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Abstract. This document studies the current state of post-quantum
cryptography implementation feasibility, providing general approaches
that developers and security engineers can utilize to start integrating to-
day. First, we analyze the current state of the art in the field of available
cryptographic libraries and standards for algorithm interpretations and
encodings. Then, we provide few implementation challenges that rose
from our experiments and how to handle them. Lastly, we have built
a proof-of-concept implementation by creating a post-quantum version
of a modern web authentication framework. Our work introduces post-
quantum support in multiple open-source libraries that together enable
web-service administrators to authenticate their users with Dilithium-5
or Falcon-1024 secured electronic identities. Among other components,
our proof-of-concept also includes a client side solution for key manage-
ment using programmable embedded device.
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1 Introduction

The basic ideas behind quantum computers were laid out already in 1980s [1].
Peter Shor’s seminal paper from 1994 showed how the principles of quantum
computing can be applied to solve classically hard computational problems,
which in turn can lead to breaking of the currently standardized asymmetric
cryptographic algorithms [2].

Even though quantum computers sufficiently powerful for breaking, say, 2048-
bit RSA or 256-bit elliptic curve algorithms are not yet available, the crypto-
graphic community has been working on their post-quantum (PQ) alternatives
for more than a decade. This process was formalized by the National Institute of
Standards and Technology (NIST) from United States that made a public call
in 2016 to obtain candidates for post-quantum key establishment mechanisms
(KEM) and digital signatures. In 2022, NIST selected the first four algorithms
(one KEM and three signatures) to be standardized [3].

However, standardization is only the first step of the long process of actual
deployment in real-life information systems. A major challenge in this process



is rolling out the support for post-quantum algorithms in all the layers of the
communication protocols, starting from the client devices and ending with the
back-ends of the services.

This is the problem setting where our current paper draws its inspiration
from. We decided to focus on engineering aspects of post-quantum protocol im-
plementations and build a complete proof-of-concept infrastructure supporting
post-quantum algorithms in all the components. As real off-the-shelf crypto-
graphic hardware providing post-quantum primitives is not yet available, we
also built an end user device allowing to generate and apply post-quantum keys
for authentication protocols. The paper presents the architecture of our solution
together with the challenges we faced and solutions we propose to them.

2 Background

Several works have implemented post-quantum (PQ) algorithms into authenti-
cation frameworks. Schardong, Giron, Müller, and Custódio [4] created a PQ
version of OpenID Connect. López-González, Arjona, Román, and Baturone [5]
developed a PQ-safe biometric authentication framework. Yao, Matusiewicz, and
Zimmer [6] introduced PQ into Security Protocol and Data Model compliant de-
vice authentication. Lastly, Paul, Scheible, and Wiemer [7] discussed PQ usage in
banking protocols. Our work takes a more developer-friendly approach, provid-
ing a general method for implementing PQ algorithms into existing applications.
We demonstrate this by creating a PQ Web Authentication Infrastructure with
an embedded device for client-side key management, but at the same time by
sharing generalized remarks applicable elsewhere.

2.1 Post-Quantum Algorithm Libraries

Several post-quantum cryptographic libraries are available for use in applica-
tions.

PQClean1 is a C library that aggregates NIST-submitted algorithms with a
unified Application Programming Interface (API). It enables easy integration of
a single PQ algorithm into existing applications, with minimal effort required
to add more later. Developers are encouraged to copy the code, adjust common
libraries, and compile it.

For developers who prefer a compiled, higher-level library, libOQS 2 (written
in C) is a great option. It features code from PQClean as well as other sources,
and offers language wrappers for C++, Python, Java, Go, .NET, and Rust.
There are also high-level libraries built on libOQS, such as OQS-OpenSSL, OQS-
OpenSSH, and OQS-OpenVPN.3

1 See https://github.com/PQClean/PQClean.
2 See https://github.com/open-quantum-safe/liboqs.
3 A full listing is available at https://openquantumsafe.org/applications/.

https://github.com/PQClean/PQClean
https://github.com/open-quantum-safe/liboqs
https://openquantumsafe.org/applications/


Other available post-quantum cryptographic libraries include libpqcrypto4,
rustpq/pqcrypto5, and pqm4 6.

