
End-to-End Verifiable Internet Voting with
Partially Private Bulletin Boards

Valeh Farzaliyev[0009−0007−9513−9812] and Jan Willemson[0000−0002−6290−2099]

Cybernetica, Narva mnt 20, Tartu 51009, Estonia
valeh.farzaliyev@cyber.ee, jan.willemson@cyber.ee

Abstract. In 2024, Harrison and Haines examined the applicability of
STARKs in the context of homomorphically tallied elections. While their
work ensures the Recorded-as-Cast and Tallied-as-Recorded properties
of a voting system, it lacks Cast-as-Intended verification and does not
provide a coercion mitigation mechanism. In this work, we address these
challenges and propose an updated voting protocol that achieves all three
verification properties, at the same time providing coercion resistance by
allowing re-voting. Our approach leverages vector commitment schemes
with update mechanisms. We implement our protocol and provide com-
parative benchmarks to the Harrison and Haines solution. Our approach
significantly outperforms the latter, allowing processing a considerably
larger number of votes within the same hardware limits.

Keywords: Electronic voting · zero-knowledge proofs · vector commitments

1 Introduction

Voting is the primary method used to delegate power in the democratic societies.
The technical solutions to cast and count votes have gone through a long evo-
lution, starting from raising one’s hand to filling in paper ballots in the polling
booths.

However, in the increasingly mobile world, gathering all the eligible voters
in one place during a short period of time has become increasingly challenging.
Thus, the need for reliable remote vote casting solutions has become more and
more evident.

Practically speaking, there are two main alternatives for remote voting –
casting the votes by paper mail, or over the Internet. Postal voting has the
benefit of being familiar to the voters (the ballot can be exactly the same as for
the in-person voting) and not requiring complex technical apparatus. However,
in its classical form, postal voting is susceptible to coercion attacks, and it is
hard to give integrity or secrecy guarantees for the postal channel. It has recently
been even semi-formally shown by Vakarjuk et al. that postal voting has strictly
weaker security guarantees than casting the votes over Internet [22].

Of course, Internet voting needs to satisfy all the requirements set for demo-
cratic elections, too, and meeting them is far from being trivial. In this paper,



we are going to concentrate on two main classes of such requirements: integrity
of the elections, and voting freedom.

By election integrity we mean that the end result adequately represents the
combination of individual preferences. In order to ensure this, all the main steps
of the elections must be independently verifiable. In particular, the following
verifiability properties are important to us.

– Cast-as-Intended verifiability ensures that every ballot corresponds to the
voter preference.

– Recorded-as-Cast verifiability ensures that the way preferences are stored
in a (digital or physical) ballot box corresponds to the way the ballots were
submitted by the voters (i.e. no ballot has been altered in, deleted from or
added to the ballot box illegitimately).

– Tallied-as-Recorded verifiability ensures that the contents of the ballot
box is converted to the end result without alterations in the process.

The first two properties are sometimes commonly known as individual verifia-
bility, and the latter one as universal verifiability. The three properties together
are often called end-to-end (E2E) verifiability. However, we note that there is
no common definition of E2E verifiability, and it may vary significantly between
different sources; see [7] for an overview and comparison of different verifiability
notions.

Voting freedom, on the other hand, means that the voters are able to cast
their votes according to their true preferences, i.e. without coercion. There are
several possible ways proposed to achieve coercion resistance. Typical require-
ments include voter privacy and vote secrecy, with the rationale that if the
coercer can not learn the voter’s preference, it will be hard for him to actually
achieve the goal of coercion.

In case of remote voting, voter privacy may be hard to ensure. The main
threat here is over-the-shoulder coercion, where another person (say, a family
member) attempts to find out how the voter voted with the aim of influencing
her choice and making sure she complied with the influence.

Lack of privacy can, to a significant extent, be compensated by the option
of re-casting one’s vote later, with the last vote getting tallied. In order for the
anti-coercion measures to be effective, the voting scheme should be receipt-free,
i.e. it should be impossible for the voter to get a strong proof of her tallied vote
to show to the coercer.

We note that the requirements of E2E verifiability and receipt-freeness are
tricky to achieve at the same time. From the verifiability point of view, we would
like to give the voter some evidence that her vote was tallied as intended. At the
same time, this evidence should not be strong enough to allow for proving the
content of the vote to an external party.

Related works. There are numerous academic works trying to find a good
trade-off between E2E verifiability and receipt-freeness. Cramer et al. [8] de-
scribed the first efficient homomorphic tallying based multi-authority election



system with universal verifiability and vote secrecy by using non-interactive
zero-knowledge proof of ballot correctness together with homomorphic secret
sharing. Adding cast-as-intended verifiability makes the scheme coercible, since
all the ballot encryptions are stored on a public bulletin board. To address
this problem, the use of secret bulletin boards were introduced in [9] where a
new cryptographic primitive, commitment consistent encryption, was introduced.
The secret bulletin board stores only encrypted ballots, while the public bulletin
board appends consistently extracted commitments for each ballot. The authors
also proposed efficient constructions for both homomorphically tallied and mix-
net based election systems. Universal verifiability is achieved through Perfectly
Private Audit Trail (PPAT). Furthermore, the authors suggest using re-voting
to enhance coercion resistance. Unfortunately, the protocol is not equipped with
a cast-as-intended verification mechanism to be considered as end-to-end verifi-
able.

