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Abstract. Secure multi-party computation (MPC) is a technique well-suited for
privacy-preserving data mining. Even with the recent progress in two-party com-
putation techniques such as fully homomorphic encryption, general MPC remains
relevant as it has shown promising performance metrics in real-world bench-
marks. SHAREMIND is a secure multi-party computation framework designed
with real-life efficiency in mind. It has been applied in several practical scenarios
and from these experiments, new requirements have been identified. Firstly, large
datasets require more efficient protocols for standard operations such as multi-
plication and comparison. Secondly, the confidential processing of financial data
requires the use of more complex primitives, including a secure division opera-
tion. This paper describes new protocols in the SHAREMIND model for secure
multiplication, share conversion, equality, bit shift, bit extraction and division.
All the protocols are implemented and benchmarked, showing that the current
approach provides remarkable speed improvements over the previous work. This
is verified using real-world benchmarks for both operations and algorithms.
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1 Introduction

The aim of secure multi-party computation is to enable a number of networked parties to
carry out distributed computing tasks on private information. During the computations,
no one party (and, more generally, no certain subsets of the parties) should be able to
learn any information about any other party’s input other than what can be inferred from
the output.

The theory behind MPC is fairly well-developed, but practical solutions based on
it are lagging considerably behind. In the last few years, several MPC frameworks
based on various techniques have been proposed and implemented, e.g. FairPlayMP [2],
VIFF [13], SEPIA [7], SecureSCM [1], VMcrypt [16], TASTY [15] and SHAREMIND [3].

Existing frameworks for MPC can broadly be split into two-party and multi-party
frameworks. The former requires computational security, hence solutions are based on
homomorphic, public-key encryption (HE) or garbled circuits (GC). TASTY combines
the two, utilizing whichever is best for the immediate task at hand. Both solutions have



drawbacks. HE is computationally expensive, while the GC approach requires that a
circuit computing the function is generated. For large scale problems – such as data
mining – even simply generating and storing the garbled circuit may be challenging.
VMcrypt avoids this issue by generating and evaluating the circuit on the fly.

Multi-party frameworks are generally more efficient, as the computational primi-
tives for information theoretic solutions are simpler than those of two-party computa-
tion. For example, addition and multiplication in a ring are more efficient than public
key or even symmetric key cryptography. Of the multi-party frameworks, FairPlayMP’s
circuit based approach suffers from the issues with large scale applications as discussed
above. The passively secure VIFF and SEPIA both use Shamir’s secret sharing scheme
to implement MPC; both are more general than SHAREMIND, as they allow an arbitrary
number of parties. while SHAREMIND is limited to three.

The first published application of MPC was the Danisco sugar beet auction held
in 2008 [6]. Since then, the practical feasibility of MPC has also been shown for net-
work anomaly detection [7] and joint analysis of financial data [5]. However, neither
of the presented applications required MPC protocols to process large databases. Nev-
ertheless, it is clear that many important areas of human endeavor, such as biomedical
research and business data aggregation, do require such a capacity, often working with
databases with thousands or even millions of records.

This research was mainly motivated by the need to build an MPC application suit-
able for the statistical analysis of financial data from competing companies, who are
interested in finding the common trends in the entire sector. Several trend indicators
require more complicated computational primitives, e.g. private division to find out dif-
ferent ratios (like turnaround to personnel size). This is impossible on many of the cur-
rent systems (such as those described in [6,7]) that use only relatively simple primitive
operations like multiplication and comparison of two numbers.

The primary target of this paper is to develop a set of MPC protocols with high
real-life performance on large databases. We will present new primitives for secure
multiplication, share conversion, equality, bit shift, bit extraction and division (both by
public and private divisor).

The presented protocols have been implemented as improvements to the SHARE-
MIND framework [3,4]. In addition to the theoretical round and communication com-
plexities we also present benchmark results illustrating the achieved performance im-
provements.

2 Preliminaries

As stated above, SHAREMIND [3,4] is a secure multi-party computation system oper-
ating on additively secret-shared values. Although general m-party protocols can be
devised for such a setting (see [3]), this paper concentrates on the case with three com-
puting parties identified as P1, P2 and P3. Designing and implementing protocols with
a specific scenario in mind allows significant efficiency gains over general protocols;
such optimizations can make the difference as to whether a problem can be solved or
not.



The SHAREMIND framework uses additive secret sharing over the finite ring Z2n .
Secret-shared value u ∈ Z2n is represented as a triple [[u]] = (u1, u2, u3), with the
element ui held by party Pi (i = 1, 2, 3) and u1 + u2 + u3 ≡ u mod 2n. In the
current implementation, n = 32 and this value is used for the performance benchmarks.
However, it is stressed that all the protocols presented here work for any choice of n.

Let ⊕, ∨ and ∧ denote the bitwise XOR, OR and AND operations, respectively.
Many of the protocols in this paper make use of these operations over the shared bits. In
these cases, it is convenient to think of a value u ∈ Z2n as a bit vector u ∈ (Z2)

n. We
stress that both u and u represent the same value and the difference is only to denote
whether it is used bitwise or as an integer, so (·) is best thought of as a typing indicator.
Hence, in general we have u = u1 + u2 + u3 6= u1 ⊕ u2 ⊕ u3.

Bit-level protocols also make use of vectors that are shared bitwise. We thus in-
troduce special notation [[u]] = (u1, u2, u3) to refer to such a bitwise sharing that
u = u1 ⊕ u2 ⊕ u3. This is a fairly natural extension of the notation.

To allow elementwise access to the bit vectors, we will let u(j) stand for the jth bit

of u. We will also use notation [[u]]
(j)

to denote the share tuple (u(j)1 , u
(j)
2 , u

(j)
3 ), so that

u(j) = u
(j)
1 ⊕ u

(j)
2 ⊕ u

(j)
3 .

3 Proving Security of Sharemind Protocols

The security proofs in this paper are presented in the universal composability frame-
work of Canetti [8]. To be precise, we assume that we have three distinct computational
entities P1,P2,P3 all of which have an ideally secure authenticated channel to the two
others. Security is proven in the passive (honest-but-curious) model in which the adver-
sary is allowed to corrupt at most one of the three parties before the execution of the
protocol. The adversary is then handed both the inputs and all the incoming messages
of the corrupted party (”curiosity”), but he has no control over its outputs, which are
assumed to be chosen as specified in the protocols (”honesty”). This model roughly
corresponds to the real-world situation where we assume the protocol implementations
are fairly hard to tamper with, whereas their inputs and outputs could be eavesdropped
on – which is a sensible assumption for most practical purposes.

In the following, we will use of the following definition:

Definition 1. We say that a share computing protocol is perfectly simulatable if there
exists an efficient universal non-rewinding simulator S that can simulate all protocol
messages to any real world adversaryA so that for all input shares the output distribu-
tions of A and S(A) coincide.

To prove that a protocol is universally composable, it suffices to show that it is per-
fectly simulatable and that the outputs are independent of the inputs (Lemma 2 of [3]).

In order to prove perfect simulatability, we consider the incoming views of all the
computing parties and prove that they are independent of the input shares of the other
parties, hence proving existence of the simulator. We will use the sequences-of-games
formalism in our proofs. Denote the distribution of the incoming view G as LGM and let
the original incoming view of the party P be G0. Then we are interested in finding a



sequence G0, G1, . . . , Gn such that

LG0M = LG1M = . . . = LGnM

and that the viewGn does not contain any references to input shares of the other parties.
The main tool that allows us to construct such sequences is the following simple

folk lemma.