2.2 Post-Quantum ASN.1 Structures

Abstract Syntax Notation One (ASN.1) structures for post-quantum crypto-
graphic objects are essential for successful integration into existing applications,
particularly in X.509 certificate usage. Yet, no standards currently exist. NIST’s
submission rules require authors of post-quantum algorithms to encode their
algorithm-specific structures of keys, signatures, and ciphertexts into a single
byte string [8].

Multiple Request for Comments (RFC) drafts propose ASN.1 structures for
most objects from currently selected-to-be-standardized PQ algorithms.7 The
current version of OQS-OpenSSL works with arbitrary Object Identifiers (OIDs)
from the OpenQuantumSafe organization for different algorithms.8

It is also possible to use subjectPublicKeyInfo with algorithmIdentifier
specified from the list of OIDs and subjectPublicKey as PQ digital signature in
byte string format. Snetkov and Vakarjuk [9] suggest using
subjectAltPublicKeyInfo, altSignatureAlgorithm, and altSignatureValue
attributes to maintain classical cryptography functional.

2.3 Post-Quantum JSON Web Algorithms

JSON Web Algorithm (JWA) is an RFC [10] that registers cryptographic al-
gorithms and identifiers for JSON Web Signature and JSON Web Encryption,
which are widely used for securely transferring data over the network. For ex-
ample, ES384 stands for ECDSA digital signature algorithm using P-384 and
SHA-384 hash algorithm. At the time of writing this article, there are no RFC
drafts for post-quantum JWAs.

However, there are drafts9 for JSON Web Key, which specifies only the digital
signature algorithm part and does not provide a hash function. For example,
CRYDI5 means CRYSTALS-Dilithium algorithm parameter on the 5th security
level.

To use post-quantum algorithms in JWAs, a constant specified hash func-
tion can be used (e.g., SHA-512, which is recommended by NIST as quantum-
safe). When implementing post-quantum digital signatures in existing applica-
tions that use JWAs, CRYDI5 could be handled as CRYSTALS-Dilithium-5 +
SHA-512.
4 See https://libpqcrypto.org/index.html.
5 See https://github.com/rustpq/pqcrypto.
6 See https://github.com/mupq/pqm4.
7 See https://github.com/open-quantum-safe/oqs-provider/issues/89.
8 See https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORI
THMS.md#oids.

9 See https://www.ietf.org/archive/id/draft-prorock-cose-post-quantum-sig
natures-01.html.

https://libpqcrypto.org/index.html
https://github.com/rustpq/pqcrypto
https://github.com/mupq/pqm4
https://github.com/open-quantum-safe/oqs-provider/issues/89
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#oids
https://github.com/open-quantum-safe/oqs-provider/blob/main/ALGORITHMS.md#oids
https://www.ietf.org/archive/id/draft-prorock-cose-post-quantum-signatures-01.html
https://www.ietf.org/archive/id/draft-prorock-cose-post-quantum-signatures-01.html


2.4 Hybrid Mode

Hybrid mode combines classical cryptography with post-quantum cryptography.
While this approach incurs more performance, memory, and storage overhead, it
also eliminates potential threats from both classical and quantum world. Post-
quantum algorithms ensure the longevity of data confidentiality, while classical
cryptography guards against potential emerging threats on unexplored PQ cryp-
tography.

Several RFC drafts propose ASN.1 structures for hybrid modes.10 However,
the question remains as to how these two types of algorithms should be coupled
together.

A novel method is proposed by Ghinea et al. [11] to improve unforgeability.
It involves prepending labels to signed messages, as opposed to concatenating
classical and post-quantum signatures, or sequentially using the digital signature
given with one algorithm as an input for another signature algorithm.

3 Post-Quantum Implementation Challenges

Implementing post-quantum algorithms in existing applications can be difficult
due to the continual progress of and uncertainty in post-quantum technology.
This may lead to numerous engineering issues for developers and cybersecurity
engineers when trying to make their systems quantum-resistant.

In this section we will provide general ideas to aid implementation of post-
quantum algorithms into existing applications.

