will not
define the behaviour of FABB in exceptional situations (e.g. undefined variables),
because their occurrence can be detected from public information.

The interface of FABB does not correspond well to the partitioning of parties
into input, computing, and output parties. Still, it can be modeled by precisely
defining, which parties are needed to execute different commands, and which
parties receive the results.

The values FABB operates on are elements of some algebraic structure de-
pending on πABB, typically some finite field or ring. The operations ⊗ supported
by FABB also depend on the actual protocols that are available. Many protocol
sets πABB for SMC have been proposed [11, 15, 16, 18, 26, 40, 43], several of them
also providing security against malicious adversaries. All sets support at least
the addition and multiplication of values stored in S. Based on them, one can
implement a rich set of arithmetic and relational operations [10], enjoying the
same security properties. The protocols we present in this paper need to com-
pare the values in S, and we assume that “equals” and “less than” operations are
available in FABB.

For a variable name v, it is customary to denote its value, as stored in S, by
JvK. Also, in the description of algorithms executed together with FABB, notation
JwK = ⊗(JuK, JvK) denotes the calling of (compute,⊗, u, v, w) on FABB.

Shuffling. An oblivious shuffle, introduced by Laur et al. [34] allows to permute
the elements of a private array of length m according to a private permutation
σ ∈ Sm. The functionality and security of oblivious shuffle can be likewise pre-
sented through the notion of ABB. Let the variable names be partitioned into



Input a shuffle. On input (input, s, σ) from some Pi and (input, s,m) from all other
parties, if σ ∈ Sm then add {s 7→ σ} to S.

Classify a shuffle. On input (classify, s, σ) from all parties, add {s 7→ σ} to S.
Make a random shuffle. On input (rand shuffle, s,m) from all parties, pick σ ∈R Sm

and add {s 7→ σ} to S.
Compose private and public shuffle. On input (compose left, s1, s2, τ) from all

parties, look up σ = S(s2) and add {s1 7→ τ ◦ σ} to S. On input
(compose right, s1, s2, τ) do the same, but add {s1 7→ σ ◦ τ} to S.

Apply a shuffle. On input (apply, u1, . . . , um; v1, . . . , vm; s) from all parties, look up
σ = S(s) and xi = S(vi) for all i ∈ {1, . . . ,m}. Add {ui 7→ xσ(i)} to S for all i.

Invert a shuffle. On input (invert, s1, s2) from all parties, look up σ = S(s1) and add
{s2 7→ σ−1} to S.

Similarly to Fig. 1, all commands are also sent to the adversary, except for input, where
only (input, s,m) is sent. Also, (masqi, . . .) commands are accepted from the adversary.

Fig. 2: Shuffle-related operations in FABB

two — names for scalars, and shuffles. In Fig. 1, each variable name refers to a
scalar. In Fig. 2 we list the shuffling-related commands of the ABB. Here u, v
denote scalar variables, and s denotes shuffle variables.

For ABB implementations based on secret sharing, Laur et al. [34] introduce
a construction, where a shuffle σ ∈ Sm is represented as JσK = (JσK1, . . . , JσKl),
where JσKi ∈ Sm are random permutations subject to JσK1 ◦ · · · ◦ JσKl = σ. Each
JσKi is known by all parties in some set Ai. In the shuffling protocol, the values
x1, . . . , xm are shuffled using JσK1, . . . , JσKl (sequentially). Before shuffling with
JσKi, the current values are shared among the parties in Ai only. The sets Ai
have to be carefully selected for the scheme to be secure. For k = 3 and t = 1,
we may take l = 3 and Ai = {1, 2, 3}\{i}.

It is straightforward to securely implement other operations in Fig. 2, based
on the protocol of Laur et al. [34]. Note that inverting a shuffle also inverts
the sequence of the party sets Ai applying the consecutive permutations in JσK.
Laur et al. also show how to make the protocols secure against malicious ad-
versaries. Alternatively, recent proposals for making passively secure protocols
verifiable [25,30] are readily applicable to described shuffling protocols.