Lemma 1. Let the incoming view G contain incoming messages a1 ± r, a2, . . . , ak
where a1, r are elements of finite additive group A and where r is a uniformly random
element of A, independent from all ai. Then

LGM = LG[a1 ± r/r]M ,

whereG[a1±r/r] denotes the game, where the occurrence of a1±r has been replaced
by r.

Proof. If r ∈ A is uniformly distributed and independent from all ai then so is r ± a1
since fr(x) := r ± x is a bijective mapping for A.

In the following security proofs this lemma will be used for various groups, includ-
ing Z2, Z2n and (Z2)

n.
The lemma is often used in combination with Lemma 1 of [3] which states that a

concurrent composition of perfectly simulatable protocols is also perfectly simulatable,
which allows us to use already defined perfectly simulatable protocols as subroutines
without analyzing their internal messages.

All of the protocols described in the following are fully simulatable. To achieve
full security in the universal composability framework, one extra step is needed to also
guarantee the independence of the protocol outputs from its inputs. This resharing step
was already described in [3] and is brought here for completeness as Algorithm 1. The
input shared value [[u]] is reshared as [[w]] so that u = w, all shares wi are uniformly
distributed and ui and wj are independent for all i, j. This is accomplished by masking
the input shares with values that are randomly generated, but shared by only two of
the three parties. Sharing the random values between two parties requires one round
of communication, but since the values being sent are independent of the inputs, it can
generally be done in parallel with the last round of the protocol on whose outputs it is
to be applied.

Theorem 1. Algorithm 1 is correct.

Proof. It is easy to see that

w = w1 + w2 + w3

= u1 + r12 − r31 + u2 + r23 − r12 + u3 + r31 − r23
= u1 + u2 + u3 = u .

Proofs of independence can be given exactly as in Lemma 1, since all the elements wi

are of the form uj + r − s for randomly generated elements r, s.



Algorithm 1: Resharing protocol [[w]]← Reshare([[u]]).
Data: Shared value [[u]].
Result: Shared value [[w]] such that w = u, all shares wi are uniformly distributed and ui

and wj are independent for i, j = 1, 2, 3.
1 P1 generates random r12 ← Z2n .
2 P2 generates random r23 ← Z2n .
3 P3 generates random r31 ← Z2n .
4 All values ∗ij are sent from Pi to Pj .
5 P1 computes w1 ← u1 + r12 − r31.
6 P2 computes w2 ← u2 + r23 − r12.
7 P3 computes w3 ← u3 + r31 − r23.
8 Return [[w]].

Algorithm 2: Protocol for multiplying two shared values [[w′]]← Mult([[u]], [[v]]).
Data: Shared values [[u]] and [[v]].
Result: Shared value [[w′]] such that w′ = uv.

1 [[u′]]← Reshare([[u]])
2 [[v′]]← Reshare([[v]])
3 P1 sends u′1 and v′1 to P2.
4 P2 sends u′2 and v′2 to P3.
5 P3 sends u′3 and v′3 to P1.
6 P1 computes w1 ← u′1v

′
1 + u′1v

′
3 + u′3v

′
1.

7 P2 computes w2 ← u′2v
′
2 + u′2v

′
1 + u′1v

′
2.

8 P3 computes w3 ← u′3v
′
3 + u′3v

′
2 + u′2v

′
3.

9 Return [[w′]]← Reshare([[w]]).

We stress that for practical applications, this step needs to be added to the end of
all the protocols which are available to the end-user for use. However, for all the inter-
mediate steps, perfect simulatability is enough, which is why we omit the resharing step
from the descriptions of the protocols in this paper.

4 Multiplication Protocol

Instead of using the Du-Atallah multiplication protocol as in [3] and [4], we propose
a new protocol which is based on the following observation. If we have two values u
and v shared additively as u = u1 + u2 + u3 and v = v1 + v2 + v3, their product
is uv =

∑3
i=1

∑3
j=1 uivj . The addends of the form uivi can be computed locally by

party Pi. In order to find an addend of the form uivj (i 6= j), the share ui can be sent
from Pi to Pj (or the share vj from Pj to Pi). Knowing the shares ui and uj , party
Pj is still unable to get any information concerning u, but in order to obtain universal
composability, all the shares ui and vj still need to be reshared.

The new multiplication protocol is presented in Algorithm 2.

Theorem 2. Algorithm 2 is correct and secure against a passive attacker.



Proof. For correctness we note that

w = w1 + w2 + w3 = u′1v
′
1 + u′1v

′
3 + u′3v

′
1 +

u′2v
′
2 + u′2v

′
1 + u′1v

′
2 + u′3v

′
3 + u′3v

′
2 + u′2v

′
3

= (u′1 + u′2 + u′3)(v
′
1 + v′2 + v′3)

= (u1 + u2 + u3)(v1 + v2 + v3) = uv .

To prove security, we note that Algorithm 2 is symmetric for all the parties. Thus,
it will be enough to consider just the incoming view of P1, which consists of just two
values u′3 and v′3. Both incoming values are uniformly distributed and independent of
the private inputs other than u1, v1 due to Lemma 1. Therefore, the protocol is secure
since we can build a perfect simulator by generating uniformly distributed values.

We will use the standard arithmetic shorthand and write [[w]] ← [[u]] · [[v]] to mean
[[w]] ← Mult([[u]], [[v]]). We note that this protocol works over any ring, so we can also
use it for ∧ operation for shares from Z2. In that case we will also use a shorthand
notation to write [[u]] ∧ [[v]] instead of calling the multiplication protocol. We stress,
however, that while + and ⊕ require only local addition of the shares and are thus
essentially free, both · and ∧ require communication and are hence considerably more
costly.

Even though the description of the multiplication protocol involves two rounds of
sending different values between the computing parties, the resharing round can be
carried out as precomputation since it is independent of inputs [[u]] and [[v]]. Hence the
real overhead of multiplication is just one round. It is actually possible to combine the
two rounds of communication into a single round, but this provided for no noticeable
increase in performance in implementation so we omit the details.

5 Bit-level Protocols

Most of the high-level protocols presented in Sections 6 and 7 depend on low-level bit
operations. Since the SHAREMIND virtual machine operates on values shared additively
over Z2n , accessing the bits of the shared value is a non-trivial problem.

The first step for all the protocols in the current Section is to consider the shares
u1, u2, u3 ∈ Z2n as the elements u1, u2, u3 of the ring (Z2)

n and carry out all the
operations bitwise. Recall that the value [[u]] represented by the shares u1, u2, u3 is,
generally speaking, not equal to u when converted back to Z2n , since it does not take
into account the carry bits that occur during addition.

The bit-level protocols used in SHAREMIND utilize the basic principles of digi-
tal circuit design [17] and build on the general bit extraction framework proposed by
Damgård et al. [9].

One elementary protocol used is [[b]]← BitConj([[u]]) for finding the conjunction of
all the bits of a bitwise shared vector [[u]] and representing the result as a shared bit [[b]].
This protocol can be implemented using a natural recursive split-in-half approach and
achieves round complexity logarithmic in the input vector length.

Another protocol we need is [[s]] ← CarryBits(v, [[r]]), where the value v ∈ Z2n

is known by P2 and P3, the value r is shared bitwise over (Z2)
n between P2,P3 (so



Algorithm 3: [[p′]]← PrefixOR([[p]]).

Data: Bitwise shared vector [[p]].
Result: The vector [[p′]] which has the form 00 . . . 011 . . . 1, where the initial part

00 . . . 01 coincides with the vector originally represented by [[p]].
1 l← |[[p]]|.
2 if l = 1 then
3 Return [[p′]]← [[p]].
4 else
5 [[p′]]

(l−1...bl/2c)
← PrefixOR([[p]]

(l−1...bl/2c)
).

