
Hybrid Model of Fixed and Floating Point
Numbers in Secure Multiparty Computations

Toomas Krips2,3 and Jan Willemson1,3

1 Cybernetica, Ülikooli 2, Tartu, Estonia
janwil@cyber.ee

2 Institute of Computer Science, University of Tartu, Liivi 2, Tartu, Estonia
3 STACC, Ülikooli 2, Tartu, Estonia

toomaskrips@gmail.com

Abstract. This paper develops a new hybrid model of floating point
numbers suitable for operations in secure multi-party computations. The
basic idea is to consider the significand of the floating point number as
a fixed point number and implement elementary function applications
separately of the significand. This gives the greatest performance gain
for the power functions (e.g. inverse and square root), with computation
speeds improving up to 18 times in certain configurations. Also other
functions (like exponent and Gaussian error function) allow for the cor-
responding optimisation.
We have proposed new polynomials for approximation, and implemented
and benchmarked all our algorithms on the Sharemind secure multi-party
computation framework.

1 Introduction

Our contemporary society is growing more and more dependent on high-
speed, high-volume data access. On one hand, such an access allows for
developing novel applications providing services that were unimaginable
just a decade ago. On the other hand, constant data flow and its automatic
processing mechanisms are rising new security concerns every day.

In order to profit from the available data, but at the same time provide
privacy protection for citizens, privacy-preserving data analysis (PPDA)
mechanisms need to be applied. There exist numerous well-established
statistical and data mining methods for data analysis. However, adding
privacy-preservation features to them is far from being trivial. Many data
processing primitives assume access to micro-data records, e.g. for join-
ing different tables or even something as simple as sorting. There exist
different methods for partial pre-aggregation and perturbation like k-
anonymity [18, 20] and `-diversity [17], but they reduce the precision of
the dataset, and consequently decrease data utility.

Another approach is to tackle the PPDA problem from the privacy and
cryptography point of view. Unfortunately, classical encryption methods
(like block and stream ciphers) are meant only to scramble data and do
not support meaningful computations on the plaintexts. More advanced
methods like homomorphic encryption and searchable encryption [4] sup-
port some limited set of operations insufficient for the fully-featured sta-
tistical data analysis. There also exist methods for fully homomorphic
encryption, but they are currently too inefficient to allow for analysis of
a dataset of even a remotely useful size [9, 10].

Currently, one of the most promising techniques for cryptography-
based PPDA is based on secret sharing and multi-party computations
(SMC). There exist several frameworks allowing to work on relatively
large amounts of secret-shared micro-data [2, 21]. In order to obtain the
homomorphic behavior needed for Turing-completeness, they work over
some algebraic structure (typically, a finite ring or field). However, to
use the full variety of existing statistical tools, computations over real
numbers are needed. Recently, several implementations of real-number
arithmetic (both fixed and floating point) have emerged on top of SMC
frameworks. While fixed point arithmetic is faster, floating point opera-
tions provide greater precision and flexibility. The focus of this paper is
to explore the possibility of getting the best of both of the approaches
and develop a hybrid fixed-floating point real numbers to be used with
SMC applications.

2 Previous Work

Catrina and Saxena developed secure multiparty arithmetic on fixed-point
numbers in [7], and their framework was extended with various compu-
tational primitives (like inversion and square root) in [7] and [15]. This
fixed-point approach has been used to solve linear programming problems
with applications in secure supply chain management [6, 12]. However,
fixed point numbers provide only a limited amount of flexibility in com-
putations, since they can represent values only in a small interval with
a predetermined precision. Dahl et al. [8] use an approach that is rather
close to fixed-point numbers to perform secure two-party integer division.
They also use Taylor series to estimate 1

x .

In order to access the full power of numerical methods, one needs an
implementation of floating point arithmetic. This has been done by three
groups of authors, Aliasgari et al. [1], Liu et al. [16], and Kamm and
Willemson [11]. All these approaches follow the same basic pattern – the

floating point number x is represented as x = s · f · 2e, where s is the
sign, f is the significand, and e is the exponent (possibly adjusted by a
bias to keep the exponent positive). Additionally, Aliasgari et al. add a
term to mark that the value of the floating point number is zero. Then
all the authors proceed to build elementary operations of addition and
multiplication, followed by some selection of more complicated functions.

Liu et al. [16] consider two-party additive secret sharing over a ring
ZN and only develop addition, subtraction, multiplication and division.
Aliasgari et al. [1], use a threshold (t, n)-secret-sharing over a finite field
and also develop several elementary functions such as logarithm, square
root and exponentiation of floating-point numbers. All their elementary
function implementations use different methods – square root is computed
iteratively, logarithm is computed using a Taylor series and in order to
compute the exponent, several ad hoc techniques are applied.

The research of Kamm and Willemson is motivated by a specific ap-
plication scenario – satellite collision analysis [11]. In order to implement
it, they need several elementary functions like inversion, square root, ex-
ponent and Gaussian error function. The authors develop a generic poly-
nomial evaluation framework and use both Taylor and Chebyshev poly-
nomials to get the respective numerical approximations.

2.1 Our Contribution

When evaluating elementary functions, both [1] and [11] use basic floating
point operations as monolithic. However, this is not necessarily optimal,
since oblivious floating point addition is a very expensive operation due to
the need to align the points of the addends in an oblivious fashion. Fixed-
point addition at the same time is a local (i.e. essentially free) operation,
if an additively homomorphic secret sharing scheme is used. Hence, we
may gain speedup in computation times if we are able to perform parts of
the computations in the fixed-point representation. For example, in order
to compute power functions (like inversion or square root), we can run
the computations separately on the significand and exponent parts, but
the significand is essentially a fixed-point number. Proposing, implement-
ing and benchmarking this optimisation is the main contribution of this
paper. We also propose new polynomials for various elementary functions
to provide better precision-speed trade-offs.

Due to space restrictions, some of the technical details (most notably
the particular polynomials) are omitted and are available in the full ver-
sion of the paper [13].

3 Preliminaries

In the rest of the paper, we will assume a secret sharing scheme involving
M parties P1, . . . , PM . To share a value x belonging to ring (or field) Zr,
it is split into M values x1, . . . , xM ∈ Zr, and the share xi is given to the
party Pi (i = 1, . . . ,M). The secret shared vector (x1, . . . , xM) will be
denoted as JxK.

We will also assume that the secret sharing scheme is linear, implying
that adding two shared values and multiplying a shared value by a scalar
may be implemented component-wise, and hence require no communica-
tion between the computing parties. This is essential, since the running
times of majority of SMC applications are dominated by the network
communication. Note that many of the classical secret sharing schemes
(like Shamir or additive scheme) are linear.

We will assume availability of the following elementary operations.