Oblivious shuffles are instrumental for fast sorting algorithms on private val-
ues [22]. To sort a vector JuK = (Ju1K, . . . , JumK), where all values are known to
be different, one may generate a random shuffle JσK and apply it on JuK. After-
wards, the elements of JuK are randomly ordered and their comparison results
may be declassified. In this way expensive, data-oblivious sorting methods [27]
do not have to be employed. Sorting, in turn, can be used to transform a vector
of values (Jv1K, . . . , JvmK) to a shuffle JσK, such that σ(i) = vi, provided that
the private values are a permutation of (1, . . . ,m). See Alg. 1. The algorithm
is secure because the only values output by FABB during its execution are the
results of comparisons; these may be made public by the security arguments for
sorting algorithms. It is easy to verify that Alg. 1 is also correct.



Algorithm 1: Vector2Shuffle, From a vector of private values to private
shuffle

Data: Vector of values (Jv1K, . . . , JvmK), with {v1, . . . , vm} = {1, . . . ,m}
Result: A shuffle JσK, such that σ(i) = vi
JsK← rand shuffle(m)
(Ju1K, . . . , JumK)← apply(Jv1K, . . . , JvmK; JsK)
Sort (Ju1K, . . . , JumK), using declassify(J·K ≤ J·K) as the comparison function
Let τ ∈ Sm be the sorting permutation, i.e. uτ(i) = i.
return invert(JsK ◦ τ)

Sort. On input (sort, u1
1, . . . , u

l
1; . . . ;u1

m, . . . , u
l
m; s), look up the values xji = S(uji ) for

all i ∈ {1, . . . ,m} and j ∈ {1, . . . , l}. Find σ ∈ Sm, such that
– for all 1 ≤ i ≤ j ≤ n: (x1σ(i), . . . , x

l
σ(i)) ≤ (x1σ(j), . . . , x

l
σ(j)), where the ordering

of tuples is defined lexicographically;
– for all 1 ≤ i < j ≤ n: if (x1i , . . . , x

l
i) = (x1j , . . . , x

l
j), then σ(i) < σ(j).

Add {s 7→ σ} to S and forward the sort-command to the adversary.

Fig. 3: Sorting in FABB

As sorting turns out to be a useful operation in our protocols, we opt to make
it a part of FABB. See Fig. 3 for the exact specification of lexicographically, stably
sorting the rows of a m× l table. For ease of use, we let our sorting functionality
to not actually sort its input, but to output a private shuffle that would sort
the input if applied to it. The protocol for computing such a shuffle in πABB is
identical to Alg. 1, except for the omission of the last inversion.

4 Our OEP functionality

The notion of extended permutation (EP) was introduced in [39] for encoding
the topology of arithmetic or Boolean circuits. Mathematically, an EP φ from a
length-n to a length-m sequence is just a function from {1, . . . ,m} to {1, . . . , n}.
Applying φ to a sequence (x1, . . . , xn) produces a sequence (y1, . . . , ym), such
that yi = xφ(i) for each i. Similarly to shuffles, we want to apply EPs in an
oblivious manner, such that the values to which φ is applied, as well as φ itself
remain private.

Let Fn,m denote the set of all mappings from {1, . . . ,m} to {1, . . . , n}. Our
intended ideal functionality for an ABB with EPs is given in Fig. 4. The func-
tionality maps variables to either private values, private shuffles or private EPs,
and allows operations on them. Let the variable names be partitioned into three
— names for scalars, shuffles, and EPs. In Fig. 4, u, v denote scalar variables,
while f denotes EP variables.

The representation of oblivious extended permutations used by our imple-
mentation πOEP of FOEP is based on the following simple result.



Include the state S and commands of FABB in Fig. 1 and Fig. 2.
Additional commands are given below.

Input an EP. On input (input, f, φ) from some Pi and (input, f, n,m) from all other
parties, if φ ∈ Fn,m then add {f 7→ φ} to S.

Classify an EP. On input (classify, f, φ) from all parties, add {f 7→ φ} to S.
Apply an EP. On input (apply, u1, . . . , um; v1, . . . , vn; f) from all parties, look up φ =

S(f) and xi = S(vi). Add {uj 7→ xf(j)} to S for all j ∈ {1, . . . ,m}. The mapping
φ must be an element of Fn,m.

Convert a vector to an EP. On input (convert, u1, . . . , um, n, f) from all parties,
look up xi = S(ui) for all i ∈ {1, . . . ,m}. If 1 ≤ xi ≤ n holds for all i, let φ ∈ Fn,m
be defined by φ(i) = xi and add {f 7→ φ} to S. Otherwise, the behaviour of FOEP

is undefined.

The commands are sent to the adversary, and accepted from the adversary similarly
to Fig. 1 and Fig. 2.