6 [[p′]]
(bl/2c−1...0)

← PrefixOR([[p]]
(bl/2c−1...0)

).
7 for i← 0 to bl/2c − 1 do
8 [[p′]]

(i)
← [[p′]]

(i)
∨ [[p′]]

(bl/2c)
.

9 end
10 Return [[p′]].
11 end

r1 = 0), and the output is a shared vector [[s]] representing the carries occurring when
the addition v+r is performed. The protocol can be implemented exactly as in [4] using
carry look-ahead technique which also works in a logarithmic number of rounds.

Whenever a bit-level protocol needs to ∧ together two bit values, the (perfectly sim-
ulatable) protocol Mult(·, ·) can be called. The security proofs for protocols CarryBits(·, ·)
and BitConj(·) are standard applications of universal composability Lemmas 1 and 2
of [3] and we will skip them here.

As an example of a more involved bit-level protocol, we will present and analyze
the protocol for finding the most significant non-zero bit position of a bitwise shared
value [[u]].

We will proceed in two steps. First, we set all the bits after the first 1 to be 1 as well
by a recursive prefix-OR procedure presented as Algorithm 3. In the procedure, let |[[p]]|
denote the number of bits that the vector represented by [[p]] contains. Also, let [[p]]

(i...j)

denote the shared subvector containing the bits represented by [[p]]
(i)
, . . . , [[p]]

(j)
(note

that we will write more significant bits to the left, so in this notation i ≥ j).
Note that the log2 n recursive calls of Algorithm 3 require one round of multiplica-

tion each (to compute ∨ of the shared bits [[b1]] and [[b2]] as [[b1]]⊕ [[b2]]⊕ ([[b1]]∧ [[b2]])),
hence the overall round complexity of Algorithm 3 is log2 n.

To compute the most significant bit, it now suffices to zero all the bits that are to the
right of the first 1. This can be done by a simple loop given on the lines 2 to 3 of the
main protocol described as Algorithm 4. As this computation is local and requires no
communication, the complexity is the same as for Algorithm 3.

Theorem 3. Algorithm 4 is correct and secure against one passive attacker.

Proof. Correctness of the protocol follows directly from the discussion given above.
Security of the protocol is trivial as well, since we are only composing perfectly

simulatable primitives.



Algorithm 4: Protocol for the most significant non-zero bit position [[s]] ←
MSNZB([[u]]).

Data: Bitwise shared value [[u]].

Result: Shared vector [[s]] such that [[s]]
(j)

represents 1, where j is the most significant

position, where [[u]]
(j)

represents 1, and 0 otherwise. If all the bits of [[u]]
represent 0, all the shared bits of [[s]] represent 0 as well.

1 [[u′]]← PrefixOR([[u]]).
2 for i← 0 to n− 2 do
3 [[s]]

(i)
← [[u′]]

(i)
⊕ [[u′]]

(i+1)
.

4 end

5 [[s]]
(n−1)

← [[u′]]
(n−1)

.
6 Return [[s]].

6 Improved High-level Protocols

We now describe the new and improved high-level protocols for the framework: the
operators for share conversion, bit extraction and equality. We have also developed
protocols for bit shift under a public shift which are presented in Appendix A.

6.1 Share conversion

Bit-level operations are typically used as building blocks within algorithms working
with the full shares over Z2n . Hence, the problem of converting the bits shared over
Z2 to shares over Z2n arises. Converting individual shares locally does not solve the
problem, since we will lose reduction modulo 2. Hence, a different approach is needed.

The routine presented as Algorithm 5 first splits the bit u as u = m ⊕ s so that
m = b ⊕ u1 for a random bit b. The bit m can then be directly converted to Z2n by
one party and the value of s can be used to select whether the real value of u should be
1−m or m.

Theorem 4. Algorithm 5 is correct and secure against one passive attacker.

Proof. For correctness, we first note that

u = u1 ⊕ u2 ⊕ u3 = b⊕m⊕ b12 ⊕ s23 ⊕ b13 ⊕ s32 = m⊕ s .

Hence, if s = 1, we have v = v1+v2+v3 = 1−m12−m13 = 1−m, which is equal to
m⊕ 1 when embedded to Z2n . If s = 0 we have v = v1 + v2 + v3 = m12 +m13 = m,
which is equal to m⊕ 0 when embedded to Z2n .

To prove security, we will consider all the three computing parties and prove that
their incoming views can be perfectly simulated. The view of party P1 contains no
incoming messages, so the corresponding simulator is trivial. The incoming view of P2

can be perfectly simulated, since using Lemma 1 we see that its distribution

Lm12, b12, b⊕ b12 ⊕ u3M = Lm12, b12, bM



Algorithm 5: Protocol [[v]] ← ShareConv([[u]]) for converting a share [[u]] ∈ Z2

to [[v]] ∈ Z2n .
Data: Shared value [[u]] in bit shares.
Result: Shared value [[v]] such that u = v and [[v]] is shared in Z2n .

1 P1 generates random b← Z2 and sets m← b⊕ u1.
2 P1 locally converts m to Z2n , generates random m12 ← Z2n and computes

m13 = m−m12.
3 P1 generates random b12 ← Z2 and computes b13 = b− b12 = b⊕ b12.
4 All values ∗ij are sent from Pi to Pj .
5 P2 sets s23 ← b12 ⊕ u2.
6 P3 sets s32 ← b13 ⊕ u3.
7 All values ∗ij are sent from Pi to Pj .
8 P1 sets v1 ← 0
9 P2 and P3 set s← s23 ⊕ s32

10 if s = 1 then
11 P2 sets v2 ← (1−m12).
12 P3 sets v3 ← (−m13).
13 else
14 P2 sets v2 ← m12.
15 P3 sets v3 ← m13.
16 end
17 Return [[v]].

is independent of private inputs other than u2.
Similarly, the incoming view of P3 can be perfectly simulated, since using Lemma 1

we see that its distribution

Lb⊕ u1 −m12, b⊕ b12, b12 ⊕ u2M
= Lm12, b⊕ b12, b12 ⊕ u2M
= Lm12, b, b12 ⊕ u2M
= Lm12, b, b12M

is independent of private inputs other than u3. Furthermore, the values m12, b12 and b
are uniformly distributed so we can build a perfect simulator for P2 and P3 and show
security.

6.2 Bit extraction

In order to perform bit-level computations, we first need to extract the bits, which is
a non-trivial task for shared values. The basic working principle of Algorithm 6 is the
same as of the bitwise addition protocol explained in [4]. The initial value u is rep-
resented as the sum v + r, where r is a random value with a known shared bitwise
decomposition. We can then use the carry look-ahead algorithm to determine the carry
bits that occur in the addition v + r and use them to compute the bits of u.

Theorem 5. Algorithm 6 is correct and secure against one passive attacker.



Algorithm 6: Protocol [[w]]← BitExtr([[u]]) for bit extraction.
Data: Additively shared value [[u]].
Result: Bitwise shared vector [[w]] representing the bits of u.

1 P1 generates random r, r2 ← Z2n , q2 ← (Z2)
n, sets q1 = 0 and computes

r3 ← u1 − r − r2, q3 ← r ⊕ q2.
2 P1 sends ri, qi to Pi (i = 2, 3).
3 Pi (i = 2, 3) computes the share vi ← ui + ri and sends it to P6/i.
4 P2,P3 compute v = v2 + v3.
5 [[s]]← CarryBits(v, [[q]]).
6 Define s(−1)

i = 0, (i = 1, 2, 3).
7 for j ← 0 to n− 1 do
8 In P1: w(j)

1 ← s
(j−1)
1 .