When the secret bulletin boards and re-voting are simultaneously used, E2E
verifiability requires verification that only the last vote by the voter is included in
the final tally. However, in practice it is usually guaranteed by trusting election
authority. Recently, a new paradigm – deniable, yet verifiable vote updating
mechanism – has emerged [12, 18, 20]. Particularly, DeVoS [20] is fully compatible
with PPAT by introducing a new trusted party.

Our Contribution. In this work, we demonstrate an online voting protocol
that satisfies E2E verifiability, while providing coercion-resistance by allowing
verifiable vote updating. To do so, we follow the approach by Harrison and
Haines presented in [13] and extend their protocol design. The main idea is
to replace the trust in the components of the voting scheme with well-defined
zero-knowledge proofs. In the original work, Harrison and Haines utilize authen-
ticated data structures and proof of homomorphic tallying. The intent of their
work is to show applicability of modern zero-knowledge proofs systems in the
context of voting, achieving recorded-as-cast, tallied-as-recorded, vote secrecy
and everlasting voter privacy properties.

Our contributions extend the state of the art by adding the following features.

– Adding a cast-as-intended verification mechanism at the auditing phase.
– Allowing deniable yet verifiable re-voting to mitigate coercion.
– Introducing new proof relations for every stage of the voting process.
– Showing how to modify the scheme for mix-net based voting systems.
– Proof of concept implementation for small-scale elections1.

Organization. The rest of the paper is structured as follows. We start with
explaining the mathematical notation, cryptographic primitives and the proto-
col by Harrison and Haines in Section 2. Next, we formally define our protocol
in Section 3. Section 4 discusses possible modifications to the protocol design,
implementation, benchmarking results and further optimizations. Finally, con-
clusions and future work are given in Section 5.

1 Available at https://github.com/Valeh2012/starkevoteid



2 Preliminaries

2.1 Notation and primitives

Let λ be the security parameter. Let n denote the number of voters, and let each
voter be represented by an index i = 1, . . . , n. If χ is a probability distribution

over a set D, both x
χ← D and x ← χ mean that x is sampled from D with

respect to χ. When x is sampled uniformly, we us the notation x
$← D.

Encryption Schemes. A public-key encryption scheme consists of key gener-
ation, encryption and decryption algorithms:

- E .KeyGen(1λ): On the input of security parameter λ, return the secret key
sk and public key pk.

- E .Enc(pk,m): Using the public key pk, compute and output the ciphertext
c.

- E .Dec(sk, c): Recover the plaintext message m using the secret key.

In this work, we consider only CPA-secure encryption schemes, i.e. there
should be no efficient probabilistic polynomial time algorithm that, given a
ciphertext ct and two messages m0,m1, can decide if ct = E .Enc(pk,m0) or
ct = E .Enc(pk,m1). We also require the additive homomorphic property, i.e.
that for all sk, pk,m0,m1

E .Dec(sk, E .Enc(pk,m0) + E .Enc(pk,m1)) = m0 +m1

holds.
Informally, CPA security implies a randomized encryption algorithm. There-

fore, we sometimes use the notation E .Enc(pk,m; r) to explicitly specify that r
is the used randomness, being sampled from an appropriate probability distribu-
tion. Moreover, we define re-randommization and special decryption algorithms
that do not depend on the secret key.

– E .ReRand(pk, ct, r′): updates the randomness by adding EEnc(pk, 0; r′) to
the given ciphertect ct.

– E .SpecDec(ct, r): having access to the encryption randomness r (but not
necessarily the private key!) extract the plaintext (e.g. by full inspection on
the plaintext space in case it is small).

Digital Signatures. Similarly, a digital signature scheme is a collection of three
algorithms:

– S.KeyGen(1λ): On the input of security parameter λ, return the private
signing key sk and public verification key pk.

– S.Sign(sk,m): Return the signature σ of the message m using the signing
key sk.

– S.Verify(pk,m, σ): Output 1 if σ is the signature on m being signed using
the signing key that corresponds to the public key pk; otherwise output 0.



Vector Commitment Schemes. Vector Commitments (VC) were first intro-
duced in 2013 by Catalano and Fiore [6]. A VC scheme allows to commit to
many elements, represented as a finite-dimensional vector, at once. Moreover,
there should be an efficient opening to a message at a specific index, an update
mechanism and a verification method for such updates. Formally, a Vector Com-
mitment scheme VC is a set of five efficient algorithms KeyGen, Commit, Open,
Verify, Update and ProofUpdate.

– VC.KeyGen(1λ, n): Given the security parameter λ and a vector of size n,
output the public parameters pp.

– VC.Commit(pp,m1,m2, . . .mn): On the input of public parameters pp and
a vector of n elements, output the commitment string C. It is equivalent to
the notation VC.Commit(pp, S) where S is a vector of n elements.

– VC.Open(pp, C,mi, i): Produce a proof Λi that a given message mi is the
i-th committed message.

– VC.Verify(pp, C,mi, i, Λi): Return 1 if Λi is a valid proof that C opens to mi

at position i; otherwise return 0.
– VC.Update(pp, C,mi,m

′
i, i): The committer who produced C updates the

commitment string by replacing the i-th message mi with m′
i and returns

C ′.
– VC.ProofUpdate(pp, C,Λj ,m

′, i): Update the commitment string C and open-
ing proof Λj for some message m′ at position i. The output of this method
is a new commitment string C ′ and a new opening proof Λ′

i.