Fig. 4: The ideal functionality FOEP

Theorem 1. For any m,n ∈ N there exist `n,m = (1 + o(1))m lnm and gn,m :
{1, . . . , `n,m} → {1, . . . , n}, such that for any function φ ∈ Fn,m, there exist
σ ∈ Sn and τ ∈ S`n,m

, such that φ(x) = (σ ◦ gn,m ◦ τ)(x) for all x ∈ {1, . . . ,m}.

Proof. Define `n,m by

`0,m = 0

`n,m = `n−1,m + bm/nc .

Then `n,m = (1 + o(1))m lnm [35]. Define gn,m by

gn,m(x) = k ⇔ `k−1,m < x ≤ `k,m .

Let φ ∈ Fn,m be given. For each y ∈ {1, . . . , n}, let φ−1(y) = {x |φ(x) = y}.
Let the permutation σ ∈ Sn be such, that |φ−1(σ(i))| ≥ |φ−1(σ(i+ 1))| for all i.
Note that |φ−1(σ(i))| ≤ bm/ic.

Let Di = {`i−1,m + 1, . . . , `i,m}. Note that |Di| = bm/ic and gn,m(z) =
i for all z ∈ Di. Let the permutation τ ∈ S`n,m

be defined so, that for all
i ∈ {1, . . . , n}, we have τ(φ−1(σ(i))) ⊆ Di. Such permutation τ exists, because
|φ−1(σ(i))| ≤ |Di| and different sets Di are disjoint.

For each x ∈ {1, . . . ,m}, we now have τ(x) ∈ Dσ−1(φ(x)), implying gn,m(τ(x)) =
σ−1(φ(x)) or σ(gn,m(τ(x))) = φ(x). ut

We see that σ sorts the elements of {1, . . . , n} according to their number of
preimages with respect to φ. The mapping gn,m creates a sufficient number of
copies of each element. These copies are brought to their correct places by τ .

Theorem 1 immediately suggests the private encoding for an OEP φ. In our
implementation πOEP for FOEP, we will store them as pairs of private shuffles
(σ, τ), defined as in the proof of Thm. 1. Fig. 5 depicts the protocol set πOEP

(except for the convert-protocol, which is given in Sec. 5), defined in the FABB-
hybrid model.



There are machines M1, . . . ,Mk executing the protocols on behalf of the parties
P1, . . . , Pk participating in the protocol. These machines have access to the function-
ality FABB.
There is a public function f 7→ (sf , tf ) mapping variable names for EPs to pairs of
variable names for shuffles. We assume that these variable names for shuffles are not
used outside this protocol set.
A machine Mi responds to the various commands as follows.

Commands for FABB. When receiving a command for FABB from the environment,
Mi forwards it to FABB and gives back the result.

Input an EP. On input (input, f, φ), the machine Mi constructs the shuffles σ and τ
corresponding to φ according to the proof of Thm. 1. It will then send commands
(input, sf , σ) and (input, tf , τ) to FABB.

Input an EP. On input (input, f, n,m), the machine Mi sends commands
(input, sf , n) and (input, tf , `n,m) to FABB.

Classify an EP. On input (classify, f, φ), the machine Mi constructs the shuffles σ
and τ corresponding to φ according to the proof of Thm. 1. Any indeterminacies
in the proof are solved in the same, public manner by all parties. Machine Mi will
then send the commands (classify, sf , σ) and (classify, tf , τ) to FABB.

Apply an EP. On input (apply, u1, . . . , um; v1, . . . , vn; f), machine Mi will pick `n,m
new variable names w1, . . . , w`n,m (for scalars). After that, it will
1. send (apply, w1, . . . , wn; v1, . . . , vn; sf ) to FABB;
2. copy w1, . . . , wn to w1, . . . , w`n,m according to gn,m, i.e. wi after copying will

be equal to wgn,m(i) before copying (note that this is an operation of FABB);
3. send (apply, u1, . . . , um, wm+1, . . . , w`n,m ;w1, . . . , w`n,m ; tf ) to FABB.

Fig. 5: The protocol set πOEP for k parties (partially)

Theorem 2. The protocol set πOEP, as depicted in Fig. 5, is at least as secure
as FOEP without convert-commands.

Proof. We have to show a simulator S that can translate between the messages
at the adversarial interface of FOEP and the messages at the adversarial interface
of πOEP. The simulator S has no long-term state and works as follows:

– On an input (c, . . .) from FOEP that corresponds to a command for FABB,
the simulator forwards this input to the adversary.