– Addition of two secret-shared values JxK and JyK denoted as JxK+ JyK.
Due to linearity, this evaluates to Jx + yK.

– Multiplication of a secret shared value JxK by a scalar c ∈ Zr denoted
as c · JxK. Due to linearity, this evaluates to Jc · xK.

– Multiplication of two secret-shared values JxK and JyK denoted as
JxK · JyK. Unlike the two previous protocols, this one requires network
communication to evaluate Jx · yK.

– PublicBitShiftRightProtocol(JxK, k). Takes a secret shared value JxK
and a public integer k and outputs Jx � kK where x � k is equal
to x shifted right by k bits. x� k is equal to x

2k
rounded down.

– LTEProtocol(JxK, JyK). Gets two secret-shared values JxK and JyK as
inputs and outputs a secret-shared bit JbK. The bit b is set to 1 if
x ≤ y (interpreted as integers); otherwise, b is set to 0.

– ObliviousChoiceProtocol(JbK, JxK, JyK). Gets a secret-shared bit b and
two values JxK and JyK as inputs. If b = 1, the output will be set to
JxK, and if b = 0, it will be set to JyK.

– ConvertToBoolean(JxK).Takes in a secret-shared value JxK where x is
equal to either 0 or 1, and converts it to the corresponding boolean
value shared over Z2.

– ConvertBoolToInt(JbK). Takes in a bit JbK secret-shared over Z2 and
outputs a value JxK secret-shared over Zr, where x is equal to b as an
integer.

– GeneralizedObliviousChoice(Jx1K, . . . , JxkK, J`K). Takes an array of se-
cret integers Jx1K, . . . , JxkK and a secret index J`K where ` ∈ [1, k], and
outputs the shared integer Jx`K.

– BitExtraction(JxK). Takes in a secret integer JxK and outputs the vector
of n secret values {JuiK}n−1i=0 where each ui ∈ {0, 1} and un−1un−2 . . . u0
is the bitwise representation of JxK.

– PrivateBitShiftRightProtocol(JxK, JkK) Takes a secret value JxK and a
secret integer JkK and outputs Jx � kK where x � n is equal to x
shifted right by k bits. When we apply this protocol to an n-bit secret
integer JxK and k is not among 0, . . . , n− 1, the result will be J0K.

– ConvertToFloat(JxK) Takes a secret integer JxK and outputs a floating
point number JNK = (JsxK, JExK, JfxK) that is approximately equal to
that integer.

Implementation details of these elementary operations depend on the
underlying SMC platform. The respective specifications for Sharemind
SMC engine and the complexities of some of the protocols can be found
in [2, 3, 14].

4 Fixed-point Numbers

Our fixed-point arithmetic follows the framework of Catrina and Sax-
ena [7], (for example, our multiplication protocol is based on that paper)
but has several simplifications allowing for a more efficient software im-
plementation.

First, instead of a finite field, we will be using a ring Z2n for embed-
ding the fixed-point representations. Typically this ring will be Z232 or
Z264 , since arithmetic in these rings is readily available in modern com-
puter architectures. What we will lose is the possibility of using secret
sharing over fields (including the popular Shamir’s scheme [19]). Since
our implementation will be based on Sharemind SMC engine [2], this is
fine and we can use additive secret sharing instead.

The second simplification is made possible by our specific application
of fixed-point numbers. The essential block we will need to build is poly-
nomial evaluation on non-negative fixed point numbers (e.g. significands
of floats). Even though we will occasionally need to cope with negative
values, we will only represent non-negative fixed-point numbers. Besides
the ring Z2n of n-bit integers, we will also fix the number m of bits we
will interpret as the fractional part. We will consider the ring elements
as unsigned, hence they run over the range [0, 2n − 1]. We let the ele-
ment x ∈ Z2n represent the fixed point number x · 2−m. Hence, the range
of fixed point numbers we will be able to represent is [0, 2n−m − 2−m],
with granularity 2−m. We will assume that all the fixed-point numbers we

work on will be among these numbers. If we have to use some fractional
number that cannot be represented in this way, we will automatically use
the smallest representable fixed-point number that is greater than the
number instead of this number.

We will use the following notation for fixed-point numbers. x̃ denotes
a fixed-point number, while x denotes the integer value we use to store
x̃ — namely, x̃ · 2m. Thus, when we have introduced some integer x, we
have also defined the fixed-point number x̃ = x · 2−m that it represents
and vice versa. Likewise, when we want to denote a secret fixed-point
number, we will write Jx̃K — this will be stored as a secret integer JxK
where x = x̃ · 2m.

We will also need to denote numbers that are, in essence, public signed
real numbers. For that, we will use the notation sc̃ where c̃ is the fixed-
point number that denotes the absolute value of the real number and
s ∈ {−1, 1} is the sign of the real number.

4.1 Basic Operations on Fixed-point Numbers

We will now introduce the operations of addition and subtraction of two
secret fixed-point numbers, multiplication of a secret fixed-point number
and a public fixed point number and multiplication of two secret fixed-
point numbers.

Addition of two secret fixed-point numbers Jx̃K and JỹK is free in terms
of network communication, since this addition can be implemented by
adding the representing values shared as the ring elements. Indeed, the
sum of x̃ = x · 2−m and ỹ = y · 2−m is (x + y) · 2−m = x̃ + y. Hence we
can compute Jx̃K + JỹK = Jx̃ + yK just by adding the shares locally. The
addition of the representatives takes place modulo 2n and is unprotected
against the overflow since checking whether the sum is too big would
either leak information or would be expensive. Likewise, subtraction of
two secret fixed-point numbers Jx̃K and JỹK is free in terms of network
communication and can be implemented by subtracting the representing
values shared as the ring elements. Jx̃− yK can be computed as Jx̃K− JỹK.
The subtraction operation is also unprotected against going out of the
range of the fixed-point numbers that we can represent and thus must be
used only when it is known that x ≥ y.

However, multiplication of a secret fixed-point number by other fixed
point numbers, whether public or secret, is not free. Consider first mul-
tiplication of a public fixed-point number ã = a · 2−m by a secret fixed-
point number Jx̃K = JxK · 2−m. We need to calculate JỹK as the product
of ã = a · 2−m and Jx̃K = JxK · 2−m where x is secret. Since we keep data

as a and JxK, we shall perform this computation as a · JxK = ã2m · Jx̃K2m.
However, if we do this multiplication in Z2n , then we risk losing the most
significant bits, since the product ã2mx̃2m might be greater than 2n.