A vector commitment scheme VC is said to be correct if for all opening proofs
Λi, either generated by VC.Open or VC.ProofUpdate, pp ← VC.KeyGen(1λ, n),
and all commitment strings C that commit to a vector message with i-th element
being mi, VC.Verify(pp, C,mi, i, Λi) is 1 (with overwhelming probability).

The scheme is position binding if no polynomial time adversary with the
knowledge of pp can find a commitment string C that opens to two distinct
messages at any position. Moreover, the scheme is concise if the commitment
and opening proof lengths are independent of n. We also require hiding schemes,
meaning that an adversary cannot distinguish whether C is a commitment to
m1,m2, . . . ,mn or m′

1,m
′
2, . . . ,m

′
n even after seeing some openings.

In [13], the authors give a definition of Authenticated Data Structures (ADS)
which overlaps with the definition of Vector Commitments above, except for the
update mechanism.

Zero-Knowledge Protocols. Let R = {(x;w) | x ∈ L} be a relation for
an NP-language L. Here, x is called a statement and w is the witness. A zero-
knowledge proof system is a multi-round interactive protocol between a prover
and a verifier which satisfies three properties.

– Completeness: Honest verifier accepts an honestly generated proof if x ∈ L.
– Soundness: Cheating prover cannot convince the verifier if x /∈ L .
– Zero-knowledge: Verifier learns nothing other than the fact that x ∈ L.



These properties have perfect, statistical and computational variations. Sim-
ply speaking, perfect and statistical versions say that the requirements are sat-
isfied with probability 1 or statistically close to 1, respectively, while the com-
putational condition restricts the adversary to be computationally efficient. For
soundness, a stronger notion knowledge-soundness asserts that if the prover can
convince the verifier, then it must know the witness. The zero-knowledge prop-
erty can be proved by constructing a simulator S (potentially more powerful
than the verifier) which can generate an accepting transcript without the knowl-
edge of w. In case the proof system is only computationally sound, it is called
an argument.

If there is only a single round of communication, then we speak about a non-
interactive zero-knowledge (NIZK) proof. All public coin interactive proofs can
be turned into NIZK proofs using Fiat-Shamir transformation [10]. Furthermore,
when the proof size is at most polylogarithmic in the witness size, we call it
succinct.

Recently, many interesting succinct non-interactive arguments of knowledge
(SNARK [11, 17, 19]) and succinct transparent arguments of knowledge (STARK [2])
have been proposed. STARKs are quantum-resistant by construction; however
they require more computational power than SNARKs. There exist constant-
size SNARKs, but all the known STARKs have logarithmic proof size. On the
other hand, STARK verification outperforms the most efficient SNARK veri-
fiers in their runtime. Unless explicitly said otherwise, we assume all SNARKs
(STARKs) are zero-knowledge instead of denoting them zkSNARKs (zkSTARKs)
for distinction.

2.2 The protocol by Harrison and Haines

In [13], Harrison and Haines build a simple e-voting protocol upon the ideas
from [8]. Protocol participants are the Election Authority (EA), the voters
V1, V2, . . . , Vn and the talliers T1, T2, . . . , Tm. There are two append-only bul-
letin boards: the public bulletin board PB and the secret bulletin board SB.
The talliers also have read-only access to SB.

The EA is responsible for organizing the election. It provides public infor-
mation such as the list of candidates, the public signature verification keys of
eligible voters, the public signature verification keys of valid talliers, and the pub-
lic voting parameters. It is assumed that an authentic copy of the EA’s public
signature verification key (pkEA) is known to all participants.

The authors of [13] chose ElGamal encryption scheme over elliptic curves
to ensure ballot privacy. The encryption secret key sk is jointly generated by
the set of talliers using standard secret sharing techniques and the public key is
computed as PK = sk ·G (where G is the generator point of the elliptic curve
group). Moreover, the talliers keep their own shares of the secret key.

During the voting phase, each voter first verifies public voting parameters,
and after that encrypts her vote. The ballot message is a pair consisting of the
ciphertext and a NIZK proof of ballot correctness. At last, the voter sends the
signed ballot message σ = S.Sign(sk, (c, π)) to SB through a private channel



(here sk is the secret signing key, c = E .Enc(PK, v) and π is the ballot correct-
ness proof for the vote v).

After the voting phase ends, the talliers start to count the collected votes.
They iterate over the submitted ballots, verify signatures using the public sig-
nature verification keys of the corresponding voters, and check that the ballot
correctness proofs pass. Next, they add ciphertexts to get the encrypted result
Cj =

∑n
i=1 ci. Now, the results can be decrypted by the talliers using their se-

cret key shares. In addition to this, each tallier commits to the list of voters’
public signature keys and added ciphertexts. Following the notation of [13], let
rp = VC.Commit(pp, pk1, pk2, . . . , pkn) and rc = VC.Commit(pp, c1, c2, . . . , cn).
The ciphertext commitment is blinded with a randomness factor η ∈ Zq. At this
point, a STARK proof is generated for the relation

R =


(rp, r

′
c, C);

(pk1, . . . , pkn, c1, . . . , cn,
σ1, . . . , σn, π1, . . . , πn, η)

∣∣∣∣∣∣∣∣∣∣
rp = VC.Commit(pp, pk1, . . . , pkn)
∧ r′c = VC.Commit(pp, c1, . . . , cn) · η

∧ S.Verify(pkj , σj , cj) = 1
∧ V erify(cj , πj , PK) = 1 ∀j = 1, . . . , n

∧ C =
∏n

i=1 ci


with the public statement (rp, r

′
c, Cj) and private witness (pk1, . . . , pkn, c1, . . . , cn,

σ1, . . . , σn, π1, . . . , πn, η). Finally, each tallier signs and appends the decryption
result and the STARK proof on the public bulletin board PB.