– On input (input, f, n,m) from FOEP, the simulator forwards the commands
(input, sf , n) and (input, tf , `n,m) to the adversary.

– On input (classify, f, φ) from FOEP, the simulator computes the permutations
σ and τ according to the proof of Theorem. 1, and forwards (classify, sf , σ)
and (classify, tf , τ) to the adversary.

– On input (apply, u1, . . . , um; v1, . . . , vn; f) from FOEP, the simulator forwards
the commands for applying sf , copying the variables and applying tf to the
adversary. The commands are the same as in Fig. 5.

– On input (masqi, c, . . .) from the adversary to FABB, the simulator S forwards
that command to FOEP, unless the command is part of an adversarial party’s
activity in the protocols of πOEP. These are recognized through the inclusion
of variable names sf and tf .



– On input (masqi, input, sf , n) from the adversary, followed by (masqi, input, tf , `n,m):
send (masqi, input, f, n,m) to FOEP.

– On input (masqi, c, sf , σ) from the adversary, followed by (masqi, c, tf , τ),
where c is either input or classify: the simulator constructs φ = σ ◦ gn,m ◦
τ (where n,m are found from the descriptions of σ and τ), and sends
(masqi, c, f, φ) to FOEP.

– On input (masqi, apply, w1, . . . , wn; v1, . . . , vn; sf ) from the adversary, fol-
lowed by the requests to copy the variables wj according to gn,m and the
input (masqi, apply, u1, . . . , um, wm+1, . . . , w`n,m

;w1, . . . , w`n,m
; tf ): send

(masqi, apply, u1, . . . , um; v1, . . . , vn; f) to the adversary.

Quite clearly, this simulator provides the necessary translation. Actually, the
only non-trivial part of this simulator is the construction of φ from σ and τ
provided by the adversary. Fortunately, there exists a φ for any σ and τ (of correct
types). Hence πOEP is secure even against active adversaries (if the protocol set
implementing FABB is secure against such adversaries). ut

The provided simulator S is valid for any attacks by the adversary. It can
cope with active attacks and with dishonest majority. Hence πOEP provides the
same security guarantees as the protocol set πABB implementing FABB.

5 Converting a private vector to an OEP

Suppose we are given the numbers m,n, and a vector (Jv1K, . . . , JvmK), such that
1 ≤ vi ≤ n for all i. We want to construct JφK, such that φ ∈ Fn,m and φ(i) = vi
for all i. For this, we have to construct private shuffles JσK and JτK of correct
size, such that φ = σ ◦ gn,m ◦ τ . As we show below, the functionality provided
by FABB is sufficient for this construction. However, the construction is more
complex than what we have seen before.

Partially specified shuffles. The following subtask occurs in the construction of
both σ and τ . Let a vector (Jv1K, . . . , JvnK) be given, such that vi ∈ {0, 1, . . . , n}
and for each j ∈ {1, . . . , n} there exists at most one i, such that vi = j. Construct
JσK, where σ ∈ Sn and ∀i ∈ {1, . . . , n} : vi > 0⇒ σ(i) = vi.

We cannot directly apply Alg. 1 to obtain the shuffle, because this algorithm
assumes that the input vector is a permutation of {1, . . . , n}. In particular, the
correctness of Alg. 1 hinges on the sorted vector being equal to (1, . . . , n).

We will hence first fill the zeroes in the vector v1, . . . , vn with the missing
numbers. We use Alg. 2 for that, making the call FillBlanks(1, n; Jv1K, . . . , JvnK).
After that, we can apply Alg. 1 and obtain a suitable JσK.

In Alg. 2, we have used a few conventions that have appeared elsewhere in the
specifications of privacy-preserving algorithms. In line 7, the variable JbiK will
store either 1 or 0, depending on whether the comparison returns true. The line 8
contains an instance of the binary choice operator JbK?JxK :JyK. Its result is equal
to JxK if b = 1, and JyK if b = 0. It is typically computed as JbK · (JxK− JyK) + JyK.
In lines 8 and 12 we are actually using pairs of values in place of JxK and JyK.



