
Covering the Path Space: A Casebase
Analysis for Mobile Robot Path Planning

Maarja Kruusmaa
Tallinn Technical University

Dept. of Mechatronics

Ehitajate tee 5, Tallinn, Estonia

Jan Willemson
Tartu University

Dept. of Computer Science

Liivi 2, Tartu, Estonia

Abstract

This paper presents a theoretical analysis of a casebase used for mobile robot
path planning in dynamic environments. Unlike other case-based path planning
approaches, we use a grid map to represent the environment that permits the robot
to operate in unstructured environments. The objective of the mobile robot is to
learn to choose paths that are less risky to follow. Our experiments with real robots
have shown the efficiency of our concept. In this paper, we replace a heuristic path
planning algorithm of the mobile robot with a seed casebase and prove the upper
and lower bounds for the cardinality of the casebase. The proofs indicate that
it is realistic to seed the casebase with some solutions to a path-finding problem
so that no possible solution differs too much from some path in the casebase.
This guarantees that the robot would theoretically find all paths from start to goal.
The proof of the upper bound of the casebase cardinality shows that the casebase
would in a long run grow too large and all possible solutions cannot be stored. In
order to keep only the most efficient solutions the casebase has to be revised at
run-time or some other measure of path difference has to be considered.

Keywords. Case-based reasoning, path planning, covering in metric spaces

1 Introduction

The work presented in this paper is a theoretical extension of a research in mobile
robotics. We investigate the problem of generating a seed casebase to cover the solu-
tion space of a mobile robot. In our earlier work we have implemented a case-based
reasoning approach to mobile robot path planning and tested it on real robots [1]. In
this work we prove the theoretical upper and lower bound of the casebase to show the
feasibility and limitations of our approach.

The rest of this paper is organised as follows. In the next subsection we give an in-
sight to the field of robot navigation and explain the relevance of the problem. Section
2 describes our approach and reviews our previous experimental results. In Section 3
we give the basic definitions and state the main robot path space covering problem in
Section 4. Sections 5 and 6 prove (exact) lower and upper bounds, respectively, for
the stated covering problem. Section 7 compares the old heuristic approach to the new
one presented in the current paper. Section 8 draws some conclusions and discusses
the future work.

1

Motivation

Our work is motivated by the fact that most of mobile robot applications imply re-
peated traversal in a changing environment between predefined start and goal points.
For example, a mobile robot could be used to transport details and sub-assemblies be-
tween a store and production lines. This task implies repeated traversal between the
store and the production cells. A mobile robot can also be used for surveillance. This
task implies visiting certain checkpoints on a closed territory in a predefined order.

Real environments where these kind of mobile robots have to operate are dynamic
by nature. From the point of view of mobile robot navigation, it means that unexpected
obstacles can appear and disappear. The nature and density of the obstacles is usually
unknown or too difficult to model.

At the same time a mobile robot in a dynamic environment has to fulfill its as-
signment as fast and safely as possible. This means choosing paths between target
points that are most likely unblocked and where the robot does not spend too much
time maneuvering between obstacles.

Very few research studies reported so far consider this problem of path selection
[2, 3]. Unlike these approaches, we do not assume that the structure of the environment
is known a priori. Therefore our approach is applicable also in cases where very little is
known about the environment and where the structure of the environment may change.

2 System Description

Our approach to mobile robot path selection consists of a general world model and of
a memory that stores the path traveling experiences for later use. The memory is a
casebase. The casebase stores the paths traversed in the past in a form of cases.

The world model is a map that permits path planning. Since in a dynamic envi-
ronment the robot is not able to model all the aspects of its surrounding, the map is
always more or less imprecise.

Figure 1 captures the bottom line of this approach. The global planner receives
tasks from the user. The tasks are requests to move to a specific point from its present
location. The global planner has a map of the environment that represents only the
very general geometry of the environment and the locations of the target points. The
presence and location of dynamic obstacles in the environment are unknown. Given a
new task, the global planner can either find a new solution by using a map-based path
planner or re-use one of the earlier found paths from the casebase. The path planned
by the global planner is presented to the low-level planning and execution unit that is
responsible for task decomposition (if necessary), replanning, localisation, sensor data
processing and actuator control.

The objective of the global planner is to choose the best travel path according to
some criterion (e.g. time, distance, safety). Case-based reasoning permits the robot to
remember and learn from its past experiences. The robot will adapt to the changes in
the dynamic environment and learn to use paths that are better.

� � � � �
� � � � �
� � � � �
� � � � �

User interface

Global planner Casebase

localisation unit
Navigation and

Map

Local planner

Actuators Sensors

Figure 1: General overview of path planning

2.1 Case-based Reasoning

Case-based reasoning (CBR) solves new problems by adapting previously successful
solutions to similar problems. The past experiences are stored in a casebase which is
managed by applying database techniques. To facilitate the case retrieval the cases in
a casebase are indexed. When a new problem occurs, the indices are extracted from
its features and used to find matching cases in a casebase. If more than one matching
case is found the candidate cases are evaluated to find the most suitable one.