9 In P2: w(j)
2 ← v(j) ⊕ q(j)2 ⊕ s

(j−1)
2 .

10 In P3: w(j)
3 ← q

(j)
3 ⊕ s

(j−1)
3 .

11 end
12 Return [[w]].

Proof. During the initial stage, u is represented as

u = u1 + u2 + u3 = (r + r2 + r3) + (v2 − r2) + (v3 − r3)
= v2 + v3 + r = v + r ,

where r has a known shared bit decomposition r = q2 ⊕ q3. Thus, in order to find the
bits of u, we can use bitwise addition to compute the bits of v+r. To do that, one needs
to compute the carry bits, and this is done by calling the Algorithm CarryBits(·, ·) (laid
out in [4]).

As a result, the bitwise shared vector [[s]] will represent exactly the carry bits from
the corresponding positions when computing v + r, hence it remains to add these bits
to the shared bitwise ⊕ of v and r, which is done on lines 6 to 10. Indeed, we see that

w(j) = w
(j)
1 ⊕ w

(j)
2 ⊕ w

(j)
1

= s
(j−1)
1 ⊕ v(j) ⊕ q(j)2 ⊕ s

(j−1)
2 ⊕ q(j)3 ⊕ s

(j−1)
3

= v(j) ⊕ r(j) ⊕ s(j−1) .

To prove security, we will consider all three computing parties and prove that their
incoming views can be perfectly simulated. The incoming view of party P1 contains no
other incoming messages than the ones determined by Algorithm CarryBits(·, ·), which
can be perfectly simulated. The incoming view of P2 looks mostly the same as that of
P1, only the initial part differs. We use Lemma 1 again to see that

Lr2, q2, u3 + r3, . . .M = Lr2, q2, r3, . . .M,

which does not depend on any input values and can hence be perfectly simulated.



Algorithm 7: Protocol [[w]] ← Equal([[u]], [[v]]) for evaluating the equality predi-
cate.

Data: Shared values [[u]] and [[v]].
Result: Shared value [[w]] such that w = 1 if u = v, and 0 otherwise.

1 P1 generates random r2 ← Z2n and computes r3 ← (u1 − v1)− r2.
2 P1 sends ri to Pi (i = 2, 3).
3 Pi computes ei = (ui − vi) + ri (i = 2, 3).
4 P1 sets p1 ← 2n − 1 = 111 . . . 1.
5 P2 sets p2 ← e2.
6 P3 sets p3 ← (0− e3).
7 Return [[w]]← BitConj([[p]]).

Similarly, for party P3 we have the initial part of the incoming view

Lu1 − r − r2, r ⊕ q2, u2 + r2, . . .M
= Lu1 − r − r2, q2, u2 + r2, . . .M
= Lr, q2, u2 + r2, . . .M
= Lr, q2, r2, . . .M,

which does not depend on any input values once again.

We note that this protocol can also be used to improve the efficiency of comparison
protocols which usually use bit extraction as a subroutine [4].

6.3 Equality testing

Equality testing can be accomplished fairly easily via bit extraction. However, since
equality comparison is used quite often in practical applications, it makes sense to pro-
vide a separate and more efficient protocol specifically designed for that task. Algo-
rithm 7 first shares the difference u− v as e2 + e3 between P2 and P3. Then it remains
to determine, whether e2 + e3 = 0, which can be done by comparing e2 and −e3
bitwise.

Theorem 6. Algorithm 7 is correct and secure against one passive attacker.

Proof. For correctness note first that

e2 + e3 = (u2 − v2) + r2 + (u3 − v3) + r3

= (u2 − v2) + (u3 − v3) + (u1 − v1) = u− v ,

hence u = v iff e2 = 0− e3. Algorithm 7 compares u and v by comparing p2 = e2 and
p3 = (0 − e3) bitwise. For that we analyze the bitwise sum (XOR) of p1 = 2n − 1 =
111 . . . 1, p2 and p3. We see that u = v iff all the bits represented [[p]] are 1, which is

exactly the case when the conjunction [[w]] = ∧n−1i=0 [[p]]
(i)

is 1. This is exactly what is
verified by calling Algorithm BitConj(·).



To prove security, we will consider all the three computing parties and prove that
their incoming views can be perfectly simulated.

The incoming view of party P1 coincides with its view in Algorithm BitConj(·) and
can hence be simulated. The incoming view of P2 is almost equivalent to that of P1 with
the only exception of receiving one extra independently and uniformly chosen element
r2, which is trivial to simulate. The same holds for P3 who receives r3 = (u1−v1)−r2
which can be replaced by r2 by Lemma 1.

7 Division protocols

In this paper we introduce two division protocols – one where the divisor is a public
constant and the other, where the divisor is a shared value. The protocols make use
of two subroutines ReshareToTwo(·) and Overflow(·) meant for resharing a value to
two parties and for computing the overflow bit once the values are shared in this way,
respectively. As both protocols are fairly straightforward, the exact details for them are
given in Appendix A.

7.1 Division by a public value

The main idea for the division protocol comes from [14] and essentially consists of pub-
licly finding the inverse d′ = 1/d of the divisor d and then multiplying the dividend a
with the previously found inverse value d′. This trick reduces division to multiplication
by a constant, which is often used on normal processors to speed up batch division of
many numbers with a single value. In our case, however, it allows to do the division
publicly and then only perform a secret multiplication, which is fairly efficient.

Since we have access to only integer arithmetic, it makes sense to denote the inverse
value d′ ≈ c2−k where we choose k in such a way that c is an integer. It is shown in [14]
that one can choose c and k in such a way that the final outcome w of the protocol is
equal to bud c. All that is left to do is to compute the division by multiplying c and u and
then shifting the result cu right k positions.

It is shown in [14] that if we are working with integers from Z2n , it suffices to
choose k = n+1 and the problem can thus be reduced to just finding the highest n bits
of the 2n+ 1 bit multiplication result.5

In our setting, multiplying two n bit values means that the higher bits are thrown
away. To avoid that, both values would temporarily need to be converted to 2n + 1-bit
values, then multiplied and then have the result truncated back to n bit value.

Converting a secret n bit value [[u]] into a value ofm > n bits requires that we know
whether the sum u1 + u2 + u3 produces a carry into the higher order bits when viewed
in Z2m . We can use Algorithm 11 to obtain the carry bit. We can then carry out the
multiplication and use Algorithm 11 again to perform the truncation.6

5 In [14] the authors actually transform the problem so that it is enough to use just 2n bits.
However, the transformation assumes that bit shifts are cheap, making it impractical in the
current MPC setting.

6 We do not need to use Algorithm 12 because we do not introduce new digits on the left like
we would in the case of a normal bit shift.



Algorithm 8: Protocol [[w]]← PubDiv([[u]], d) for division by a public value d.
Data: Shared value [[u]] and a public divisor d.
Result: Shares [[w]] of the value w = bu

d
c.

1 [[u′]]← ReshareToTwo(u).
2 P2,P3 find c ∈ Z2n+1 such that c2−(n+1) ≈ 1

d
as in [14].

3 P1 sets v11 , v21 ← 0 ∈ Z22n+1 .
4 P2 sets v12 ← cu′2, v22 ← c(u′2 − 2n) ∈ Z22n+1 .
5 P3 sets v13 , v23 ← cu′3 ∈ Z22n+1 .
6 [[λ]]← Overflow([[u′]]).
7 [[λ1]]← Overflow([[v1 � n]]).
8 [[λ2]]← Overflow([[v2 � n]]).
9 Every Pi sets w1

i ← v1i � (n+ 1) and w2
i ← v2i � (n+ 1).