3.1 Identifying relevant locations

Identifying locations in the codebase, network and business processes where pub-
lic key infrastructure (PKI) objects are used is the first step in implementing
post-quantum algorithms in an existing application. Tracing the data flow from
start to end of the object’s lifetime is necessary to identify different approaches
towards non-PQ and PQ objects, as there are differences in how other pro-
cesses interact with them. Identifying these data flows helps in understanding
the extent of changes necessary for implementing post-quantum algorithms in
an application.

When transferring cryptographic data objects between different parts of the
architecture, it is important to consider the Maximum Transmission Unit (MTU)
to ensure longer keys and signatures fit into containers. Additionally, caution is
required when implementing the Falcon PQ digital signature algorithm as its
output length may vary.

10 See https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-encry
ption/01/, https://datatracker.ietf.org/doc/draft-ounsworth-pq-composi
te-keys/, and https://datatracker.ietf.org/doc/draft-truskovsky-lamps-p
q-hybrid-x509/01/.

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-encryption/01/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-encryption/01/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-keys/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-keys/
https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/01/
https://datatracker.ietf.org/doc/draft-truskovsky-lamps-pq-hybrid-x509/01/


Data formats and possible conversions between them during the object’s
lifetime also require detailed consideration. For example, cryptographic libraries
might yield raw bytes, but the rest of the system handles data transfer in ASN.1,
Base64, or PEM encoded formats. Identifying the format of existing data flows
is the key to ensuring compatibility across the system architecture and detecting
any areas that require modification.

A format suitable for this purpose is a Business Process Model and Notation
(BPMN) diagram. An example of a BPMN diagram from our implementation is
shown in Figure 2.

3.2 Technological and computational constraints

Before transitioning to post-quantum algorithms, it is essential to assess the
technological and computational boundaries of the current system. Increased
memory usage is expected when generating PQ key-pairs, creating signatures,
and verifying them. In real-time applications, performance may be impacted.
Further measurements can be found in [12], [13], [14], [15], section 5, and our
source code.

In regular applications meant to be run on desktop, laptop, or server ma-
chines, these constraints are not as significant as they are on slow networks or
other limited devices. In other cases, actual post-quantum algorithms need to be
adjusted. For example, Gonzalez et al. [16] proposes streaming public keys and
signatures into the limited memory of an attached HSM component. Another
work by Gonzales and Wiggers [13] suggests using key encapsulation instead of
digital signatures to reduce computational overhead.

In section 4, we will also provide an example of how to overcome constraint
problems by switching from smart cards to embedded programmable microcon-
trollers, and how we adjusted the algorithm to allocate its objects on the heap,
instead of stack memory.

3.3 Implementing PQ algorithms in the codebase

After identifying all locations and constraints, one can begin changing the code-
base. We recommend starting from the beginning of the data lifecycle and imple-
menting post-quantum support one step at a time. Post-quantum algorithms are
generally not available natively in the current cryptographic libraries, therefore
library extensions may be required. Data format conversions may occur during
these steps, adding to the potential fragility of the implementation.

We refer to 2.1 for existing extensions (e.g. OpenSSL or popular programming
languages). If none are suitable, SWIG11 can be used to generate wrappers from
C implementations of PQ algorithms (see section 4.4). New wrapper can be used
directly, or as an extension to the used cryptographic library.

11 See https://swig.org/.

https://swig.org/


4 Practical results

We present a proof-of-concept implementation for a complete authentication
infrastructure with post-quantum cryptography.12 We set up a usable, modern,
cross-platform and open-source combination of components to authenticate users
to a web application using post-quantum digital signature algorithms (Dilithium-
5 and Falcon-1024). We describe the implementation process and present the
engineering problems we met together with the solutions we propose.

4.1 Architecture

To create a proof-of-concept PQ-enabled authentication system, we needed to
select three key components of the system – back-end server with a web service,
authentication framework, and authentication device.

1. We chose open-source cloud storage Nextcloud13 as our back-end server with
a web service. It serves as an electronic identity verifier, authenticating users
and granting them access to the web application.

2. We chose the open-source authentication framework Web-eID, developed by
the Estonian Information Authority, as a successor of Open-EID14. Both are
cross-platform solutions used for authenticating citizens on the web using
national electronic ID cards. For more information, see section 4.2.

3. We chose an ESP32 microcontroller as our authentication device, which holds
the information needed to establish electronic identity (e.g., a private key
for signing challenge nonces). This was due to the post-quantum constraints
discussed in section 3.2, which prevented us from using smart cards. Further
details can be found in section 4.3.