Algorithm 2: FillBlanks, filling the blank squares of a shuffle

Data: Bounds L,H ∈ N
Data: JvLK, JvL+1K, . . . , JvHK, where vi ∈ {0, L, . . . , H}, and for each

j ∈ {L, . . . ,H}, there is at most one i, such that vi = j
Result: JuLK, JuL+1K, . . . , JuHK, where {uL, . . . , uH} = {L, . . . ,H} and

vi > 0⇒ ui = vi
1 if L = H then
2 return JLK

3 M ← b(L+H)/2c
4 JξK← sort(JvLK; JvL+1K; . . . ; JvHK) ; // Fig. 3

5 (Jv′LK, . . . , Jv′HK)← apply(JvLK, . . . , JvHK; JξK)
6 foreach i ∈ {1, . . . , H −M} do
7 JbiK← Jv′M+iK ≤M
8 (Jv′L+i−1K, Jv′M+iK)← JbiK ? (Jv′M+iK, Jv′L+i−1K) : (Jv′L+i−1K, Jv′M+iK)

9 (Jv′LK, . . . , Jv′M K)← FillBlanks(L,M ; Jv′LK, . . . , Jv′M K)
10 (Jv′M+1K, . . . , Jv′HK)← FillBlanks(M + 1, H; Jv′M+1K, . . . , Jv′HK)
11 foreach i ∈ {1, . . . , H −M} do
12 (Jv′L+i−1K, Jv′M+iK)← JbiK ? (Jv′M+iK, Jv′L+i−1K) : (Jv′L+i−1K, Jv′M+iK)

13 (JuLK, . . . , JuHK)← apply(Jv′LK, . . . , Jv′HK; invert(JξK))
14 return (JuLK, . . . , JuHK)

Hence the effect of these lines is to swap Jv′L+i−1K and Jv′M+iK if bi = 1, and
otherwise leave them as is.

A number of operations in Alg. 2 can be performed in parallelized fashion. We
use the convention that foreach-statements indicate vectorized computations.
In addition to that, the recursive calls in lines 9 and 10 are executed in parallel.

Clearly, Alg. 2 is secure — it does not declassify any values. Also, it does not
input any values from a particular party, hence there are no issues in making
sure that these values are valid. Alg. 2 invokes a number of commands of FABB in
order to transform a private vector to a different private vector. The adversary’s
view of Alg. 2 consists of the sequence of the names of these commands. This
sequence can be derived from L, H, and the names of the variables input to
Alg. 2.

Due to the need to preserve the privacy of JviK, Alg. 2 is quite non-trivial,
working in the divide-and-conquer fashion. The main case starts in line 3, and
the lines 3–8 are used to rearrange the elements of vL, . . . , vH so, that vL, . . . , vM
only contain elements in {0, L, . . . ,M}, and vM+1, . . . , vH only contain elements
in {0,M + 1, . . . ,H}. We record ξ and b1, . . . , bH−M that are sufficient to undo
this rearrangement later. Through recursive calls in lines 9 and 10, we fill in the
zeroes among v′L, . . . , v

′
H with missing numbers. Finally, in lines 11–13 we undo

the rearrangement we introduced at the beginning.

Assuming that the complexity of sorting is O(n log n), the overall complexity
of FillBlanks is O(n log2 n). We could actually simplify the algorithm somewhat
— in line 10, the vector that is the argument to the recursive call is already



sorted, hence there is no need to sort it again in line 4. This does not reduce
the asymptotic complexity, though, as the FillBlanks-call in line 9 still needs to
sort its argument vector. In the full version of this paper [32] we show that for
certain implementations of the ABB, this vector (which is just a private rotation
away from being sorted) can also be sorted more efficiently, bringing the overall
complexity of FillBlanks down to O(n log n), the same as Alg. 1.

Finding vector representations of JσK and JτK. With the help of Alg. 2, we are
now ready to present the computation of JσK and JτK, such that φ = σ ◦gn,m ◦ τ .
Algorithm 3 depicts this computation. In the description of this algorithm, we
will heavily use the notation JvK for vectors with private components (but note
that the length of the vector is public). Alg. 3 is secure for the same reasons as
Alg. 2.

The algorithm to convert the vector Jv(1)K = (Jv(1)1 K, . . . , Jv(1)m K) to the private
shuffles JσK, JτK performs the following steps. First, it counts how many times
each value x ∈ {1, . . . , n} occurs among v1, . . . , vm. We first sort the vector v(1),
giving the vector v(1′). In this vector, the different values x occur in continuous
segments. Vector v(2′) marks the start of each segment and v(3′) additionally
records the positions, where different segments start. Sorting according to v(3′)

(a stable sort according to v(2′) would have had the same effect) brings the start
positions together and their differences, recorded in v(4′′) are the counts of the
values x (the lengths of the segments).