The last stage of this e-voting protocol is called EXTRACT, where the EA
verifies all the signatures and included proofs written on the PB, and computes
the final result as the sum of extracted partial decryptions. Finally, the EA signs
the final result and reveals it.

For the implementation, Harrison and Haines choose ElGamal over STARK
elliptic curve [21], Pedersen hash function [15, Section 5.4.1.7], Elliptic Curve
Digital Signature Algorithm (ECDSA) [16], Merkle Trees as the vector commit-
ment, and ElectionGuard’s ballot correctness proof [3].

The authors mention that the contribution is not the protocol definition itself,
but presentation and evaluation of the STARK proof as an efficient alternative to
verify talliers’ work without publicly exposing the submitted ballots. Therefore,
they do not prove the informal claim that, assuming the vector commitment is
secure, binding and hiding, and the non-interactive proofs are complete, sound
and zero-knowledge, the proposed e-voting protocol satisfies everlasting privacy,
ballot privacy, recorded-as-cast and tallied-as-recorded properties.

3 Our vector commitment-based Voting Protocol

In this section, we formally define our online voting protocol based on vector
commitments, arguing that the protocol is end-to-end verifiable and coercion
resistant. For the latter property, the ballots are stored privately on a private
bulletin board, and re-voting is allowed. Assuming the coercer does not block
the voters from submitting their choices, but only demands a proof that the
submitted ballots encode the coercer’s wish, the voters can generate such proofs



at the Cast-as-Intended phase, and later vote again. If the coercer does not have
access to the submitted ballots, he cannot tell if the voter has voted again, and
hence the coercive strategy would fail.

However, having a private bulletin board raises concerns about the correct
processing of the recorded ballots. Therefore we propose a second append-only
bulletin board which is public and contains auxiliary information about each
submitted ballot. This information must be verifiable by anyone for universal
verifiability. It also has a purpose of linking two consecutively received ballots.
Furthermore, the last entry on the public bulletin board guarantees the order of
ballot history and is used at the later stages of the election to guarantee that
the ballots are recorded-as-cast.

Before describing the proposed protocol explicitly, we first give a brief list of
the used methods.

3.1 Building blocks

Let E be a CPA-secure additively homomorphic encryption scheme to encrypt
the votes, let S be a digital signature scheme to sign the ballots, and let VC be a
position binding vector commitment scheme to commit to the submitted ballots.
Let n be the number of eligible voters and let PKS = {pkS1 , pkS2 , . . . , pkSn} be
the set of the voters’ public keys. Let Υ be the set of possible choices; e.g., for
simple yes/no elections the set Υ = {0, 1} can be used.

Ballot correctness proof A ballot correctness proof, or simply a ballot proof,
is a non-interactive zero-knowledge proof of knowledge of intent, generated by
each voter to show that their choice under encryption satisfies election rules. Let
c = E .Enc(pkE , v) be an encrypted ballot where v ∈ Υ . A ballot proof ΠBP is a
NIZK for the following relation:

RBP =
{
(c, pkE , Υ ); (v, r)

∣∣ c = E .Enc(pkE , v; r) ∧ v ∈ Υ
}
.

Update proof Let C = {c1, c2, . . . , cj , . . . , cn} be the set of ballots submitted
by the voters at some moments in time, and let the voter j submit a new signed
ballot σ = S.Sign(skSj , (c′j , ΠPB)). Furthermore, let Λj = VC.Open(pp, V C, c, j)
and (Λ′

j , V C ′) = VC.ProofUpdate(pp, V C,Λj , c
′, j) be opening proofs to the bal-

lots before and after this submission at position j. Update proof ΠU is a NIZK
for the following relation:

RU =


(pp, V C, V C ′,

PKS , Υ ); (j, cj , σ,
c′j , ΠPB , pk

S
j , Λj , Λ

′
j)

∣∣∣∣∣∣∣∣∣∣
ΠBP .Verify(c

′
j , pk

E , Υ ) = 1 ∧ pkSj ∈ PKS

∧ S.Verify(pkSj , (c′j , ΠBP ), σ) = 1
∧ VC.Verify(pp, V C, cj , j, Λj) = 1
∧ VC.Verify(pp, V C ′, c′j , j, Λ

′
j) = 1 ∧

(Λ′
j , V C ′) = VC.ProofUpdate(pp, V C,Λj , c

′, j)

 .