In order to solve this problem, we convert a and JxK to Z22n and
compute the product in Z22n . Then we shift the product to the right by
m bits and convert the number back to Z2n , since the secret result y
should be ãJx̃K · 2m, not ãJx̃K · 22m. We assume that the product is in the
range of the fixed-point numbers we can represent. We do not perform
any checks to see that the multiplicands or the product are in the correct
range, as this could leak information about the secret data, but instead
assume that the user will adequately choose the input.After computing
a · JxK = ã2m · Jx̃K2m in Z22n , we note that the result should be a · Jx̃K2m

and thus we need to divide the result by 2m. The cheapest way to do this
is shifting the numbers to the right by m bits.

There are two ways for doing that. The first one is using the existing
protocol PublicBitShiftRightProtocol(JyK,m) for shifting bits to the right.
This protocol is not free, but gives the best possible result that can be
represented with a given granularity and is guaranteed to give the correct
result.The second one is to shift yi to the right by m bits for every party Pi.
This is free, but may be slightly inaccurate. Due to loss of the carry in the
lowest bits we risk that the result might be smaller than the real product
would be by at most (M−1) ·2−m. In most cases, this is an acceptable er-
ror. The only case where this error is significant is when our result should

be among J0̃K, J2̃−mK, . . . , (M−1)J2̃−mK which could then be changed into

one of J ˜2n−m − (M − 1)2−mK, . . . , J ˜2n−m − 2−mK. To avoid this underflow,

we add J ˜(M − 1)2−mK to the product after shifting. Note that now a sym-
metric problem where the shifted result should be among the numbers

J ˜2n−m − (M − 1)2−mK, . . . , J ˜2n−m − 2 · 2−mK or J ˜2n−m − 2−mK but would

now be changed to one of J0̃K, J2̃−mK, . . . , (M − 1)J2̃−mK could happen.
However, we assume that the user would choose such inputs that these
numbers would not arise as the products of any two multiplicands simi-
larly as they would not multiply any two fixed-point numbers so that the

product would be greater than ˜2n−m − 2−m. Now the user should not mul-
tiply any two fixed-point numbers so that the product would be greater

than ˜2n−m −M2−m. Since M is usually a small number, this additional
constraint does not practically affect computation.

The multiplication of two secret fixed-point numbers is similar. More
specifically, to multiply two secret fixed-point numbers Jx̃K and JỹK, we
first convert JxK and JyK to Z22n and then compute the product JxK ·JyK =

Jx̃K · JỹK22m = Jx̃yK · 22m = JxyK · 2m there. Then we shift JxyK · 2m to

the right by m bits and add J ˜(M − 1)2−mK so that the result would be
correct. After that we convert the result back to Z2n so that the product
would be in the same ring as the multiplicands. We denote this operation
by Jx̃K · JỹK.

4.2 Polynomial Evaluation

Data: Jx̃K,m, n, si{c̃i}ki=0

Result: Takes in a a secret fixed point number Jx̃K, the radix-point m, the
number of bits of the fixed-point number n and the coefficients
si{c̃i}ki=0 for the approximation polynomial. Outputs a secret
fixed-point number JỹK that is the value of the approximation
polynomial at point x.

1 Jx̃1K← Jx̃K
2 for j ← 0 to dlog2(k)e do
3 for i← 1 to 2j do in parallel

4 Jx̃i+2j K← Jx̃2j K · Jx̃iK
5 end

6 end
7 Jỹ0K← Share(c̃0)
8 for i← 1 to k do in parallel

9 JỹiK← c̃i · Jx̃iK
10 end

11 Jỹ′K, Jỹ′′K← J0̃K
12 for i← 0 to k do in parallel
13 if si == 1 then

14 Jỹ′K+ = JỹiK
15 end
16 if si == −1 then

17 Jỹ′′K+ = JỹiK
18 end

19 end

20 JỹK← Jỹ′K− Jỹ′′K
21 return JỹK

Algorithm 1: Computation of a polynomial on fixed-point num-
bers.

We will now present Algorithm 1 for evaluating polynomials with
given coefficients. It is based on the respective algorithm described in [11]
in the sense that the operations performed are the same but use fixed-
point numbers instead of floating-point numbers. It takes in public signed

coefficients {sic̃i}ki=0 and a secret fixed-point number Jx̃K, and outputs

JỹK =
∑k

i=0 sic̃i ·Jx̃kK. Here si ∈ {−1, 1}. We will now describe the general
strategy for that.

First we need to evaluate Jx̃2K, Jx̃3K, . . . , Jx̃kK. It is trivial to do this
with k − 1 rounds of multiplications, however, we shall do it in dlog ke
rounds. Every round we compute the values Jx̃2i+1K, Jx̃2i+2K, . . . , Jx̃2i+1K
by multiplying Jx̃2iK with Jx̃1K, Jx̃2K, . . . , Jx̃2iK, respectively. (line 4)

Following that, on line 9 we can multiply the powers of x with the
respective coefficients c̃i with one round of multiplication, obtaining the

values Jc̃1xK, Jc̃2x2K, . . . , Jc̃kxkK. We also set Jc̃0x0K to the tuple of shares

(2m · c0, 0, . . . , 0). After that we can compute the sums J ˜∑
si=1 cix

iK =∑
si=1Jc̃ixiK and J ˜∑

si=−1 cix
iK =

∑
si=−1Jc̃ix

iK locally, respectively, on

lines 14 and 17 and find the final result JỹK = J ˜∑
si=1 cix

iK−J ˜∑
si=−1 cix

iK,
which is also a local operation.

For every function, we face the question of which polynomial to use.
Generally we have preferred using Chebyshev polynomials, to avoid the
Runge phenomenon. For error function, we used Taylor series. However,
sometimes large coefficients of Chebyshev polynomials can cause prob-
lems, such as making the result less accurate when the coefficients are
very big. The reason for this is that to be able to represent large coef-
ficients, the radix-point must be smaller and thus computing xi will be
more inaccurate for higher powers. We need to find the optimal place
for the radix-point for each function. We also note that we will use this
algorithm only so that it will output positive fixed-point numbers.

5 Hybrid Versions of Selected Functions

We have used the hybrid techniques to efficiently evaluate the square root,
inverse, exponential and the Gaussian error function.

Our floating-point number representation is similar to the one from [11].
A floating-point number N consists of sign s, exponent E and significand
f where N = (−1)1−s · f · 2E−q. Here q is a fixed number called the bias
that is used for making the representation of the exponent non-negative.
We require that if N 6= 0, the significand f would be normalised — i.e. f is
represented by a number in [2n−1, 2n−1]. If N = 0, then f = 0 and E = 0.
If N is secret, then it means that the sign, significand and exponent are
all independently secret-shared. We denote it with JNK = (JsK, JEK, JfK).