10 Return [[w]]← (1− [[λ]])([[w1]] + [[λ1]]) + [[λ]]([[w2]] + [[λ2]]).

However, the crucial observation is that we can parallelize determining the carry bit
and truncation – since there are just two different choices for the carry and we can just
compute the results for both and only decide in the end which of the two to use. This
approach leads to Algorithm 8.

Theorem 7. Algorithm 8 is correct and secure against one passive attacker.

Proof. In order to compute u
d = u · 1

d , the algorithm first chooses c such that 1
d ≈

c2−(n+1) and then computes cu. After running Algorithm 10, we have either u = u′2 +
u′3 or u = u′2 + u′3 − 2n. Hence the values

v1 = v11 + v12 + v13 = 0 + cu′2 + cu′3 = c(u′2 + u′3) and

v2 = v21 + v22 + v23 = 0 + c(u′2 − 2n) + cu′3

= c(u′2 + u′3 − 2n)

are the two candidates for cu. Now it remains to divide both of these values by 2n+1 and
choose the correct one. The division is performed by right shift on line 9 and the correct
value is chosen based on the value of the bit λ on line 10. Note that when performing the
right shift, we may still need to add 1 to compensate for the carry we lose when trunca-
ting; this is achieved by running Algorithm 10 first to reshare the values [[vi]]� (n+1)
and then Algorithm 11 in order to obtain known carries.

To prove security we note that sending messages only occurs within subprotocols
proven above to be perfectly simulatable, hence building the required simulator is triv-
ial.

7.2 Division by a shared value

In order to implement the protocol we will use the Goldschmidt iteration method, which
is an adaptation of Newton iteration designed especially for efficient implementation in
digital computers. When dividing u by v, the algorithm keeps track of N and D so that



N
D = u

v but where D → 1 as the number of iterations increases, which guarantees that
N → u

v as well.
To be precise, the method works by starting with N0 = c0u and D0 = c0v where

c0 is a scaling constant designed to guarantee 0.5 ≤ D0 < 1. In each step of the
iteration, a scaling coefficient Fi = 2 −Di−1 is computed after which the new values
Di = FiDi−1 and Ni = FiNi−1 can be calculated.

Goldschmidt iteration method has many desirable properties. First, it was conceived
with parallelism in mind, so that the two multiplications in each iteration can be done
in parallel. Secondly, it has quadratic convergence, which means that if 0.5 ≤ D0 < 1

then 1 − 2−2
i ≤ Di < 1 for all i ≥ 0. Consequently, the relative error u/v−Ni

u/v =

1 − Di ∈ (0, 2−2
i

], implying that log2 n iterations suffice for n bits of precision (see
Appendix B for details). Thirdly, the convergence is monotonic so that N0 < N1 <
. . . < Ni < . . . < u

v . This becomes crucial when one is interested in division that
always rounds in a fixed direction (i.e. either always upwards or downwards).

In practice, the method is most often used for floating-point division. However,
analogously to the public division, it is pretty straightforward to convert everything to
purely integer arithmetic by simply emulating fix-point arithmetic with corresponding
integer operations followed by the appropriate bit shifts. The details of such an approach
can be found in [18].

However, some interesting technical problems arise when attempting an efficient
implementation of such an iteration method within SHAREMIND. The key difference
between the standard model and our MPC setting is the cost of bit operations – they are
virtually costless in the standard model, but extremely costly in SHAREMIND.

This causes the most problems for computing the initial scaling constant c0, which
is usually done by just finding the most significant bit position hv of v and taking
c0 = 2−hv−1. We will follow the same approach (combining Algorithms 6 and 4), but
note that doing so is very costly – finding c0 constitutes roughly one third of the whole
protocol in terms of both round and communication complexity. Nevertheless, there
seems to be no obvious way around it as the iteration methods converge very slowly if
an initial estimate of comparable quality is not used and the relevant literature does not
seem to discuss any other methods of finding such an estimate.

Second problem arises when we note that emulating fractional multiplication re-
quires an efficient shift right operator. However, this is again something that the current
framework does not provide, as Algorithm 12 is rather costly. The same is true for
modulus expansion, which is required to get the high bits of the multiplication result.

However, these problems can be solved fairly efficiently. Firstly, the ring is ex-
panded to m bits just once before the iterations, and m is simply chosen large enough
so that no further expansions would be necessary. Since this can be done in parallel
with finding c0, doing so is essentially free in terms of rounds. Since exact truncation
is also very expensive, we will replace it with an imprecise one where all the shares
are truncated individually without worrying about the possible carry bit. This intro-
duces additional imprecision into the computation, but that can be dealt with by slightly
increasing the precision of the arithmetic from 2n to 2n

′
and adding an additional iter-

ation. The details of the corresponding error analysis and the details of the choice of m
and n′ are presented in Appendix B. Using these two tricks brings the cost of each itera-



tion step down to just two parallel (large-modulus) multiplications, making it relatively
fast and efficient.

Additional care needs to be taken to enforce strict downward rounding. As men-
tioned before, Goldschmidt iteration ensures monotonic convergence from below. This
means thatN will always be less than the real value u

v , which also means that generally
we expect bNc = buv c to hold. However, there are cases where we can get bNc < buv c.
This can be easily fixed by adding a suitably small value ∆ to N before truncation.
The details of choosing ∆ are presented in Appendix B along with the analysis of error
terms introduced by imprecise truncation during the iteration steps.

To make convergence faster, we will alter the first iteration a bit by setting F1 =
2
√
2− 2D0, which is standard practice for Newton iteration, but somewhat less used in

the case of Goldschmidt algorithm. Assuming
√
2− 1 < D0 < 1, it is easy to see that

2
√
2− 2 < D1 < 1. Note that

√
2− 1 ≈ 0.41 < 0.5, but 2

√
2− 2 ≈ 0.83, which gives

us a better estimate compared to 1−2−2
1

= 0.75 provided by the original first iteration
of Goldschmidt method. This will guarantee sufficient extra precision to compensate
for the additional errors introduced with truncation, so no extra iteration step is needed.

The protocol for division is formalized as Algorithm 9. In this protocol, we will
be working with values from several different domains. The inputs u, v and the output
w belong to Z2n . At the first stage, the input values and the initial approximation c0
will be converted to Z2m using the procedures ShareConvm(·) and Overflowm(·). They
behave exactly as ShareConv(·) and Overflow(·) with their outputs considered to be
shared over Z2m .

The intermediate values are essentially fixed point numbers of the form 2−n
′ · x̂

with x̂ ∈ Zm′ for some m′. When such values are multiplied, we also get numbers of
the form 2−2n

′ · ̂̂x ∈ Zm′′ . Since SHAREMIND can only handle integer values, these
numbers will be represented by the values x̂ and ̂̂x, respectively. In order to retain
constant precision, the numbers 2−2n

′ · ̂̂x ∈ Zm′′ need to be converted back to the form
2−n

′ · x̂. This is done by right-shifting all the shares of ̂̂x by n′ positions and rounding,
if necessary (see line 13). As a result, the modulus will also be decreased by n′, i.e.
m′ = m′′ − n′. This truncation will introduce rounding errors; see Appendix B for
details on how they are accounted for.

Theorem 8. Algorithm 9 is correct and secure against one passive attacker.

Proof. Correctness directly follows from the discussion above and error computations
presented in Appendix B. Security of the protocol is trivial as well, since we are only
using perfectly simulatable building blocks.