Opening proof While VC.Open method efficiently generates a proof for an
opening at a particular position, generating such proofs for every position and
verifying them would take a substantial amount of time at the beginning of
the election. Instead, a NIZK proof for the relation (V C;C) where V C =
VC.Commit(pp, C) can be generated so that verifying it would take only marginal
amount of time. This relation can be extended with additional constraints. For
example, it may be desirable to let C be an empty set, a set of zeros, or zero-
encryptions. For the latter, we formally define the opening proof relation as

R⊥ =

{
(pp, pkE , V C);C

∣∣∣∣ V C = VC.Commit(pp, C)
∧ c = E .Enc(pkE , 0) ∀c ∈ C

}
.

Accumulation proof Again, consider that V C is a vector commitment to
C = {c1, c2, . . . , cn} before tallying starts. In case of homomorphically tallied
elections, ciphertexts are added before the decryption phase. For that, we define
accumulation proof ΠAcc for the relation

Racc =

{
(pp, V C, cacc);C

∣∣∣∣∣ V C = VC.Commit(pp, C) ∧ cacc =
∑
c∈C

c

}
.

Decryption proof The final NIZK proof, ΠDec, guarantees that the plaintext
m is a correct decryption of c under the key skE . We can write the relation
formally as

RDec =
{
(c,m, pkE); skE

∣∣ m = E .Dec(skE , c) ∧ (pkE , skE)← E .KeyGen(1λ)
}
.

3.2 Full protocol

Our voting protocol consists of the following components:

– Announcement, Registration, Setup, Casting and Tallying phases;
– Election Setup, KeyGen, Vote, Verify and Tally protocols;
– append-only databases called Private Bulletin Board SB, and Public Bulletin

Board PB;
– participants running the protocol: the Election Authority EA, Voters Vj ,

Vote Collector Server (VCS), and Decryption Authority OD.

The protocol proceeds as follows.

– Announcement: First, the EA decides upon a CPA-secure asymmetric en-
cryption scheme E , digital signature scheme S and vector commitment scheme
VC to use, initializes PB and SB, announces the election parameters and the
chosen cryptographic suite.

– Registration: Every potential voter Vj generates her own pair of public and
private signing keys (pkSj , sk

S
j ) = S.KeyGen(1λ), and registers herself by

sending the pkSj to the PB. Upon receiving the public signing key from



the voter, PB adds it to the list of public keys PKS = PKS ∪ {pkSj } and
increments the number of voters n. Thus, at the end of the registration phase,
we have n = |PKS |.

– Setup: After the Registration phase ends, OD generates the encryption-
decryption key pair (pkE , skE) = E .KeyGen(1λ), and sends the public en-
cryption key to EA. EA runs the vector commitment scheme setup pp =
VC.Setup(1λ, n), and appends an empty commitment V C = VC.Com(pp, C0)
where C0 = (c0i )

n
i=1 and c0i is an encryption of zero message for all i =

1, . . . , n, along with a proof of opening Π⊥ to PB.
– Casting: The voter Vj

• samples randomness r
$← R (where R is the randomness space chosen as

a part of the public parameters),
• encrypts her vote v ∈ Υ using randomness r and election public encryp-
tion key as c′ = E .Enc(pkE , v; r),

• generates the ballot correctness proof ΠBP for the relation ((c′, pkE , Υ );
(v, r)),

• signs the ciphertext using her secret signing key as σ = S.Sign(skSj , (c′,
ΠBP )),

• submits the ballot (σ, c′, ΠBP ) to the Vote Collector Server.
When VCS receives the ballot (σ, c′, ΠBP ), it checks that the validity of the
signature and the ballot proof as the first step. If they pass, VCS
• updates the vector commitment V C ′ = VC.Update(pp, V C, c, c′, j) at

position j with the new value c′, and
• generates the opening proof Λ′ = VC.Open(pp, V C ′, c′, j).
• Assuming V C,Λ and c are the previous vector commitment, an opening
proof and its opening at the same position, respectively, VCS gener-
ates the proof of valid commitment update ΠU of ((pp, V C, V C ′, PKS);
(j, c, σ, c′, ΠBP , pk

S
j , Λ, Λ

′)) ∈ RU .
• Last, VCS appends (σ, c′, ΠBP , Λ

′) to SB, and (ΠU , V C ′) to PB.
• Returns unique vote reference vr to the voter.

– (Homomorphic) Tallying: At the final phase, EA runs the Tally protocol

on the input of all update proofs (Π
(i)
U )νi=1 and history of the vector com-

mitments (V C(i))νi=1 and committed ciphertexts (cj)
n
j=1. Within the Tally

protocol, first all update proofs are verified, checking that indeed V Cν is the
correct vector commitment to (cj)

n
j=1. Then, all the ciphertexts are added

as cacc =
∑n

j=1 cj , and a proof of accumulation ΠAcc is produced. Last,

EA queries the Decryption Authority OD to decrypt cacc. O
D returns the

decrypted tally and proof of correct decryption next to it. EA publishes the
tally and all supporting proofs to PB.

3.3 Individual Verifiability

Up to this point, our protocol achieves recorded-as-cast and tallied-as-recorded
properties, assuming that the vector commitment is correct and positional bind-
ing, proofs are knowledge sound and zero-knowledge. The former follows directly



from the soundness of update proofs and positional binding property of the vec-
tor commitment scheme, while the latter is satisfied due to the accumulation
proof being sound. Vote secrecy follows from the CPA-security of the encryp-
tion scheme. Ballot signatures confirm eligibility of the voters. Finally, voter
anonymity is preserved as the update proofs are zero-knowledge.