Kamm and Willemson [11] present algorithms for computing the sum
and product of two secret floating point numbers, and use these oper-
ations to implement polynomial approximations. However, the resulting
routines are rather slow. Notably, computing the sum of two floating-
point numbers is slower than computing the product. The basic structure
of our function implementations is still inspired by [11].

The main improvement of the current paper is converting the sig-
nificand of the floating-point number to a fixed-point number and then
performing polynomial approximation in fixed-point format. The basic
algorithm for polynomial evaluation was described in Algorithm 1. How-
ever, some extra corrections are needed after converting the result back
into floating-point form. The general approach that we use for square root
and inverse can easily be generalised for other power functions since for
them we can work separately with the significand and the exponent. In
order to use this approach for other functions (such as the exponential or
the error function) work must be done to tailor specific arrangements for
computing these functions in such a way.

5.1 Conversion from Fixed-point Number to Floating-point
Number and Correction of Fixed-point Numbers

In three out of our four functions, when we evaluate the polynomial on
some fixed-point number Jx̃K where x̃ ∈ [2v, 2v+1), and we get JỹK as the
output, where ỹ should be in [2t, 2t+1) for some t that depends on the
function. For example, for inverse, if the input Jx̃K is in [0.5, 1), then the
output should be approximately in [1, 2).

However, due to inaccuracies coming from roundings and the error of
the polynomial, the result might be out of that range— it might also be
in [0, 2t) or [2t+1, 2t+2). If that should happen we will use the protocol
Correction(JỹK, t,m, n, b0, b1) to get a result that is in the correct range and
is not less accurate. Here b0 and b1 are public boolean flags that are set
to 1 if the result may be in [0, 2t) or [2t+1, 2t+2), respectively. We omitted
this algorithm from this version of the paper due to size constraints. It
can be read in the full version of the paper.

This algorithm is necessary in several cases for converting a fixed-point
number back to the significand of a floating-point number. If this sort of
protocol is not performed and we mistakenly assume that the fixed-point
number x̃ that we got as a result is in some [2t, 2t+1), and thus we set the
result to JNK = (JsK, 2n−m−t−1 · JxK, Jt + qK), then it might happen that
the floating-point number N is not normalised.

We also omitted an algorithm FixToFloatConversion(Jx̃K, t,m, n) that
is used for converting a positive fixed-point number Jx̃K to a floating-point
number if we know that x̃ ∈ [2t−1, 2t+1). If x̃ ∈ [2t−1, 2t), then our result
should be JN1K = (JsK, JEK, JfK) = (J1K, Jt+qK, JỹK ·2n−t). If x̃ ∈ [2t, 2t+1),
then our result should be JN2K = (JsK, JEK, JfK) = (J1K, Jt + q + 1K, JỹK ·
2n−t−1).

5.2 Inverse

We will describe Algorithm 2 for computing the inverse of a floating-point
number JNK = (JsK, JEK, JfK) in our setting.

Data: JNK = (JsK, JEK, JfK), q,m, {sic̃i}ki=0, n
Result: Takes in a a secret floating point number JNK = (JsK, JEK, JfK), the

bias of the exponent q and the radix-point of the corresponding
fixed-point number m, Chebyshev coefficients {c̃i}ki=0 for computing
the fixed-point polynomial and the number of bits of the fixed-point
number n. Outputs a secret floating-point number that is
approximately equal to the inverse of N .

1 Jf ′K← PublicBitShiftRightProtocol(JfK, n−m)

2 JtK← FixInverseProtocol(Jf̃ ′K, {sic̃i}ki=0,m, n)

3 Jt′K← Correction(Jt̃K, 0,m, n, 0, 1)
4 Jt′′K← Jt′K · 2n−m−1

5 return JN ′K = (JsK, J2q − E + 1K, Jt′′K)

Algorithm 2: Inverse of a floating point number.

First note that since inverse of zero is not defined, we can assume that
the input is not zero and that thus the signicand is always normalised.
Second, note that the significand JfK can now be considered a fixed-point
number where m = n as it represents a number in [0.5, 1) but is stored as
a shared value in [2n−1, 2n− 1]. However, if the radix-point is so high, we
can not perform most of the operations we need to, so on line 1 we shift
the significand to the standard fixed-point format. We lose n − m bits,
but since the significand has more bits for its significand than the IEEE
standard 754 for both single and double precision, the number of bits we
have left is not less than the significand of the IEEE standard has. Let
us denote the shifted significand with Jf̃ ′K. Then, on line 2, we securely
compute the number JtK so that t̃ is the inverse of f̃ ′ by using polynomial
evaluation, as described in Algorithm 1.

The exact polynomials we used for the fixed point inversion can be
found in the full version of the paper [13]. We will denote calling the

Algorithm 1 on value Jx̃K with the coefficients of that polynomial by
FixInverseProtocol(Jx̃K, {sic̃i}ki=0,m, n), where m is the position of the
radix point and n is the number of bits in the fixed-point number and
where {sic̃i}ki=0 refers to the signed coefficients of the polynomial. Calling

FixInverseProtocol on Jx̃K gives us t̃′.

Since f̃ ′ ∈ [0.5, 1), we expect the result t̃′ to be approximately in (1, 2].
However, since the polynomial has a small error, then the result might
sometimes be slightly bigger than 2 and thus on line 3 we need to correct
the result using the Correction algorithm with range parameter being 0.

Next we want to divide the result by two and then convert the fixed-
point number back into the significand format. We can combine these
two operations. The first one would require shifting to the right by one
bit and the second one would require shifting to the left by n −m bits.
By combining, we just have to shift the result to the left by n −m − 1
bits, which is a free operation since it is equivalent with multiplying by
2n−m−1 which we do on line 4. The sign of the inverse is the same as the
sign of N and the exponent should be the additive inverse of the original
exponent, minus one to take into account the division by two that we did
in the significand. However, we need to take into account that the bias
is added to the exponent and thus the exponent of the result shall be
J−E + q + 1K. Thus we obtain Algorithm 2 for computing the inverse of
a floating-point number.

5.3 Square Root

We will describe Algorithm 3 for computing the square root of a floating-
point number in our setting. Note that since we assume that the sign is
positive and thus ignore the sign, we will de facto compute the function√
|x|. If the input is −x for some non-negative x, then the output will be

approximately
√
x.

First we shall describe the case where the input is not zero. We note
that the significand JfK can be considered a fixed-point number where
m = n as it represents a number in [0.5, 1) but is stored as a shared value
in [2n−1, 2n−1]. However, if the radix-point is so big, we can not perform
most of the operations we need to, so on line 1, we shift the significand to
the standard fixed-point format. Let us denote the shifted significand by
Jf̃ ′K. While computing the square root, it is natural to halve the exponent
by shifting it to the right by one bit on line 3. However, the parity of that

last bit may change the result
√
2
2 times and thus we have to remember

the last bit before that on line 2 and later use it to perform an oblivious

Data: JNK = (JsK, JEK, JfK), q,m, {sic̃i}ki=0, n
Result: Takes in a a secret floating point number JNK = (JsK, JEK, JfK), the

bias of the exponent q and the radix-point of the corresponding
fixed-point number m, Chebyshev coefficients {c̃i}ki=0 for computing
the fix-point polynomial and the number of bits of the fixed-point
number n. Outputs a secret floating-point number that is
approximately equal to

√
N .