Unless the retrieved case is a close match, the solution will probably have to be
modified before using it for problem solving. If the modified case is found to be
successful, it produces a new case which is stored in a casebase. Thus, in case-based
reasoning, learning is through accumulation of new cases.

In the approach described in this paper, the problem is to find the best path from
a given starting point to a given goal. The solution to the problem is a path to that
goal. The outcome of the solution is the cost of the path that reflects how easy it was
to follow that path. If the robot traverses a path repeatedly, the cost of the path is
updated after every traversal. The cost will then reflect the average characteristics of
that path. By choosing the path with the lowest cost, the robot can reduce collision
risk and minimise travel distance.

Path planning by means of CBR is described in [4, 5, 6, 7]. These approaches
are used for planning in static environments. PRODIGY/ANALOGY uses CBR for
dynamic path planning in the city of Pittsburgh [8]. Unlike these studies our study

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

Figure 2: A grid map

does not use a graph-based map for path planning but a grid map that permits more
detailed path planning, offers more alternatives to path-find problems and does not
presume a rigid structure of the environment.

Since there can be several alternative paths between given target points, every
problem in the casebase can have several solutions. To find the most similar problem
from the casebase we use the nearest neighbor retrieval. i.e. the robot will look for a
case where the start and goal points are as close as possible to the current problem.

However, to analyse our casebase, we assume that our casebase consists of only
one problem having many solutions. This will be the problem having the greatest
number of possible solutions, namely, the problem of traversing between the diago-
nally opposite corners. It follows from our problem formalisation that all other path
planning problems are subproblems of this most general one. Our objective is to seed
the casebase with all different solutions to the current problem according to our simi-
larity measure.

2.2 Path Planning

In the context of mobile robotics, path planning means finding a collision-free path
from start to goal. The method of path planning depends on the world model of the
robot (see e.g. [9] for an overview of intelligent robotics and path planning tech-
niques).

In this work we use a common world representation in mobile robotics – a grid
map. A grid map represents the world as a grid of small cells. Some cells that are
known to contain static obstacles can be marked as occupied. In our previous work
we have developed a modification of a heuristic algorithm that due to random pertur-
bations on the map generates many alternative solutions to a single find-path problem.

Figure 2 shows a grid map. Black cells on the map represent static obstacles. The
paths form start to goal are generated with our heuristic algorithm.

There are two problems associated with our method of path generation. First, it
cannot be guaranteed that it would theoretically find all the possible paths from the
given start to the given goal.

Second, even on a relatively small grid the amount of different paths between

specified target points is overwhelming. At the same time most of the paths differ
form each other only by a very small amount. To overcome this problem, we have
defined a similarity metrics (see Section 3). With the help of similarity metrics we can
treat paths that differ very little to be the same.

The paths that the robot has followed are stored in the casebase. We here take an
advantage of our similarity metrics and store only cases (e.g. paths) that are different
from each other. This remarkably reduces the size of the casebase.

In our experiments we have started with an empty casebase. If a necessary solu-
tion is not in the casebase or its quality is not good enough, a new solution can be
generated using map-based path planning. We have tested our approach intensively
both in simulated environments and with real robots. The tests show that the robot
is very quickly able to adapt to the changes in the environment and learn to use less
risky paths. All the tests indicate that the size of the casebase is very small even if the
environment is large.

However, the tests also point to the shortcomings of our approach. Our path plan-
ning algorithm modifies the map to generate new random solutions. During the tests
it was observed that many paths that the algorithm generates are very similar to each
other. The robot spent much time waiting for a different solution to be found. It also
appeared that sometimes the robot got trapped to the local minima – some paths that
would have been easy to follow where never generated.

2.3 Seeding the Casebase

To overcome these disadvantages of our current implementation we investigate the
possibility to seed the robot’s casebase with all possible solutions to the current prob-
lem. Theoretically, the amount of possible paths from a given start to a given goal
is enormous. Many of them differ from each other only by a very small amount and
most of them are infeasible from the point of view of path following (i.e. unnecessar-
ily crooked or long). We therefore have constrained the set of paths that are used in
the casebase.

To justify our constraints we have to explain some details of robot path following.
In a real life, a robot is never able to follow precisely the path that it has planned.
It will always drift away form its course because of localisation errors, sensor noise
and imprecision of mechanical linkages. In dynamic environments, it also has to drive
around unexpected obstacles. The latter can significantly deviate the robot from its
course. Therefore our similarity metrics is based on the deviation of paths. We con-
sider paths that deviate much from each other to be different. On the contrary, paths
that lead through the approximately same regions of the map are similar. Our similar-
ity metrics is defined in the next section.