However, in the presented form, there is no mechanism to verify the cast-
as-intended property (that is, we are not yet doing better than [13]). To add
this functionality, we expand the protocol with the Audit phase, applying cast-
and-audit strategy. That is, the voters can query the submitted ballot using a
separate audit device and verify that the encrypted ballot contains their vote
after they have finished voting (following the approach proposed by Heiberg and
Willemson [14]). In addition, we assume that once the VCS returns the a unique
vote reference vr to the voter, that reference is not leaked. The voting device
used by the voter then displays this vote reference together with the encryption
randomness (e.g. as a QR code).

Let c′ be encryption of the vote v using randomness r, i.e, c′ = E .Enc(pkE , v; r),
and let the VCS return the vote reference vr. The voter imports vr and r into
the audit device (for example, by scanning the QR code). Then the audit device
queries VCS to get the encrypted ballot c′, proof of update ΠU , and the proof of
opening Λ′. Next, it verifies ΠU and checks that VC.Verify(pp, V C ′, c′, i, Λ′) = 1.
Note that the position i can be provided by VCS within Λ or obtained by the
voter herself simply by looking at the index of her public signing key in the list
PKS . If both verification checks pass, the audit device attempts to extract the
vote v∗ using special decryption algorithm as v∗ = E .SpecDec(c′, r). The voter
now can verify if v = v∗. If VCS is honest, v = E .SpecDec(E .Enc(pkE , v; r), r) =
v∗ holds due to correctness of the encryption algorithm, and the voter accepts
the verification result. If v ̸= v∗, the voter rejects. As a result, our proposed
voting protocol achieves the cast-as-intended property. Moreover, as (ΠU , V C ′)
pair is on PB, and assuming the zero-knowledge proof is sound and the vector
commitment scheme is complete, the voter is convinced that her vote is cast-
as-intended and recorded-as-cast. Combining this with the tallied-as-recorded
property, we get end-to-end verifiability.

We observe that our cast-as-intended and recorded-as-cast verification forms
a receipt of how the voter voted. However, due to allowing for re-voting, the risk
of coercion is mitigated. Assuming the coercer has no access to the communica-
tion between the voters and the VCS, or cannot read the contents of the private
bulletin board, it is not possible for him to to tell whether the voter has re-voted
or not. In addition, the update proofs do not leak any information regarding the
voter. Therefore the coercer can not simply see whether a voter has voted or
not, so the protocol also provides protection against forced abstention attacks.

4 Discussion

The protocol described in Section 3 can be easily augmented to comply with
different election requirements. For example, currently there is a single author-



ity who holds the private encryption key, and the authority is modeled as an
oracle. This is a threat to vote secrecy, because the tallier may query the oracle
arbitrarily many times to learn the contents of each ballot. The trivial solution
would be limiting access to the oracle to only one query; however, in practice, it
would be hard to enforce this rule. Malicious tallier and decryption oracle can
collude to decrypt any submitted ballot. The standard solution is to split the
private decryption key into a number of shares and distribute them among sev-
eral registered talliers. Since each tallier can keep their share of the private key,
there is no need for a separate decryption oracle. In the modified tallying phase,
each tallier will run the Tally protocol, decrypting the accumulated ciphertext
and generating the proof of correct decryption by themselves, in parallel. As a
result, each tallier will publish their share of decryption. If at least one tallier is
honest and does not collude with others, vote secrecy will be retained.

We can also consider more general algorithms for computing election result.
For example, a mix-net version of the protocol given in Section 3.2 is relatively
straightforward to implement. We can add a Mixing phase before Tallying, and
a Mixer will run the Mixing protocol at this phase.

– The Mixing phase will consist of the following steps:

• Verify all the previous proofs.
• Get a list of ciphertexts from SB.
• Re-randomize each ciphertext with fresh randomness.
• Shuffle the ciphertexts using a secret permutation, commit to them.
• Generate NIZK proof of correct shuffle, Πshuffle.
• Publish ciphertexts on PB in the shuffled order together with Πshuffle,

where Πshuffle is a proof for the shuffle relation Rshuffle:

Rshuffle =


((pp, pkE , V C,
c′1, . . . , c

′
n);

(π, c1, . . . , cn,
r1, . . . , rn))

∣∣∣∣∣∣∣∣
V C = VC.Commit(pp, c1, . . . , cn) ∧

c′π(i) = E .ReRand(pk
E , ci, ri) ∀i = 1, . . . , n


In this version, the talliers do not need to add ciphertexts and produce the

accumulation proof. However, they have to decrypt all the ciphertexts one by one
and produce the accompanying proofs of correct decryption. Note that because
the Mixer gets input directly from the private bulletin board, this input is not
part of the statement, but rather part of the witness in the shuffle proof. Regular
mix-nets, however, treat incoming and outgoing ciphertexts as public values.
Finally, one can add many regular mix-nets after the Mixer to further reduce
the link between the voter and her vote. All such modifications do not change
the main properties of the voting system.