1 Jf̃ ′K← PublicBitShiftRightProtocol(JfK, n−m)
2 JbK← JEK (mod 2)
3 JE′K← PublicBitShiftRightProtocol(JEK, 1)

4 Jt̃1K← FixSquareRootProtocol(Jf̃ ′K, {sic̃i}ki=0,m, n)

5 Jt̃2K← Jt̃1K ·
√̃
2
2

6 Jt̃′2K← Correction(Jt̃2K,−1,m, n, 1, 0)

7 Jt′K← ObliviousChoiceProtocol(JbK, Jt̃1K, Jt̃′2K)
8 Jt′′K← Jt′K� (n−m)
9 return JN ′K = (J1K, JE′ + 1 + (q � 1)K, Jt′′K)

Algorithm 3: Square root of a floating point number.

choice on line 7. Like in the case of the inverse, we use a Chebyshev
polynomial on line 4 to find such Jt̃1K that t̃1 is approximately equal to
the square root of f̃ ′. For that we compute the square root of Jf̃ ′K by using
polynomial evaluation, as described in Algorithm 1.The exact polynomial
for computing the fixed point square root can be found in the full version
of the paper [13].

We will denote calling the function 1 on value Jx̃K with the coefficients
of that polynomial with FixSquareRootProtocol(Jx̃′K, {sic̃i}ki=0,m, n) where
m is the position of the radix point and n is the number of bits in the
fixed-point number and where {sic̃i}ki=0 refers to the signed coefficients
of the polynomial. Calling FixSquareRootProtocol on Jx̃K gives us Jt̃1K.

Following that, on line 5 we multiply Jt̃1K by
√̃
2
2 —we then have the

risk of Jt̃1 ·
√
2
2 K being slightly less than 0̃.5, thus we need to use the

Correction with range parameter being −1 on line 6 to correct Jt̃1 ·
√
2
2 K

into the range [0.5, 1). Then, on line 7, we use the saved last bit of the

exponent to perform an oblivious choice between Jt̃1K and Jt̃1 ·
√
2
2 K and

convert the result back into the significand format by shifting the result
left by n−m bits on the line 8. The latter operation may be implemented
by multiplying the result by 2n−m which is a local operation. The sign of
a square root is always plus. We correct for the bias and rounding errors
by adding 1 + (q � 1) to JE′K. The added 1 comes from the fact that the

bias is odd and we lose 0.5 from the exponent twice when truncating q
by a bit. Thus we obtain Algorithm 3 for computing the square root of
a floating-point number. The algorithm also gives a correct result if the
input is zero but the reasoning for this was omitted due to size constraints
and can be read in the full version of the paper.

5.4 Exponent

Data: JNK = (JsK, JEK, JfK), q,m, {sic̃i}ki=0, n
Result: Takes in a a secret floating point number JNK = (JsK, JEK, JfK), the

bias of the exponent q and the radix-point of the corresponding
fixed-point number m, coefficients {sic̃i}ki=0 for computing the
fix-point polynomial and the number of bits of the fixed-point number
n. Outputs a secret floating-point number that is approximately equal
to eN .

1 JyK = (JsyK, JEyK, JfyK)← log2 e · JNK
2 JzK← PrivateBitShiftRightProtocol(JfyK, Jn− (Ey − q)K)
3 J[y]K = (Js[y]K, JE[y]K, Jf[y]K)← ConvertToFloat(JzK)
4 J{y}K = (Js{y}K, JE{y}K, Jf{y}K)← JyK− J[y]K
5 Jw̃K← PrivateBitShiftRightProtocol(Jf{y}K, J−E{y} + q + n−mK)
6 begin in parallel

7 Jf̃ ′K← FixPowerOfTwoProtocol(Jw̃K, {sic̃i}ki=0,m, n)

8 Jf̃ ′′K← FixPowerOfTwoProtocol(J1̃− wK, {sic̃i}ki=0,m, n)

9 end
10 begin in parallel

11 Jf̃ ′K← Correction(Jf̃ ′K, 0,m, n, 1, 1)

12 Jf̃ ′′K← Correction(Jf̃ ′′K, 0,m, n, 1, 1)

13 end

14 J2{y
′}K = (Js

2{y′}K, JE
2{y′}K, Jf

2{y′}K)← (J1K, Jq + 1K, Jf ′ · 2n−m−1K
15 J2{y

′′}K = (Js
2{y′′}K, JE

2{y′′}K, Jf
2{y′′}K)← (J1K, Jq + 1K, Jf ′′ · 2n−m−1K

16 J2[y′]K = (Js
2[y

′]K, JE2[y
′]K, Jf2[y′]K)← (J1K, J1 + q + zK, J100 . . . 0K)

17 J2[y′′]K = (Js
2[y

′′]K, JE2[y
′′]K, Jf2[y′′]K)← (J1K, Jq − zK, J100 . . . 0K)

18 JbK← ConvertToBoolean(JsyK)
19 begin in parallel

20 J2{y}K← ObliviousChoiceProtocol(JbK, J2{y
′}K, J2{y

′′}K)
21 J2[y]K← ObliviousChoiceProtocol(JbK, J2[y′]K, J2[y′′]K)
22 end

23 J2yK = (Js2y K, JE2y K, Jf2y K)← J2[y]K · J2{y}K
24 return JN ′K = J2yK

Algorithm 4: Power of e of a floating point number.

We will describe Algorithm 4 for computing the exponent of a floating-
point number in our setting.Given a secret floating-point number JNK =
(JsK, JEK, JfK) we wish to compute JeN K = J2log2 e·N K = J2yK where y :=
log2 e ·N .

It is easier to compute a power of 2 in our setting than a power of
e so thus on line 1 we first compute the floating-point number JyK =
(Js{y}K, JE{y}K, Jf{y}K) = Jlog2 eK · JNK. To compute J2yK, we split JyK into
two parts — the integer part J[y]K and the fractional part J{y}K. Note
that the n − (Ey − q) last bits of the sy represent the fractional part
of y and the rest of the bits represent the integer part, so it is equal to
2n−(Ey−q)([y]+{y}) Thus, on line 2 we privately shift JfyK to the right by
Jn−(Ey−q)K bits to truncate the fractional part and divide by 2n−(Ey−q)

and thus obtain the integer part of JyK that we represent with JzK. This,
however, has integer type and we want to deduce it from a floating-point
number so we need to call the ConvertToFloat method on line 3 to cast
JzK into a floating point-number J[y]K = (Js[y]K, JE[y]K, Jf[y]K).