Second, the algorithm computes the vector representing σ, to be used as
the argument to Vector2Shuffle. As we sort the vectors in non-decreasing order,
the counts end up in the last n elements of v(4′′). We want to sort them in
non-increasing order, hence we collect their negations in the vector u(2). We
apply the sorting permutation to the actual values, whose counts were in u(2).
We collect the actual values in u(1), but we must be careful, because not all n
values are necessary there. Fortunately, in vector v(2

′′), there is exactly one “1”
for each possible value. Thus we obtain zeroes instead of missing values and can
use the FillBlanks-algorithm to fill them out.

Third, the algorithm computes the vector representing τ−1. This vector must
have the values `i−1,m+1, `i−1,m+2, . . . in the positions where the original vector
Jv(1)K had the i-th most often occurring values among {1, . . . , n}. We intend to
compute this vector through prefix summation; this takes place in lines 24–25.
While doing this prefix summation, we assume that v(1) is sorted, we undo
the sorting afterwards. In lines 18–23 we set up the vector v(5′) that serves as
the argument to prefix summation. We know that in the middle of continuous
segments of v(1′), the values in v(5′) have to be “1”. At the border from i-
th most to i′-th most occurring value, however, there should be jumps from
the segment [`i−1,m + 1, . . . , `i,m] to [`i′−1,m + 1, . . . , `i′,m]. The length of these
jumps depends on i, i′, and on the length of the ending segment. These lengths
of jumps are computed in line 22 (clearly, the expression there can be converted
into a sequence of “? :”-operations). Different cases in this line correspond to the
middle of continuous segments, the start of the first segment, and to the starts of



Algorithm 3: From a vector of private values to an OEP

Data: m,n ∈ N
Data: Jv(1)K = (Jv(1)1 K, . . . , Jv(1)m K), where 1 ≤ v(1)i ≤ n
Result: JσK, JτK, such that (σ ◦ gn,m ◦ τ)(i) = vi for all i ∈ {1, . . . ,m}

1 Jξ1K← sort(Jv(1)K)
2 Jv(1′)K← apply(Jv(1)K; Jξ1K)

3 Jv(2
′)

1 K← 1

4 foreach i ∈ {2, . . . ,m} do Jv(2
′)

i K← 1− (Jv(1
′)

i K ?
= Jv(1

′)
i−1K)

5 foreach i ∈ {1, . . . ,m} do Jv(3
′)

i K← i · Jv(2
′)

i K
6 Jξ2K← sort(Jv(3′)K)
7 Jv(1′′)K← apply(Jv(1′)K; Jξ2K)
8 Jv(2′′)K← apply(Jv(2′)K; Jξ2K)
9 Jv(3′′)K← apply(Jv(3′)K; Jξ2K)

10 foreach i ∈ {1, . . . ,m− 1} do Jv(4
′′)

i K← Jv(2
′′)

i K ? (Jv(3
′′)

i+1 K− Jv(3
′′)

i K) : 0

11 Jv(4
′′)

m K← m+ 1− Jv(3
′′)

m K
12 foreach i ∈ {1, . . . , n} do

13 Ju(1)
i K← m− n+ i > 0 ∧ Jv(2

′′)
m−n+iK ? Jv(1

′′)
m−n+iK : 0

14 Ju(2)
i K← m− n+ i > 0 ?−Jv(4

′′)
m−n+iK : 0

15 Jξ3K← sort(Ju(2)K)
16 Ju(1′)K← apply(Ju(1)K; Jξ3K)
17 JσK← Vector2Shuffle(FillBlanks(1, n; Ju(1′)K))

18 foreach i ∈ {1, . . . , n} do Ju(3′)
i K← `i−1,m + 1

19 Ju(3)K← apply(Ju(3′)K; invert(Jξ3K))
20 foreach i ∈ {1, . . . ,m} do
21 ji ← i−m+ n

22 Jv(5
′′)

i K←


1, if i ≤ 0 ∨ ¬Jv(2

′′)
i K

Ju(3)
ji

K, if Jv(2
′′)

i K ∧ ¬Jv(2
′′)

i−1 K
Ju(3)
ji

K− Ju(3)
ji−1K + Ju(2)

ji−1K + 1, if Jv(2
′′)

i−1 K

23 Jv(5′)K← apply(Jv(5′′)K; invert(Jξ2K))

24 Jv(6
′)

1 K← Jv(5
′)

1 K

25 for i = 2 to m do Jv(6
′)

i K← Jv(6
′)

i−1K + Jv(5
′)

i K
26 Jv(6)K← apply(Jv(6′)K; invert(Jξ1K))
27 foreach i ∈ {m+ 1, . . . , `n,m} do Jv(6)i K← 0