Finally, it is important to mention that who can generate valid signatures
on behalf of the voter, can also submit ballots that would go undetected by the
voter since the update proofs do not leak voter identity. Therefore, we assume a
trusted signing device that hides private signing keys, and require confirmation



from the voter every time she has to sign a document. In practice, this can be
realized by separate hardware (smart cards2) or software (digital wallets).

4.1 Implementation and benchmarks

The implementation details of the original Harrison and Haines scheme were
presented in Section 2.2. We use the same components to instantiate our proto-
col. That is, we consider simple YES/NO election with one question, ElGamal
encryption scheme and corresponding NIZK ballot proof, ECDSA digital signa-
ture, Merkle Tree with Pedersen hash function as the vector commitment scheme
and STARK proof system. All these schemes are defined over the STARK curve.
We perform membership checks for public signature keys using another Merkle
Tree.

We have extended the source code provided in [13], and added circuits for
relations defined in Section 3.1. All the circuits are written in Cario 0 language,
and proofs are generated using the STONE prover. Our test device has a 4-core
(8-threads) Intel(R) Core(TM) i5-82500 CPU running at 1.60 GHz, and 16 GB
of RAM. The operating system is Ubuntu 24.04.2 LTS.

First, we simulated the vote casting phase with up to 232 voters. In all the
experiments, the (average) times required to generate and verify a single update
proof remained constant, being 0.7 core-minutes and 0.15 core-seconds, re-
spectively. As the proof file contains public input, its size grew linearly from 980
KB to 1.0 MB. Peak memory usage was consistently less than 1 GB.

Next, we measured the performance of the accumulation circuit for different
numbers of voters. Our implementation reached its memory limit with 1024 vot-
ers. In this case, it takes 20.8 core-minutes to generate the 1.8 MB accumulate
proof, and only 0.21 core-seconds to verify the proof with peak memory usage
11.82 GB. In comparison, Harrison and Haines were only able to accommodate
up to 64 voters at the similar RAM usage, but slightly longer proof generation
time. We summarize all the experiment results in Table 1, with projections for
bigger inputs given in gray. Our work noticeably outperforms [13] in all the input
sizes.

For a fair comparison, we considered the performance of our protocol with
224 voters. In [13], the authors estimate the total proof size to be 1.54 GB, and
the verification to take 5.62 core-minutes (after adjusting for clock frequency)
if batching is applied (512 batches with 215 batch size). With this configuration,
the total proof size for accumulation proofs using our protocol would be 1.14
GB and the verification would take 2.13 core-minutes. Moreover, less than 0.5
TB RAM is enough in contrast to the assumed 6 TB for the tallier machine
in [13]. The downside of our proposed scheme is that minimum 224 MB ≈ 16 TB
disk space is needed to store the individual update proofs, and verifying them
sequentially requires 41 core-days. This is the cost of having verifiable vote
updating.

2 In case of smart cards, voters are advised to use smart card readers with keypad to
avoid PIN caching attacks



Input ΠU Harrison and Haines [13]

Votes Proving Verification Size Peak RAM Proving Verification Size Peak RAM

4 0.19 0.11 0.542 0.57 1.77 0.18 1.009 0.72
8 0.22 0.14 0.901 0.62 3.23 0.16 1.062 1.38
16 0.35 0.14 0.923 0.73 6.46 0.17 1.148 2.82
32 0.64 0.15 1.014 0.95 12.91 0.17 1.317 5.50
64 1.15 0.15 1.047 1.38 26.25 0.22 1.620 11.0
128 2.37 0.16 1.113 1.84 52.35 0.23 1.824 21.96
256 4.78 0.17 1.227 3.97 104.73 0.24 1.972 43.88
512 10.16 0.18 1.431 7.42 209.49 0.25 2.120 87.73
1024 20.8 0.21 1.835 11.82 419.01 0.27 2.267 175.41
2048 41.36 0.21 1.737 24.00 838.04 0.28 2.415 350.79
4096 82.80 0.22 1.861 47.33 1676.10 0.29 2.563 701.53
8192 165.68 0.23 1.987 93.99 3352.22 0.31 2.711 1403.03
16384 331.4 0.24 2.111 187.30 6704.46 0.33 2.855 2803.02
32768 662.95 0.25 2.235 373.93 13408.94 0.34 3.004 5612.01

Table 1. Comparing performance of accumulate proof generated by the tallier. Entries
in gray are projected results. Units for Proving, Verification, Size and Peak RAM
columns are in core-minutes, core-seconds, MB and GB, respectively.

4.2 Post-Quantum Instantiation

Unfortunately, lattice-based encryption and digital signature schemes are not
STARK-friendly. Therefore, we choose Labrador [4] proof system and Falcon
digital signatures, whose verification has been implemented in [1]. Next, BGV [5]
without bootstrapping is a good choice for an additively homomorphic encryp-
tion scheme. Finally, Merkle Trees with any post-quantum secure hash function
stays as the vector commitment scheme. Choosing parameters to satisfy e.g. the
128-bit security level is currently an open problem, and it is not a straightforward
task due to non-trivial interdependencies between the parameters.