We find the fractional part J{y}K = (Js{y}K, JE{y}K, Jf{y}K) on line 4
by J{y}K = JyK−J[y]K. Note that if [y] is negative, then the fractional part
will be in [−1, 0), so we have to subtract 1 from J[y]K and add it to J{y}K
in order for {y} to be in [0, 1). We shall do the next operations in both
the positive and the negative case and use oblivious choice in the end to
choose between them. Now we convert J{y}K to a fixed-point number Jw̃K
by shifting Jf{y}K to the right by J−E{y} + q + n − mK bits. The exact
polynomial for computing the fixed point exponent can be found in the
full version of the paper [13].

We will denote calling the Algorithm 1 on value Jx̃K with the coeffi-
cients of that polynomial by FixPowerOfTwoProtocol(Jx̃K, {sic̃i}ki=0,m, n),
where m is the position of the radix point and n is the number of bits
in the fixed-point number and where {sic̃i}ki=0 refers to the signed coef-
ficients of the polynomial and we call this function in parallel on lines 7

and 8 this polynomial on values Jw̃K and J1̃− wK and thus obtain Jf̃ ′K
and Jf̃ ′′K respectively and correct them with range parameter 0. We then
initialize the possible values for J2{y}K, that is, J2{y′}K and J2{y′′}K with

signs 1, exponents q + 1 and significands that are equal to Jf̃ ′K and Jf̃ ′′K
that have been shifted by n − m − 1 bits to the left. Likewise, we ini-
tialize the possible values for J2[y]K, that is, J2[y′]K and J2[y′′]K with signs
1, exponents that are equal to 1 + q + z and q − z, respectively and sig-
nificands 100 . . . 0 = 2n−1. J2[y′]K and J2{y′}K are the correct values if the
input was a positive number, i.e. sy = 1 and J2[y′′]K and J2{y′′}K are the
correct values if the input was a negative number i.e. sy = 0. Thus we

convert JsyK to a boolean on line 18 and, in parallel, perform oblivious
choice between J2{y′}K and J2{y′′}K on line 20 and J2[y′]K and J2[y′′]K on
line 21 to respectively obtain J2{y}K and J2[y]K. We then multiply J2{y}K
and J2[y]K together on line 23 to obtain the result. Thus we obtain the
Algorithm 4 for computing the exponential function of a floating-point
number. Note that the algorithm also works on inputs 0 and −0.

5.5 Error Function

Gaussian error function is defined by erf x = 2√
π

∫ x
0 e−t

2
dt. It is a anti-

symmetric function — i.e. erf(−x) = − erf(x). Thus we can evaluate the
function only depending on the exponent and the significand, and in the
end, set the sign of the output to be the sign of the input. So, for the sake
of simplicity, we will assume that our input is non-negative. However,
since erf(a · b) can not be easily computed from erf a and erf b, we can
not use the approach we used for inverse and square root. Computing the
error function using approximation polynomials on significands does not
seem possible, as we would have to be able to represent all numbers with
fixed-point numbers of a good precision (conflicting goals) and also use
very many approximation polynomials.

However, it turns out that we can bound the range of inputs in which
case we have to compute the error function with a fixed-point polyno-
mial. Namely, if x is close to 0 then erf x can be well approximated with
2√
π
x—observe that the McLaurin series of the error function is erf x =

2√
π

∑∞
i=0

(−1)n
n!(2n+1)x

2n+1 and note that |erf x− 2√
π
x|= | 2√

π

∑∞
i=1

(−1)nx2n+1

n!(2n+1) |<
2x

3·
√
π

∑∞
i=1 x

2n = 2
3·
√
π

x3

1−x2 .

If x is small enough, then 2
3·
√
π

x3

1−x2 is negligible. On the other hand,

erf x is a monotonously growing function that approaches 1 so we can
approximate erf(x) with 1 for large enough x. In our approach, if x ≥ 4,
we set erf x = 1. The error we make is at most 2 · 10−8. Thus, we will
only need to compute polynomial approximations for x ∈ [2−w, 22) where
w is a previously fixed public parameter that depends on how precise we
would like the algorithm to be.

Thus we need approximation polynomials for the range [0, 4) only. We
will use four approximation polynomials, p0, p1, p2 and p3 where pi(ỹ) ≈
erf y if ỹ ∈ [i, i+1), where i ∈ {0, 1, 2, 3}. The exact polynomials p1, p2, p3
and p4 can be found in the full version of the paper [13].

We shall now describe Algorithm 5 for computing the error function
of a floating-point number. First, we shall find the possible corresponding

Data: JNK = (JsK, JEK, JfK), q,m,
{si,0c̃i,0}li=0, {si,1c̃i,1}li=0, {si,2c̃i,2}li=0, {si,3c̃i,3}li=0, n, w

Result: Takes in a a secret floating point number JNK = (JsK, JEK, JfK), the
bias of the exponent q and the radix-point of the corresponding
fixed-point number m, coefficients {si,j c̃i,j}li=0 for computing the
fixed-point values that are accurate in [j, j + 1) and an integer w so
that we evaluate the function with a polynomial, if 2w ≤ N < 4.
Outputs a secret floating-point number that is approximately equal to
the error function of N .

1 for k ← 0 to w do
2 shiftsk ← n−m + i− 2
3 end
4 {JfkK}wk=0 ← PublicBitShiftRightProtocol(JfK, {shifts}wk=0))
5 for k ← 1 to w do in parallel

6 Jg̃kK← FixGaussianErrorFunction(Jf̃kK,m, n, {si,0c̃i,0}li=0)

7 Jg̃0K← FixGaussianErrorFunction(Jf̃0K,m, n, {si,1c̃i,1}li=0)

8 Jg̃−1,0K← FixGaussianErrorFunction(Jf̃0K,m, n, {si,2c̃i,2}li=0)

9 Jg̃−1,1K← FixGaussianErrorFunction(Jf̃0K,m, n, {si,3c̃i,3}li=0)

10 end
11 {JuiK}ni=0 ← BitExtraction(JfK)
12 Jg−1K← ObliviousChoiceProtocol(JumK, Jg−1,1K, Jg−1,0K)
13 t−1 ← 0
14 t0 ← 0
15 for k ← 1 to w do
16 tk ← 2− k
17 end
18 for k ← −1 to w do in parallel
19 JNkK = (JskK, JEkK, JfkK)← FixToFloatConversion(Jg̃kK, tk,m, n)
20 end
21 JN−2K = (Js−2K, JE−2K, Jf−2K)← 2√