8 Performance analysis

8.1 Complexity of protocols

Communication and round complexities of the described protocols are presented in
Table 1. Here, ` = log2 n and the details of selecting n′ and m for the general division
protocol are presented in Appendix B.



Algorithm 9: Protocol [[w]]← Div([[u]], [[v]]) for division.
Data: Shared values [[u]] and [[v]].
Result: Shares [[w]] such that w = bu

v
c.

1 [[v′]]← BitExtr([[v]]).
2 [[s]]← MSNZB([[v′]]).

3 Compute [[ci]]← ShareConvm([[s]]
(i)
) (i = 0, . . . , n− 1).

4 Set [[ĉ0]]←
∑n−1

i=0 2n
′−i−1[[ci]].

5 [[u′]]← ReshareToTwo([[u]]), [[λ1]]← Overflowm([[u′]]).
6 [[v′]]← ReshareToTwo([[v]]), [[λ2]]← Overflowm([[v′]]).
7 [[u′′]]← [[u′]]− 2n[[λ1]] ∈ Z2m .
8 [[v′′]]← [[v′]]− 2n[[λ2]] ∈ Z2m .
9 Compute [[N̂0]]← [[u′′]] · [[ĉ0]] and [[D̂0]]← [[v′′]] · [[ĉ0]].

10 Set [[F̂1]]← b2n
′
· 2
√
2c − 2[[D̂0]].

11 Compute [[
̂̂
N1]]← [[N̂0]] · [[F̂1]] and [[

̂̂
D1]]← [[D̂0]] · [[F̂1]].

12 for k ← 1 to log2 n do

13 Each party Pi computes (N̂k)i ← ((
̂̂
Nk)i � n′) + 1 and (D̂k)i ← (

̂̂
Dk)i � n′

(i = 1, 2, 3).
14 Set [[F̂k+1]]← 2n

′
· 2− [[D̂k]].

15 Compute [[
̂̂
Nk+1]]← [[N̂k]] · [[F̂k+1]] and [[

̂̂
Dk+1]]← [[D̂k]] · [[F̂k+1]].

16 end

17 Compute [[R]]← [[
̂̂

Nlog2 n+1]] +∆.
18 Return [[w]]← ShiftRn+n′([[R]], n′) mod 2n.

8.2 Experimental setup

Since we had access to the source code of the SHAREMIND virtual machine, we ex-
tended it by implementing the described protocols as primitive operations. We con-
ducted a series of experiments to verify that the new protocols are an improvement over
the previous protocols presented in [3].

Since SHAREMIND is designed to be a data mining platform, its instruction set fol-
lows the SIMD (single instruction, multiple data) principle. This requires protocols to
accept vectors of integers as inputs and provide vectors as outputs. Previous tests con-
ducted on the platform showed that vector operations can be more efficient than single
operations. Additionally, we wanted to verify the scalability of the implementation by
testing large input vectors. Therefore, we benchmarked each operation with input vec-
tors with sizes ranging from 1 up to 108. The input vectors consisted of random values.

The order of the experiments was randomized to reduce the impact of outside factors
such as flow control and low-level processes of the operating system. For comparison,
we also benchmarked the protocols from [3]. Not all vector sizes could be tested for the
old protocols, as their inefficiency overloaded the networking layer and the timeouts
caused SHAREMIND to cancel the protocol.



Protocol Rounds Communication
Mult 1 15n

ShareConv 2 5n+ 4
Equal `+ 2 22n+ 6
ShiftR `+ 3 12(`+ 4)n+ 16
BitExtr `+ 3 5n2 + 12(`+ 1)n
PubDiv `+ 4 (108 + 30`)n+ 18

Div 4`+ 9 2mn+ 6m`+ 39`n+ 35`n′ + 126n+ 32n′ + 24
Table 1. Complexities of protocols

Protocol Single op. ns Saturated op. Old
ShareConv 15.3 ms 24000 0.8 µs 18 µs

Mult 25.9 ms 15000 1.8 µs 3.5 µs
Equal 101 ms 27000 5.0 µs 2225 µs

BitExtr 113 ms 2600 51 µs 1426 µs
ShiftR 122 ms 12000 15.7 µs -

PubDiv 124 ms 3500 44 µs -
Div 390 ms 800 534 µs -

Table 2. Overview of experimental results

We performed the benchmarks on a high performance computation cluster. The
servers run the Debian Linux operating system, contain 12-core Intel R©Xeon R© proces-
sors, have 48 GB of memory and are connected with network interface cards allowing
for speeds up to 1Gb/s. We used three of these servers to run the SHAREMIND virtual
machine.

SHAREMIND can also run successfully, albeit with lower performance, on weaker
hardware and with smaller communication channels. We note, that on each machine,
SHAREMIND used one core, leaving the other cores with no load. This is because the
performance of SHAREMIND is communication-bound, as opposed to circuit-based so-
lutions. Further experiments must be conducted to measure the effect of weaker com-
munication channels on the computation speed.

8.3 Benchmark results

After conducting the experiments, we fitted the protocol execution times using linear
regression. Two distinct lines emerged. One of the regression lines was a fit for input
vector size smaller than the point ns and the other for input vector sizes larger than ns.
This point ns was identified for each protocol. We call this point the saturation point of
a protocol.

According to our tests, the saturation point depends on the communication complex-
ity of the protocol. For smaller input vectors, the required network messages fit into the
network channel without fragmentation. When the network traffic exceeds the available
bandwidth, the flow control algorithms on the SHAREMIND network layer start to work.



However, this reduces the efficiency of the protocol and further growth is characterized
by a different linear function.

A direct result of this is that practical applications should try to run each protocol
with vector sizes equal or larger to the saturation point. This will guarantee that network
is used to its full capabilities and private operations are run on their maximum efficiency.

We note that for input sizes larger than 107 the implementation started using large
amounts of memory and this affected the running time. This can be seen best on Figure 3
where a third line seems to emerge. However, since we propose that the implementation
of algorithms run the algorithms in batches with the size of the the saturation point
ns, we do not consider the performance of huge vectors a major issue. It may also be
reduced by further fine-tuning of the implementation.

Table 2 presents an overview of the benchmark results. For each benchmarked pro-
tocol, the table contains the time needed to process a single input, the estimated input
size that causes saturation in the communication channel and finally, the time needed
to process a single value in input vectors larger than the saturation point (which is pre-
sented in microseconds as it is generally at least a thousand times smaller than the time
needed in the case of a single value operation). The values are taken from the linear fits
and are therefore estimates.

For comparison, Table 2 also contains the saturated operation cost for the previous
generation of protocols (”Old”). It is clear from the data that the speed of all complex
protools has increased by several orders of magnitude. For a visual comparison of the
new and old protocols, please refer to Appendix C.

We conclude that the protocols presented in this paper are significantly more effi-
cient than the ones in [3]. The improvement is most visible for the bit extraction and
comparison protocols, where the new protocols are more than a hundred times faster
than the previous ones. We also note that our implementation actually achieves a speed
of 1 MIPS (million instructions per second) for the private share conversion operations.
This is a significant milestone for secure multi-party computation, as data miners typi-
cally work with large datasets.

Another goal of our experiments was to show that it is possible to run secure multi-
party computation protocols with large input vectors containing up to 100 million val-
ues. This demonstrates the robustness of the implementation and therefore its suitability
for practical applications.

8.4 Secure k-means clustering

k-means clustering is a cluster analysis algorithm for partitioning a set of points into k
clusters according to their distances from each other. Cluster analysis helps to identify
similar object groups and is used in a range of areas from business intelligence to com-
putational biology. k-means clustering is a fitting benchmark for the protocols in this
paper, as it requires multiplications, greater-than comparison and division.