4.3 Further Optimizations

Even though the proposed proof systems have extremely fast verification times,
for mid- and large-scale elections, downloading and verifying update proofs may
take several hours. Luckily, there is an elegant solution – Incrementally Verifiable
Computation (IVC) [23], a recent breakthrough in zero-knowledge proof systems.
The main idea behind IVC is to recursively generate a new proof for a certain
relation and verify the previous proof as a subtask inside the new proof. If we
think of generating the proof of update as an incremental function F that takes
the input statement and the witness, we can generate a single succinct proof
at the end of the voting phase. This will drastically reduce the workload of
external verifiers. In practice, this increases memory usage and proof generation
time at the prover’s side. In other words, the Vote Collector Server should be
very powerful in order to provide a seamless voting experience.



5 Conclusion

This paper presents a possible approach to designing an end-to-end verifiable and
coercion-resistant voting protocol with cast-and-audit individual verification and
re-voting. Our work is inspired by [13]; however, our construction is based on
a verifiably updatable vector commitment scheme to bind all submitted ballots
to the election outcome. All the voting protocol participants produce associated
zero-knowledge proofs which are verifiable by anyone. A simple cast-as-intended
verification ensures voters that their interaction with the election is not tampered
with. We also allow for re-voting to mitigate coercion attacks, while promising
that the last vote is included in the tally. We achieve these results by assuming
voters generate digital signatures using a trusted device. Simple proof of concept
implementation shows that the scheme is deployable in practice. With further
optimizations, it is possible to reduce the number of produced artifacts, so the
workload of external verifiers. We leave such optimizations and post-quantum
implementation a possible direction for future works.

Acknowledgments

The paper has been supported by the Estonian Research Council under the grant
number PRG2177.

References

1. Aardal, M.A., Aranha, D.F., Boudgoust, K., Kolby, S., Takahashi, A.: Aggregating
Falcon Signatures with LaBRADOR. In: Reyzin, L., Stebila, D. (eds.) Advances
in Cryptology – CRYPTO 2024. pp. 71–106. Springer Nature Switzerland (2024)

2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
– CRYPTO 2019. pp. 701–732. Springer International Publishing, Cham (2019)

3. Benaloh, J., Naehrig, M.: Electionguard design specification (version 2.0.0). Tech.
rep., Microsoft Research (2023)

4. Beullens, W., Seiler, G.: LaBRADOR: Compact Proofs for R1CS from Module-SIS.
In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO
2023. pp. 518–548. Springer Nature Switzerland, Cham (2023)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Electron. Colloquium Comput. Complex. TR11 (2011),
https://api.semanticscholar.org/CorpusID:2182541

6. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) Public-Key Cryptography – PKC 2013. pp. 55–72. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

7. Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: SoK: Verifiability
Notions for E-Voting Protocols. In: IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016. pp. 779–798. IEEE Computer Society
(2016). https://doi.org/10.1109/SP.2016.52

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997).
https://doi.org/10.1002/ETT.4460080506



9. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: Do we
need to choose? In: Computer Security – ESORICS 2013. pp. 481–498. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

11. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. pp. 626–645. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

12. Haines, T., Müller, J., Querejeta-Azurmendi, I.: Scalable coercion-resistant
e-voting under weaker trust assumptions. In: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing. p. 1576–1584. SAC
’23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3555776.3578730

13. Harrison, M., Haines, T.: On the applicability of starks to counted-as-collected
verification in existing homomorphic e-voting systems. In: Financial Cryptography
and Data Security. FC 2024 International Workshops. pp. 50–65. Springer Nature
Switzerland, Cham (2025)

14. Heiberg, S., Willemson, J.: Verifiable Internet voting in Estonia. In: Krimmer, R.,
Volkamer, M. (eds.) 6th International Conference on Electronic Voting: Verifying
the Vote, EVOTE 2014, Lochau / Bregenz, Austria, October 29-31, 2014. pp. 1–8.
IEEE (2014). https://doi.org/10.1109/EVOTE.2014.7001135

15. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification
2022.3.8 [nu5]. Tech. rep., Electric Coin Company (2022)

16. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digi-
tal signature algorithm (ECDSA). Int. J. Inf. Sec. 1(1), 36–63 (2001).
https://doi.org/10.1007/S102070100002

17. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory
of Computing. p. 723–732. STOC ’92, Association for Computing Machinery, New
York, NY, USA (1992). https://doi.org/10.1145/129712.129782

18. Lueks, W., Querejeta-Azurmendi, I., Troncoso, C.: VoteAgain: A scalable
coercion-resistant voting system. In: 29th USENIX Security Symposium
(USENIX Security 20). pp. 1553–1570. USENIX Association (Aug 2020),
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks

19. Micali, S.: Cs proofs. In: Proceedings 35th Annual Sympo-
sium on Foundations of Computer Science. pp. 436–453 (1994).
https://doi.org/10.1109/SFCS.1994.365746

20. Mueller, J., Pejo, B., Pryvalov, I.: DeVoS: Deniable yet verifiable
vote updating. Cryptology ePrint Archive, Paper 2023/1616 (2023),
https://eprint.iacr.org/2023/1616

21. StarkEx: STARK curve. https://docs.starkware.co/starkex/crypto/stark-
curve.html (2025), [Accessed 22-01-2025]

22. Vakarjuk, J., Snetkov, N., Willemson, J.: Comparing security levels of postal
and Internet voting. Information Security Journal: A Global Perspective pp. 1–
21 (2024). https://doi.org/10.1080/19393555.2024.2410332

23. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) Theory of Cryptography. pp. 1–18.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)