π
· JNK

22 JNw+1K = (Jsw+1K, JEw+1K, Jfw+1K)← 1
23 begin in parallel
24 b0 ← LTEProtocol(JEK, Jq − wK)
25 b1 ← LTEProtocol(Jq + 3K, JEK)
26 end
27 JEK← ObliviousChoiceProtocol(Jb0K, Jq − wK, JEK)
28 JEK← ObliviousChoiceProtocol(Jb1K, Jq + 3K, JEK)
29 JE′K← GeneralizedObliviousChoice(JE−2K, . . . , JEw+1K, JE − qK)
30 Jf ′K← GeneralizedObliviousChoice(Jf−2K, . . . , Jfw+1K, JE − qK)
31 return JN ′K = (JsK, JE′K, Jf ′K)

Algorithm 5: Gaussian error function of a floating point number.

fixed-point numbers on which we compute our polynomial. We will, in
parallel, on line 4, compute

Jf̃iK = PublicBitShiftRightProtocol(JfK, n−m + i− 2) for i ∈ [0, w].

If JfK is the significand of JxK then Jf̃iK ∈ [2−i, 2−i+1) if x ∈ [2−i, 2−i+1).
Note that although we need polynomial approximation for values that

are in [2, 4), we did not compute any such fixed-point number f̃−1 =
PublicBitShiftRightProtocol(JfK, n−m− 3) that is equal to x if x ∈ [2, 4).

Instead of computing the polynomial
∑l

i=0 siai · f̃−1
i

we compute the

polynomial
∑l

i=0 siai2
i · f̃0

i
. Note that these two expressions are almost

equivalent since f0 = f−1 � 1. However, the latter is preferable since we

will only be able to represent f̃−1
i

if i is very small and thus not be able
to use good polynomials.

We now wish to compute values Jg̃iK where g̃i ≈ erf f̃i if x ∈ [2−i, 2−i+1)
for i ∈ [−1, w]. For i ∈ [1, w] we compute g̃i = p0(f̃i) on line 6. For i = 0,
we compute g̃0 = p1(f̃0) on line 7 For i = −1, we compute g̃−1,0 and g̃−1,1
on lines 8 and 9 by applying the modified versions of the polynomials p2
and p3 to f̃0, as described before. Note that these values are computed
in parallel. Now we need to evaluate g̃−1 using oblivious choice so that if
the result is in [2, 4), g̃−1 = g̃−1,0 if f ≤ 2n−1 and g̃−1 = g̃−1,1 if f > 2n−1.
We note that whether f ≤ 2n−1 or not depends only on the last bit of f ,
thus we use the BitExtract protocol on JfK on line 11 to find that bit and
use that to perform oblivious choice on line 12 between g̃−1,0 and g̃−1,1.

Note that for i < −1, if x ∈ [2i, 2i+1) then erf x ∈ [2i, 2i+2). If x ≥ 0.5,
then erf x ∈ [0.5, 1). Thus we can apply the FixToFloat protocol on line
19 to the numbers Jg̃iK to obtain floating point numbers JN−1K, . . . , JNwK
We additionally compute JN−2K = 2√

π
JNK and set JNw+1K to J1K on lines

21 and 22. In order to be able to use only the last log2(2 + w) bits for
the generalized oblivious choice, we set JEK to q − w if it is smaller than
q − w and to q + 3 if it is larger than q + 3 on lines 24, 25, 27 and 28.

Then we use the generalised oblivious choice protocol on both expo-
nents and significands on lines 29 and 30 to choose the final result between
JN−2K, . . . , JNw+1K based on the exponent JEK. Note that if x = 0, then
the oblivious choice will choose JN−2K = 2√

π
J0K = J0K and thus the pro-

tocol is correct also when the input is zero.
Note that while it would have been possible to shift by a protected

number of bits and thus obtain a single fixed-point number on which
we could do polynomial evaluation, we still would have to use different
polynomials for different value ranges of the input and perform oblivious

choices between them and since shifting by a protected number of bits is
an expensive operation we decided against it.

6 Results and Comparison

We have implemented four selected functions on the Sharemind 3 com-
puting platform and benchmarked the implementations. To measure the
performance of the floating point operations we deployed the developed
software on three servers connected with fast network connections.

More specifically, each of the servers used contains two Intel X5670
2.93 GHz CPUs with 6 cores and 48 GB of memory. Since on Sharemind
parallel composition of operations is more efficient than sequential com-
position, all the operations were implemented as vector operations. To see
how much the vector size affects the average performance, we ran tests for
different input sizes for all our inputs. We did 5 tests for each operation
and input size and computed the average.

We compare here our results with previously existing protocols for
computing the functions on either fixed-point values or floating-point val-
ues. How we reached the error estimates is described in the full version of
the paper [13]. The error estimates are relative errors given for the signif-
icand, meaning that they will be respectively bigger or smaller when the
exponent is bigger or smaller. As for previous work, Catrina and Drag-
ulin achieve maximal possible precision given their used number of bits,
Aliasgari et al achieve precision 2−32, Liedel achieves precision 2−80 and
Kamm and Willemson achieve precision that is approximately in the same
orders of magnitude as this paper.

1 10 100 1000 10000

Catrina, Dragulin, 128 bits, AppDiv2m, LAN(ms) [5] 3.39

Catrina, Dragulin, 128 bits, Div2m, LAN(ms) [5] 1.26

Kamm and Willemson, Chebyshev, 32 bits [11] 0.17 1.7 15.3 55.2 66.4

Kamm and Willemson, Chebyshev, 64 bits [11] 0.16 1.5 11.1 29.5 47.2

Current paper, 32 bits 0.99 8.22 89.73 400.51 400.51

Current paper, 64 bits 0.82 8.08 62.17 130.35 130.35

Table 1. Operations per second for different implementation of the inverse function
for different batch sizes.

Table 1 compares previous results for computing the inverse with our
results. Our results are up to 6 times faster than the previously existing

implementations. We estimate the error to be no larger than 1.3 ·10−4 for
the 32 bit case and 1.3 ·10−8 for the 64 bit case. We had m = 25 in the 32
bit case and m = 52 in the 64 bit case. In the 32 bit case the polynomial
has rank 5 and in the 64 bit case it had rank 10.

1 10 100 1000 10000

Liedel [15] 0.204

Kamm and Willemson 32 bits [11] 0.09 0.85 7 24 32

Kamm and Willemson 64 bits [11] 0.08 0.76 4.6 9.7 10.4

Current paper, 32 bits 0.77 7.55 70.7 439.17 580.81

Current paper, 64 bits 0.65 6.32 41.75 78.25 119.99

Table 2. Operations per second for different implementation of the square root function
for different input sizes.