28 JτK← invert(Vector2Shuffle(FillBlanks(1, `n,m; Jv(6)K)))
29 return JσK, JτK

following segments, respectively. The vector u(2) contains the negations of the
lengths of the continuous segments.

The running time of Alg. 3 is dominated by the call to FillBlanks in line 28.
As the size of its argument is O(m logm), the running time of the algorithm



K/106 0.1 1 5 7 8

running time 0.5 6 35 49 58

Table 1. Execution times for applying an OEP from (K + 200) inputs to (2K + 100)
outputs (times in seconds)

is O(m log3m). For ABB implementations based on additive sharing, it can be
reduced to O(m log2m) [32].

Alg. 3 is used in the protocol set πOEP for converting a private vector to
an OEP. The security of this protocol trivially follows from universal compos-
ability (πOEP provides the same security guarantees as πABB with regards to the
number of parties the adversary can corrupt, and the kinds of attacks they can
perform). Indeed, as declassification is not used in Alg 2 and 3 (we assume that
Vector2Shuffle is implemented with the help of the sort-command), the entire
communication on the interface between the protocol and the adversary consists
of the names of the commands FABB is executing. The sequence of these com-
mands depends only on the problem size and can be trivially generated by the
simulator.

6 Benchmarks

The asymptotic complexity of our OEP protocol (both communication and com-
putation) is O(m logm) for an extended permutation f ∈ Fn,m (assuming that
m is at least O(n)) and for a constant number of parties. The asymptotic com-
plexity of converting a vector of indices to an OEP is O(m log3m).

We have implemented protocols in Fig. 5 on the Sharemind secure multi-
party computation platform (providing security against passive attacks by one
party out of three in total) and tested their performance. In performance testing,
we kept in mind the scenario of private function evaluation. For a circuit with I
inputs, K binary gates and O outputs, the topology of the circuit is represented
by an extended permutation in FI+K,2K+O.

Our performance tests are performed on a cluster of three computers with
48 GB of RAM and a 12-core 3 GHz CPU with Hyper Threading running Linux
(kernel v.3.2.0-3-amd64), connected by an Ethernet local area network with link
speed of 1 Gbps. On this cluster, we have benchmarked the execution time of
the OEP application protocol for extended permutations in F200+K,2K+100 (for
various values of K), simulating the oblivious evaluation of a circuit with 200
inputs and 100 outputs. The permutations were applied to 32-bit values. The
running times are presented in Table 1. The running time t(K) (in seconds)
is very well approximated by 4.54 · 10−7 · K lnK. As this has been the first
implementation of OEPs (as far as we know), these numbers constitute the
baseline for comparing further realizations.

The benchmarking of Alg. 3 is outside the scope of this paper.



7 Discussion

We have proposed a new, efficient construction for oblivious extended permu-
tations, that is fully integrable with secure multiparty computation protocols
for other operations. Practically usable private function evaluation is a possible
application of our techniques, if combined with private evaluation of the gates in
circuits. Recent advances in private function evaluation may make it a practical
tool for certain subtasks in secure multiparty computation, e.g. for handling the
branching on private values.

It is reasonable to assume that any application of PFE will still attempt to
use as much information that can be publicly deduced about the computed func-
tion. Flexibility of PFE techniques is necessary, in order to absorb all available
information. The oblivious extended permutations proposed in this paper allow
a much greater multitude of potential usage scenarios than [39]. It is possible to
evaluate a function without anyone knowing which function is being evaluated.
This allows us to obliviously select the representation of a private function and
then evaluate it, enabling branching on private values. In this case, we still need
to construct private representations of both branches, but this computation can
be moved to the offline phase. The actual selection of the privately executed
branch can be very efficient [31].

OEPs can be used for purposes other than PFE. Guanciale et al. [20] have
implicitly applied them in the minimization of finite automata obtained through
the product construction.
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