These three top-level components are supported by multiple lower-level li-
braries/repositories that needed to be adjusted and contributed to as well. See
section 4.4 for more information. Figure 1 provides an overview of all components
and their relations.

4.2 Authentication Data Flow

Web-eID is a suite of applications, extensions, and tools that enable authen-
tication and digital-signing with public-key cryptography on the web, similar
to Transport Layer Security: Client Certificate Authentication (TLS-CCA). For
more information, see chapter 2.4 in [17] or the official website15. We present
our analysis of the PKI object data lifetime in Figure 2. It displays all the rel-
evant components that we needed to focus on when implementing support for
post-quantum algorithms.
12 Repository index with source code and additional information can be found at http

s://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web.
13 See https://nextcloud.com/.
14 See https://github.com/open-eid.
15 See https://web-eid.eu/.

https://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web
https://github.com/Muzosh/Post-Quantum-Authentication-On-The-Web
https://nextcloud.com/
https://github.com/open-eid
https://web-eid.eu/


Fig. 1: PQC authentication infrastructure components overview

Fig. 2: Post-quantum data flow analysis

4.3 Authentication Device

Web-eID supports only smart cards using the Personal Computer/Smart Card
(PC/SC) protocol stack. However, current cards lack the RAM and CPU capa-
bilities to perform post-quantum digital signatures [18]. In [19], authors suggest
using KEM algorithms to implement quantum-resistant banking protocols, but
using KEM in our work would have required significant changes to the Web-eID
authentication protocol. Lastly, [20] discusses implementations of PQ cryptogra-
phy on constrained platforms, including smart cards. The authors conclude that
there are no algorithms that can be run on off-the-shelf programmable smart
cards, and one must use more powerful platforms.

Therefore, we decided to use an ESP32 system-on-chip microcontroller device
as our authentication device, as they are sufficiently powerful and widely avail-
able low-cost products. We used two devices: DFRobot FireBeetle 2 and the more



powerful LilyGO T-Display-S3 (for more technical details and benchmarks, see
section 5.2).

To make such a device Web-eID compatible, we developed a full-fledged
firmware for the embedded device to imitate the functionality of the Esto-
nian ID card. It receives custom APDU commands and sends the appropriate
APDU responses after proper user PIN authorization. We used PlatformIO16

with Arduino-ESP32 framework to enable Arduino features on the ESP32 plat-
form.

Our authentication device does not use the PC/SC protocol stack to send
data to the PC, but USB serial communication instead. To make this possible,
we contributed with an application-wide abstraction layer in the Web-eID ap-
plication to include USB serial devices. This layer allows developers to create
custom serial devices and integrate them with modern authentication protocols.

The following list contains a subset of notable considerations and problems
when developing an application for an ESP32 embedded device.

– Device driver – in this work, we consider using an authentication device
connected to the PC via a USB port. Therefore, a USB-to-serial driver is
required for the PC to recognize the device when connected. For FireBeetle,
we used an installable CH34X driver. For T3-Display-S3, a device capability
USB CDC (USB Communications Device Class), which is a common and
recognizable interface, was used. The latter option has the benefit of being
recognized in all current operating systems without needing to install any
software in advance. However, there is a slight delay of 1-2 seconds after
inserting the device.

– Storage options – to manage PIN states and generated key pairs, persistent
file storage is essential. Initially, we opted for LittleFS, an open-source filesys-
tem designed for embedded devices. Further investigation revealed that the
ESP32 framework offers multiple storage API options for flash memory [21].
We decided to use NVS, a key-value flash storage with a maximum of 508KB
data limitation, due to its faster write and read speeds, thus shortening au-
thentication time.

– Debugging – to debug an ESP32 microcontroller, an external debugging
probe must be connected to the device and PC. An alternative option is
to print debug data to the serial buffer, but this interferes with the authen-
tication protocol as it shares the serial buffer (PC expects pre-determined
number of bytes in responses). To address this, we used a separate NVS
namespace for logging and saving debug messages to the flash memory. Af-
ter an operation, logs can be read from the serial buffer (and erased) on
demand.