Table 2 compares previous results for computing the square root with
our results. Our results are up to 18 times faster than the best previously
existing implementations. We estimate the error to be no larger than
5.1 · 10−6 for 32 bit case and 4.1 · 10−11 for the 64 bit case. We had
m = 31 in the 32 bit case and m = 52 in the 64 bit case. In the 32 bit
case the polynomial has rank 6 and in the 64 bit case it had rank 16.

1 10 100 1000 10000

Aliasgari et al. [1] 6.3 9.7 10.3 10.3

Kamm and Willemson, (Chebyshev) 32 bits [11] 0.11 1.2 11 71 114

Kamm and Willemson, (Chebyshev) 64 bits [11] 0.11 1.1 9.7 42 50

Current paper, 32 bits 0.24 2.41 24.03 104.55 126.42

Current paper, 64 bits 0.23 2.27 16.66 47.56 44.84

Table 3. Operations per second for different implementation of the exponential func-
tion for different input sizes.

Table 3 compares previous results for computing the exponent with
our results. Our results are up to 2 times faster than the best previously
existing implementations. We estimate the error to be no larger than
6 · 10−6 for 32 bit case and 1.5 · 10−12 for the 64 bit case. We had m = 30
in the 32 bit case and m = 62 in the 64 bit case. In the 32 bit case the
polynomial has rank 4 and in the 64 bit case it had rank 8.

Table 4 compares previous results for computing the Gaussian error
function with our results. Our results are up to 4 times faster than the

1 10 100 1000 10000

Kamm and Willemson, 32 bits [11] 0.1 0.97 8.4 30 39

Kamm and Willemson, 64 bits [11] 0.09 0.89 5.8 16 21

Current paper, 32-bit 0.5 4.41 30.65 45.42 49.88

Current paper, 64-bit 0.46 4.13 21.97 19.54 26.11

Table 4. Operations per second for different implementation of the Gaussian error
function for different input sizes.

previously existing implementations. We estimate error for 32 bit case to
be no greater than 1.1 ·10−6 for inputs from [0, 1), no greater than 7 ·10−6

for inputs from [1, 2), no greater than 1.5 · 10−5 for inputs from [2, 3) and
no greater than 4 · 10−6 for inputs from [3, 4). We estimate error for 64
bit case to be no greater than 2 · 10−8 in [0, 1), no greater than 4 · 10−9 in
[1, 2), no greater than 10−8 in [2, 3) and no greater than 1 · 10−7 in [3, 4).
We had m = 26 in the 32 bit case and m = 51 in the 64 bit case and
w = 4. All the polynomials had rank 12.

7 Conclusion

We developed fixed-point numbers for the Sharemind secure multiparty
computation platform. We improved on existing algorithms by [11] for
floating-point numbers for the inverse, square-root, exponential and error
functions by constructing a hybrid model of fixed-point and floating-point
numbers. These new algorithms allow for considerably faster implemen-
tations than the previous ones.

References

1. Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure com-
putation on floating point numbers. In NDSS, 2013.

2. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast
Privacy-Preserving Computations. In Sushil Jajodia and Javier Lopez, editors,
ESORICS’08, volume 5283 of LNCS, pages 192–206. Springer Berlin / Heidelberg,
2008.

3. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. In-
ternational Journal of Information Security, 11(6):403–418, 2012.

4. Dan Boneh, Giovanni Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public
key encryption with keyword search. In Christian Cachin and JanL. Camenisch,
editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 506–522. Springer Berlin Heidelberg, 2004.

5. Octavian Catrina and Claudiu Dragulin. Multiparty computation of fixed-point
multiplication and reciprocal. In Database and Expert Systems Application, 2009.
DEXA ’09. 20th International Workshop on, pages 107–111, 2009.

6. Octavian Catrina and Sebastiaan Hoogh. Secure multiparty linear programming
using fixed-point arithmetic. In Dimitris Gritzalis, Bart Preneel, and Marianthi
Theoharidou, editors, Computer Security – ESORICS 2010, volume 6345 of Lecture
Notes in Computer Science, pages 134–150. Springer Berlin Heidelberg, 2010.

7. Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point num-
bers. In Radu Sion, editor, Financial Cryptography and Data Security, volume 6052
of Lecture Notes in Computer Science, pages 35–50. Springer Berlin Heidelberg,
2010.

8. Morten Dahl, Chao Ning, and Tomas Toft. On secure two-party integer division.
In AngelosD. Keromytis, editor, Financial Cryptography and Data Security, vol-
ume 7397 of Lecture Notes in Computer Science, pages 164–178. Springer Berlin
Heidelberg, 2012.

9. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09,
pages 169–178, 2009.

10. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryp-
tion scheme. In Kenneth G. Paterson, editor, Advances in Cryptology – EURO-
CRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 129–148.
Springer Berlin Heidelberg, 2011.

11. Liina Kamm and Jan Willemson. Secure floating-point arithmetic and private
satellite collision analysis. Cryptology ePrint Archive, Report 2013/850, 2013.
http://eprint.iacr.org/.

12. F. Kerschbaum, A. Schroepfer, A. Zilli, R. Pibernik, O. Catrina, S. de Hoogh,
B. Schoenmakers, S. Cimato, and E. Damiani. Secure collaborative supply-chain
management. Computer, 44(9):38–43, 2011.

13. Toomas Krips and Jan Willemson. Hybrid model of fixed and floating point
numbers in secure multiparty computations. Cryptology ePrint Archive, Report
2014/221, 2014. http://eprint.iacr.org/.

14. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In ISC ’11, volume 7001 of LNCS, pages 262–277, 2011.

15. Manuel Liedel. Secure distributed computation of the square root and applications.
In MarkD. Ryan, Ben Smyth, and Guilin Wang, editors, Information Security
Practice and Experience, volume 7232 of Lecture Notes in Computer Science, pages
277–288. Springer Berlin Heidelberg, 2012.

16. Y.-C. Liu, Y.-T. Chiang, T. s. Hsu, C.-J. Liau, and D.-W. Wang. Floating point
arithmetic protocols for constructing secure data analysis application.

17. Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-
nan Venkitasubramaniam. L-diversity: Privacy Beyond K-anonymity. ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 1(1), March 2007.

18. Pierangela Samarati. Protecting Respondents’ Identities in Microdata Release.
IEEE Transactions on Knowledge and Data Engineering, 13:1010–1027, 2001.

19. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

20. Latanya Sweeney. K-anonymity: A Model for Protecting Privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570, October 2002.

21. Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: A general-purpose com-
piler for private distributed computation. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, pages 813–826,
New York, NY, USA, 2013. ACM.