Our implementation of k-means uses secure computation to hide the values of the
clustered data. We did not hide the size of the clusters or the assignment of points to the
clusters. However, this is not a significant limitation, since the cluster sizes would typ-
ically be published anyway. While certain techniques could be used to hide the move-
ment of points between clusters, they would significantly lower the performance of the



Dataset k Time Iter. Multiplications Less-thans Divisions
iris

3 1 s 4 12.6% (9600 ops) 42.9% (5400 ops) 38.5% (44 ops)
150× 4

synthetic
3 3 s 5 44.4% (7.2 · 105 ops) 29% (2.7 · 104 ops) 21.7% (900 ops)

600× 60
5 6 s 8 41.2% (1.7 · 106 ops) 33% (1.2 · 105 ops) 16% (2400 ops)
8 8 s 7 42.2% (2.3 · 106 ops) 44.2% (2.7 · 105 ops) 10.7% (3360 ops)

plants
3 4 min 58 s 12 75.8% (1.2 · 108 ops) 21.1% (3.8 · 106 ops) 0.6% (2520 ops)

34781 × 70
5 22 min 42 s 28 41.2% (4.1 · 108 ops) 33% (2.4 · 107 ops) 0.4% (9800 ops)
10 36 min 35 s 17 51.3% (4.6 · 108 ops) 47.6% (5.9 · 107 ops) 0.2% (11900 ops)

Table 3. Privacy-preserving k-means clustering performance

computation. It is a generally accepted trade-off between privacy and efficiency also
taken by previous implementations [19,10]. We modified the algorithm to use vector
operations as much as possible to take advantage of the increased performance.

The points are distributed into initial clusters on a round-robin basis (the initial
cluster number of point i is i mod k). Note that different initial cluster numbers can
affect the number of iterations needed. We did not attempt to achieve more favourable
initial clusters. The algorithm runs until stabilizing.

The benchmarking results presented in Table 3 are based on the iris, synthetic and
plants datasets from the UCI Machine Learning Repository [12]. The databases were
stored in secret-shared form after scaling fractional values to allow integer computa-
tion; the scaling did not affect the final clustering. Each row shows one experiment: the
parameters, overall number of operations, and measured runtime. The latter is further
broken down by secure operation. Note that the percentages do not add up to 100% as
a fraction of the time was also used for disk operations and secret sharing.

The synthetic control chart time series data set was also used by Doganay et al.
in [10] to benchmark k-means clustering algorithms developed by themselves and by
Vaidya and Clifton [19]. Their algorithms only work on vertically partitioned data,
which is a considerably weaker security model compared to the one used by SHARE-
MIND. Despite that, the time they required to cluster the synthetic dataset were con-
siderably larger compared to our implementation. Whereas SHAREMIND required 3-8
seconds for this task, the implementation of the algorithms introduced in [10] needed
roughly 30 seconds, and the time required by the algorithm of [19] was even several
orders of magnitude larger.

9 Conclusions

In this paper, we have presented numerous advancements for computational primitives
used in the SHAREMIND multi-party computation engine. Compared to the original
implementation presented in [3], the performance of all the primitives (multiplication,
share conversion, bit extraction, equality testing, comparison) has been increased. Ad-
ditionally, new protocols for right shift by a public offset and division by both public
and private value have been implemented and benchmarked. All the proposed protocols



have been proven secure in the semi-honest model with one passive adversary and a
convenient game-based framework for improving the readability of the proofs has been
presented.

The original motivation for developing SHAREMIND has come from the needs of
mining large volumes of data. Our benchmarks show that with the current improve-
ments, input vectors of up to 108 elements can be processed in reasonable time and that
speeds up to 1 MIPS can be achieved for basic primitives on state-of-the-art hardware.
Real performance of the primitives has improved up to 100 times. Benchmarks with
the k-means clustering algorithm show that secure MPC is ready to handle real-world
data-mining tasks, as algorithm runs needing hundreds of millions of private operations
can be executed in reasonable time.
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A Bit Shift Protocols under a Public Shift

The protocols in this section allow us to perform two more standard bit-level operations
on shared values, namely left and right shifts (� and�).7

First, note that the left shift protocol is actually trivial, since left shift by p positions
can be accomplished by multiplying the shared value by a public constant 2p. This, in
turn, can be done by locally multiplying all the shares by the same constant. Since no
messages are exchanged, the protocol is trivially secure against a passive adversary.

Right shift, on the other hand, is more complicated because of the unknown over-
flow carry modulo 2n. Thus, in order to build a right shift protocol, we first need a
protocol to compute the overflow. This is considerably easier to do if the value in ques-
tion is (temporarily) secret-shared between just two parties, because then the overflow
is guaranteed to be either 0 or 1. We thus present two routines: Algorithm 10 for reshar-
ing a value to just two parties and Algorithm 11 for computing the overflow bit once
the values are shared in this way.

Theorem 9. Algorithm 10 is correct and secure against one passive attacker.

Proof. Correctness of the Algorithm is straightforward:

u′ = u′1 + u′2 + u′3 = 0 + u2 + r2 + u3 + r3

= u2 + r2 + u3 + u1 − r2 = u.

For security note that P1 has no incoming messages, whereas the only incoming mes-
sages for P2 and P3 are r2 and u1 − r2, respectively. These messages can be easily
simulated with a random value.



Algorithm 10: Protocol [[u′]] ← ReshareToTwo([[u]]) for resharing a value [[u]]
between the parties P2 and P3.

Data: Shared value [[u]].
Result: Shared value [[u′]] so that u = u′ and u′1 = 0.

1 P1 generates random r2 ← Z2n and computes r3 ← u1 − r2.
2 P1 sets u′1 = 0 and sends ri to Pi (i = 2, 3).
3 Pi computes u′i ← ui + ri (i = 2, 3).
4 Return [[u′]].

Algorithm 11: Protocol [[λ]]← Overflow([[u′]]) for obtaining the overflow bit [[λ]]
for [[u′]] if share u′1 = 0.

Data: Shared value [[u′]] where u′1 = 0.
Result: Share [[λ]] so that u′ = u′2 + u′3 − λ2n.

1 P1 sets p1 = 0.
2 P2 sets p2 = u′2.
3 P3 sets p3 = −u′3.
4 [[s]]← MSNZB([[p]]).
5 Share the value −u′3 bitwise as a vector [[−u′3]].
6 [[λ0]]← 1⊕

⊕n−1
i=0 [[s]]

(i)
∧ [[−u′3]]

(i)
.

7 P3 checks whether u′3 = 0. If so, λ0
3 = 1⊕ λ0

3.
8 Return [[λ]]← ShareConv([[λ0]]).

The correctness proof for Algorithm 11 is somewhat more complicated.

Theorem 10. Algorithm 11 is correct and secure against one passive attacker.

Proof. To prove correctness, we need to compute the overflow bit λ. The overflow
occurs exactly when u′2 + u′3 ≥ 2n, or equivalently u′2 ≥ 2n − u′3. Note that modulo
2n the value 2n− u′3 is represented just as −u′3 (unless u′3 = 0, which has to be treated
separately). Thus

λ = 1 ⇐⇒ u′2 ≥ (−u′3) mod 2n ∧ u′3 6= 0 .

In order to perform the comparison between u′2 and −u′3, we first run Algorithm 4
and obtain a bitwise shared vector [[s]], which contains all zeroes if u′2 = −u′3 mod
2n, or has just one bit in the highest position where they differ. Thus, the dot product⊕n−1

i=0 [[s]]
(i)
∧ [[−u′3]]

(i)
= 1 iff u′2 < −u′3 mod 2n and hence λ0 = 1 iff u′2 ≥

−u′3 mod 2n, as required. The only exception appears when u′3 = 0, in which case no
overflow can occur, but λ0 is set to 1. This mistake is easy to correct locally by P3 who
has the original u′3 and can flip his own share of λ0 in case u′3 happens to be 0.