– Serial communication on PC – we initially used the Boost::Asio17 C++
library to communicate with the PC device. However, to simplify the process
(mainly using timeout and listing available ports features) and to reduce

16 See https://platformio.org/.
17 See https://www.boost.org/doc/libs/1_82_0/doc/html/boost_asio.html.

https://platformio.org/
https://www.boost.org/doc/libs/1_82_0/doc/html/boost_asio.html


dependencies, we transitioned to the QtSerialPort18 library, which is part of
the Qt framework. For the Python application, we used pyserial19.

– Buffer size – in the Arduino framework, Serial.setRxBufferSize() must
be called before Serial.begin(), not after.

– USB MODE – we learned that in order for the device to work properly after
reconnection during authentication,20 ARDUINO_USB_CDC_ON_BOOT build flag
must be on, and ARDUINO_USB_MODE must be off at the same time.

4.4 Post-Quantum Implementations

In this section, we will provide details of our experience implementing post-
quantum cryptography throughout the entire architecture, including low-level
components.

General Remarks For implementing key pair generation, digital signature, or
verification with post-quantum algorithms, we used PQClean for the embedded
device and libOQS for the rest of the codebase (see section 2.1 for their descrip-
tions). If an application already uses a cryptographic library such as OpenSSL,
one approach is to search for a post-quantum version of it (or contribute one
as open-source) – e.g. OQS-OpenSSL can be installed using the libOQS library.
Alternatively, the application logic can be split into two branches: if classical
algorithms are required, use the existing library; if post-quantum algorithms are
needed, use raw implementation libraries like libOQS. We used both approaches
in our authentication infrastructure.

PQ on Embedded Device The biggest challenge when implementing post-
quantum algorithms on embedded devices is memory management. As men-
tioned before, PQClean is the most suitable library in this situation, but it still
needs to be adjusted.

On ESP32 platforms, all operations are managed by FreeRTOS [22], an oper-
ating kernel system for embedded devices. Therefore, even the loop() function
runs as a task, with a predetermined 8KB stack in RAM. As stated in [16] and
tested by us, 8KB is not sufficient for post-quantum algorithms.

To address this issue, we created a new FreeRTOS task with a larger stack
allocation. Its purpose is to call a specified PQ function from the PQClean API
and return the result. However, this approach is not consistent across multiple
devices, as the upper memory limit for the stack allocation is not equal to the
total free memory available (due to ESP32 having memory allocations for dif-
ferent purposes [23]). We also occasionally encountered errors stating that the
task could not be created, even after checking for free memory.
18 See https://doc.qt.io/qt-6/qtserialport-index.html.
19 See https://github.com/pyserial/pyserial.
20 More information about the issue can be found at https://esp32.com/viewtopic.

php?f=19&t=33762

https://doc.qt.io/qt-6/qtserialport-index.html
https://github.com/pyserial/pyserial
https://esp32.com/viewtopic.php?f=19&t=33762
https://esp32.com/viewtopic.php?f=19&t=33762


Therefore, we allocated only 32MB of stack for these tasks and minimized
memory allocation to the stack in the PQClean implementation, moving it to
the heap memory. We changed large declarations in functions to use malloc and
free functions. For even safer memory management, we chose to rewrite this
code from C to C++ and use std::unique_ptr objects, which handle other
objects’ memory allocation for their lifetime.

Additionally, we converted all arrays to pointers in function signatures to
prevent them from being copied to the stack when the function is called. This
guarantees that every post-quantum operation has 32MB of memory for stack
allocations and all algorithm-related objects are allocated dynamically on the
heap, which prevents runtime errors.

PQ in Transit Before implementing post-quantum algorithms on either side
of the architecture, we checked that the increased (and variable in the case of
Falcon) size of post-quantum data (such as public keys, digital signatures or
certificates) would not break communication by sending mock data.

Web-eID transmits a custom authentication token in JSON format, consist-
ing of a DER-encoded unverified public key certificate and a raw signature, both
Base64 encoded. It uses multiple APIs, like the Browser Messaging, Native Mes-
saging and HTTP API, to transfer the token between the components. These
APIs have no significant size restrictions for Dilithium-5 or Falcon-1024 objects,
so there was no need to make any codebase changes.

Algorithm identifiers are encoded in the ASN.1 structure of the unverified cer-
tificate and as a JSON Web Algorithm in the algorithm field of the Web-eID au-
thentication token. During device personalization (generating key pairs, obtain-
ing public keys, and creating client certificates), unofficial, libOQS -compatible
OIDs (e.g. 1.3.6.1.4.1.2.267.7.8.7 for Dilithium-5) and drafted JSON Web
Key identifiers (e.g. CRYDI5 for Dilithium-5 + constant SHA512 for the hash
function) are used.

PQ in Existing Architecture In this section, we discuss the implementa-
tion of post-quantum cryptographic algorithms in the rest of our authentication
architecture. We made changes to the following components.

– Nextcloud Web-eID 2FA – an installable Nextcloud application that allows
using Web-eID authentication result as the second factor.21 A switch to the
PQC Web-eID AuthToken Validation Library for PHP was required (see
below).

– PQC Web-eID AuthToken Validation Library for PHP – pre-quantum ver-
sion of this library used both OpenSSL and PHPSecLib, so we adjusted both:
• OQS-OpenSSL – the OpenQuantumSafe organization provides an

OpenSSL@1.1 fork and OpenSSL@3 extension capable of post-quantum
algorithms.22 However, the current version of internal OpenSSL PHP

21 See https://github.com/Muzosh/nextcloud_twofactor_webeid.
22 See https://openquantumsafe.org/applications/tls.html.
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extension only supports functions that do not require algorithm identi-
fication (e.g. openssl_verify, openssl_sign, not openssl_pkey_new).
The reason for this is that DSA, DH, RSA and EC algorithms are hard-
coded, and there is no way of specifying post-quantum algorithm iden-
tifiers from PHP source code.23

• PQC-PHPSecLib – we provide an open-source contribution in the form
of preparation for post-quantum algorithms with Dilithium-5 reference
implementation. This uses either OQS-OpenSSL or our new PHP exten-
sion of C++ libOQS library created with SWIG. Before any function is
run, ASN1::loadOIDs must be called with all new post-quantum algo-
rithm object identifiers.

– liboqs-php and liboqs-python – OpenQuantumSafe offers several language
wrappers for its libOQS library, but does not include a PHP wrapper. We
created one using SWIG, an application that requires C++ interface for gen-
erating wrappers. We used this wrapper in our PQC-PHPSecLib. We also
created a Python wrapper for our device personalization application (for
creating post-quantum certificates and testing the device). SWIG-specific
remapping was needed to transform PHP string and Python bytearray
into C++ uint8_t* and vice versa.

– PQC-Web-eID Application – apart from the already mentioned new
application-wide abstraction layer, an ElectronicID interface (required for
each supported card/device) was implemented for our new authentication
device. No post-quantum functions were required in this part, and data tran-
sit was described in section 4.4.

– Device Connector – this console application allows administrators to ini-
tialize and issue our authentication devices, test Web-eID compatibility and
post-quantum capabilities. It uses the liboqs-python library as it is written
in Python.

5 Benchmarks

In this section, we present the results from our measurements and explain some
of our choices based on these results.

5.1 Chosen Algorithms

Web-eID authentication protocol utilizes digital signature schemes, so we chose
three post-quantum signature algorithms that NIST selected as finalists in 2022:
Dilithium, Falcon and Sphincs+ [24]. Out of these, we have chosen parameters
that provide NIST security level 5.24 In case of Sphincs+ (which has multiple
variants of level 5) we chose the most performant one.
23 More about this issue at https://github.com/open-quantum-safe/openssl/issu

es/433.
24 See https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quant

um-Cryptography-Standardization/Evaluation-Criteria/Security-(Evaluati
on-Criteria).

https://github.com/open-quantum-safe/openssl/issues/433
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We measured the durations of key pair generation, digital signature creation,
and digital signature verification of the post-quantum algorithms in the libOQS
library on a dockerized version of Debian on an Apple M2 Pro chip. Tab. 1 shows
the relevant object sizes for the three selected algorithms, and Tab. 2 displays
the measurement results (averages from 30 retries).