The security of the protocol is still trivial as it is just a composition of perfectly
simulatable protocols.

7 Note that a bit shift can be used for efficient comparison as the highest bit of x is just x� 31.



We are now ready to present the right shift protocol. The main idea behind the
public right-shift protocol is to convert the input to a sum of two values (known to
two of the parties) and then shift these down. This leaves us with two problems. First,
discarding the low bits discards the carry-bit for the least significant position that is
retained. Second, the top carry-bit of the addition would previously implicitly disappear
as we consider addition modulo 2n. Since the values have been shifted down, the carry-
bit will be present. The bulk of the work of the protocol consists of determining and
correcting for these two carry-bits.

The protocol itself is presented as Algorithm 12

Algorithm 12: Protocol [[w]]← ShiftR([[u]], p) for evaluating right shift.
Data: Shared value [[u]] and a public shift p.
Result: Shares [[w]] such that w = u� p.

1 [[u′]]← ReshareToTwo([[u]]).
2 [[s]]← [[u′ � n− p]] (locally).
3 [[λ1]]← Overflow(u′).
4 [[λ2]]← Overflow(s).
5 Pi computes vi ← u′i � p.
6 Return [[w]] = [[v]]− 2n−p[[λ1]] + [[λ2]].

Theorem 11. Algorithm 12 is correct and secure against one passive attacker.

Proof. Correctness of the algorithm follows from the discussion above. Since u′2+u
′
3 =

u+ λ12
n, we have

v = v1 + v2 + v3 mod 2n = (u′2 � p) + (u′3 � p) mod 2n

= u� p+ λ12
n−p − λ2 mod 2n,

hence
u� p = v − λ12n−p + λ2 mod 2n .

For security note that we are only composing perfectly simulatable subroutines.

This protocol can also be used for extracting the most significant bit for comparison
purposes. As it is also slightly more efficient than the full bit extraction, we use it as the
basis of the comparison in the current implementation for the comparison operator.

B Error calculation of Goldschmidt division

We will present an analysis of the effects of rounding errors. This is done by looking
at the divergence from the ”ideal” computation where no rounding takes place and for
which the error terms can be fairly easily estimated. A similar analysis was performed
in [11]. Their analysis was more detailed, but relied on using floating point numbers,
making it hard to apply it here directly.



Let Ni, Di, Fi, c0 denote the actual real numbers encountered during the run of
Newton Goldschmidt iterations as described in Section 9. In SHAREMIND, we are using
the approximations of values x by fixed point numbers x̃ = 2−n

′ · x̂ being represented
by x̂ ∈ Zm′ for some m′.

Recall that both the sequences (Ni) and (Di) were converging from below to u
v and

1, respectively. To preserve the convergence from below in the presence of errors, extra
care needs to be taken with rounding errors to make sure they are also one-sided.

Let the differences between the real valuesNi,Di and their approximations be∆Ni

and ∆Di selected so that Ñi = Ni +∆Ni and D̃i = Di −∆Di. Note that on line 13
of Algorithm 9 the value of N̂k is always rounded up and the value of D̂k is always
rounded down. This guarantees that we have ∆Nk, ∆Dk ≥ 0 for all k ≥ 1.

When the shares of ̂̂
Nk and ̂̂

Dk are right-shifted to convert the elements back to the
precision 2−n

′
(Algorithm 9, line 13), additional truncation errors are introduced. Since

there are three computing parties and we shift by n′ positions, the errors occurring at
both upwards and downwards rounding are bounded by δ = 3 · 2−n′

. Thus, for k ≥ 1
we obtain

D̃k+1 > D̃k · F̃k+1 − δ = D̃k · (2− D̃k)− δ
= (Dk −∆Dk) · (2−Dk +∆Dk)− δ
= Dk+1 − 2∆Dk(1−Dk)− (∆Dk)

2 − δ

and

Ñk+1 ≤ Ñk · F̃k+1 + δ = Ñk · (2− D̃k) + δ

= (Nk +∆Nk) · (2−Dk +∆Dk) + δ

= Nk+1 +Nk∆Dk +∆Nk(2−Dk +∆Dk) + δ .

This implies

∆Dk+1 = Dk+1 − D̃k+1 < 2∆Dk(1−Dk) + (∆Dk)
2 + δ

≤ 2∆Dk2
−2k + (∆Dk)

2 + δ

and

∆Nk+1 = Ñk+1 −Nk+1

≤ ∆Nk(2−Dk +∆Dk) +Nk∆Dk + δ

< ∆Nk(1 + 2−2
k

+∆Dk) +
u

v
∆Dk + δ .

Since the first rounding error is introduced only after multiplication by F1, we have
∆D1, ∆N1 ≤ δ. Thus we can iterate these recurrent inequalities to get bounds for
∆Dk, ∆Nk in terms of u

v and δ.
In order to guarantee that truncation of the result will lead to a proper value, we will

have to ensure that the end resultR satisfies buv c ≤ bRc < b
u
v c+1. Let 1−Dk < 2−p,

in which case Nk < u
v (1 − 2−p) since Nk

Dk
= u

v . Recall that ĉ0 was chosen so that



0.5 ≤ vc̃0 < 1, hence c̃0 < 1
v ≤ 2c̃0. Consequently, Ñk ≥ Nk < u

v (1 − 2−p) >
u
v − uc̃02

−p+1. Taking R = Ñk + ∆ where ∆ = uc̃02
−p+1 thus guarantees R ≥ u

v
and bRc ≥ buv c.

We are left to show thatR < buv c+1. Let∆Nk < a+buv as obtained after iterating
the above recurring inequalities k times. Then R = Ñk + uc̃02

−p+1 < Nk + a +
2uc̃0(2

−p+b). SinceNk <
u
v ≤ (buv c+1)− 1

v < (buv c+1)−c̃0, it suffices to show that
a+2uc̃0(2

−p+ b) < c̃0, or equivalently a
c̃0

+2ub+u2−p+1 < 1. Since 2−n ≤ c̃0 < 1

and 0 ≤ u < 2n, this can be achieved by showing 2n(a+ 2b+ 2−p+1) < 1.
For n = 32 the required inequality can be guaranteed by taking k = 5, n′ = 37,

in which case p > 40.68 (if the first iteration is done with F1 = 2
√
2 − 2D0), a, b <

0.2× 2−32. These choices imply m = 32 + (5 + 1)× 37 = 254.

C Benchmark diagrams

Figures 1, 2, 3, 4, 5 and 6 compare the running times for the protocols in this paper with
the protocols in [3]. The range between the minimal and maximal result is shown where
multiple experiments were conducted. Missing data points indicate that the protocol
was too inefficient to perform at that input size. The axes on the diagrams are drawn
on a logarithmic scale. Since the right shift protocol is also used to implement greater-
than comparisons, we compared it with the greater-than comparison protocol from [3].
This is an honest comparison, since the greater-than comparison can be implemented in
computing the difference on two values and finding the highest bit using the right shift
operation.
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Fig. 1. Benchmark results for the multiplication conversion operation
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Fig. 2. Benchmark results for the share conversion operation
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Fig. 3. Benchmark results for the equality comparison operation
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Fig. 4. Benchmark results for the greater-than comparison operation
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Fig. 5. Benchmark results for the bit extraction operation
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Fig. 6. Benchmark results for the division operations