Table 1: Object sizes of three selected algorithms
Algorithm Public key size [B] Private key size [B] Signature size [B]

Dilithium-5 2952 4864 4595

Falcon-1024 1793 2305 1280

SPHINCS+-
SHAKE256-256f-s

64 128 49856

Table 2: Performance measurement of three selected algorithms with PHPv8.1
interpreter in dockerized Debian on M2 Pro chip

Algorithm Keypair gen. time [ms] Sign. gen. time [ms] Verif. time [ms]

Dilithium-5 1.314× 10−7 2.366× 10−7 1.134× 10−7

Falcon-1024 3.392× 10−5 7.658× 10−6 6.440× 10−8

SPHINCS+-
SHAKE256-256f-s

4.926× 10−6 1.059× 10−4 2.541× 10−6

Sphincs+ is not suitable for embedded devices due to its large signatures.
Falcon has smaller object sizes than Dilithium, but its signature operation takes
32 times longer. Thus, Dilithium-5 was chosen as most suitable algorithm for
our authentication infrastructure.

5.2 Digital Signature Creation Duration

Fig. 3 illustrates the evolution of on-device signature creation during the devel-
opment phase (the values shown are averages from 100 retries). Initially, we used
the DFRobot FireBeetle 2 device with an ESP32-E chip, 520KB of SRAM, and
32MB of storage without encrypting the content in the flash memory (blue col-
umn). To address the lack of Hardware Security module/Trusted Platform Mod-
ule, we introduced data encryption (using quantum-safe AES256-OCB), with the
symmetric key derived from the user PIN (green column, resulting in a longer
duration). After evaluating storage options (discussed in section 4.3), we moved
some (grey column, leading to a significant decrease) or all (yellow column, slight
decrease) stored data to NVS storage.

Switching to the LilyGO T-Display-S3 device with an ESP32-S3 chip, 8MB
of PSRAM, and 16MB of storage (red column), significantly decreased the digital
signature creation time to 0.196 seconds. The reason is mostly higher compu-
tational power of the new ESP32 chip generation. For comparison, a JavaCard



SLJ52GCA150 (jTOP SLE78 Estonian ID card platform) achieved an ECDSA
over P-382 elliptic curve signature creation in 0.262 seconds [17]. We also imple-
mented the Falcon-1024 algorithm (purple column) for demonstration purposes,
which resulted in a significant increase in duration.

Fig. 3: Digital signature benchmark on ESP32 devices

5.3 User Experience Considerations

Our authentication infrastructure is in the proof-of-concept phase, so we can
not provide exact evaluation of the whole authentication process. In our testing
scenario, with a Nextcloud server running in a dockerized Debian on an Apple
M2 Pro chip and a post-quantum enabled Web-eID, the user has to go through
two more clicks and one PIN input. This is a lot more noticeable than the
cryptographic operations running in the background. For a detailed view of the
process from the administrator and user point of view, refer to chapters 4.1 and
4.2 in [17], which describe a similar authentication process with a smart card.

The USB CDC interface introduces a 1-2 second delay after device insertion.
This delay is only noticeable during authentication if the device is inserted during
the process. If inserted beforehand, the device is initialized in the background
and ready when authentication starts.



6 Conclusions and Further Work

Post-quantum cryptography implementations impose several engineering prob-
lems, such as longer key/signature sizes and higher computational requirements.
In this article, we discussed these problems, their possible solutions, and provided
an example reference implementation in the form of post-quantum-enabled, mod-
ern, and open-source authentication infrastructure . We also developed an em-
bedded client authentication device (with custom firmware and management
console) and example server-side Nextcloud cloud storage using two-factor au-
thentication.

Our work demonstrates the feasibility of integrating post-quantum cryptog-
raphy into existing authentication infrastructures and provides a starting point
for those interested in exploring the practical implications of post-quantum cryp-
tography today.

For future work, we plan to publish post-quantum extensions of the used
public repositories, such as Web-eID parts, PHPSecLib, and liboqs-php libraries.
This step will probably require some development in the ASN.1 structures stan-
dardization. We would also like to create one Docker implementation of the whole
infrastructure for easier installation and testing, and optimize the authentication
device codebase for even faster results.

We also consider changing the hardware to a microcontroller with an inte-
grated trusted execution environment and hardware secure module, so we do not
have to encrypt stored data ourselves. Lastly, we plan to perform a full security
analysis of this infrastructure and compare it with existing analyses.
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