Mobile robots use obstacle avoidance routines and run-time re-planning to negoti-
ate dynamic obstacles. In our experiments with real robots we have observed that the
planned path and the eventually followed path often differ significantly because re-
planning around obstacles and localisation errors sometimes lead the robot in a com-
pletely other direction than it was heading first. We therefore found that the most
practical measure of the traversability of a path is the similarity between the planned
and the actually followed path. The better the robot was able to follow the path that it

planned the better the path is. The secondary measure that we have used to evaluate
paths is the time of path following. This measure is also very practical because mobile
robots are normally expected to fulfill their assignment as fast as possible.

It therefore seems to be feasible to seed the casebase with paths that are rather short
and straight. These paths are most likely to satisfy our criteria of good traversability.
Short paths are most likely to lead the robot faster to the goal. Too curved paths are
technically too hard to follow (and therefore it also takes longer time to reach the
goal). We have therefore constrained our set of paths to those allowing only right and
up moves. It will exclude all the unnecessarily long and complex paths (actually all
paths having back turns).

The drawback of this condition is that the robot would not operate efficiently in a
maze-like environment. However, most of real environments are not mazes. Another
shortcoming, though not so severe, is the occurrence of the zigzagged paths since we
allow only up and right moves. This is typical to all grid-based path planning methods
and mobile robots usually use path relaxation techniques to smoothen the path at run-
time.

In the rest of the paper we address two problems of casebase management. The
first question is whether it is possible to seed the casebase with a relatively low number
of different cases so that the whole solution space will be covered. The answer to this
question is affirmative.

The second question is whether it is possible to run the system without managing
the casebase. For instance, the robot may generate the potential solutions randomly
with the only condition that the paths in the casebase should not be too similar. The
answer to this question is negative. The maximal number of different solutions may
become too high, the casebase grows too large and the robot looses its ability to man-
age the whole base. Therefore, less useful solutions have to be forgotten. In the next
sections we will formalise the problem, define a similarity metrics and prove lower
and upper bounds for the cardinality of the casebase.

3 Basic Definitions

Let [a, b], a ≤ b ∈ Z denote the set{a, a+1, . . . , b}. We will consider a robot moving
on a rectangular grid[0,m]× [0, n] allowing only right and up moves. The robot starts
from the point(0, 0) (which we consider to be the lower left corner of the grid) and it
must reach the point(m,n).

Definition 1 By apathon the grid[0,m]× [0, n] we mean a sequence of grid points

((x0, y0), (x1, y1), . . . , (xm+n, ym+n))

such that

1. x0 = y0 = 0, xm+n = m, ym+n = n;

2. for eachi ∈ [0,m + n− 1], the condition

(xi = xi+1 & yi + 1 = yi+1) ∨ (xi + 1 = xi+1 & yi = yi+1)

holds.

The set of all paths on the grid is denoted byPm,n

Next we define a notion of similarity between the paths. Intuitively speaking, we
say that two paths taken by a robot are similar if they do not diverge from each other
too much. In order to express this idea, we need to define an appropriate distance
measure first. There are several possibilities for such a definition, in this paper we use
the following one.

Definition 2 We say that thegrid distancebetween a pointc1 ∈ [0,m]× [0, n] and a
pathP2 ∈ Pm,n is the quantity

dg(c1, P2) = min
c2∈P2

{d(c1, c2)}

whered(c1, c2) denotes theR2
∞-distance between the pointsc1 andc2, i.e. d(c1, c2) =

max{|x1 − x2|, |y1 − y2|}, wherec1 = (x1, y1) andc2 = (x2, y2).
Bygrid distanceof the pathsP1, P2 ∈ Pm,n we mean the quantity

dg(P1, P2) = max
c1∈P1

{dg(c1, P2)}.

The maxmin construction ofdg is generally known asdirected Hausdorff distance
(see e.g. [10]). It is not the case that for any inner metricsd the directed Hausdorff
distance is a real distance since it mostly fails to be symmetric; such a problem oc-
curs, for instance, ifd is the Euclidean distance. Several approaches can be taken
in order to fix the problem, most commonly one replaces the directed distance by
max{dg(P1, P2), dg(P2, P1)} [10] or evendg(P1, P2) + dg(P2, P1) [11].

In this paper, however, we show that for our very special choice of base set and
inner metrics, the directed Hausdorff distance gives rise to a real distance.1

Lemma 1 The pair(Pm,n, dg) is a metric space.

Proof. First we note thatdg(P1, P2) is always a non-negative integer. The identity
and triangle inequality axioms of metric space are easy to check (in fact, they hold for
every directed Hausdorff distance).

In order to prove symmetry, we first prove that the following assertion holds true
for every two pathsP1, P2 ∈ Pm,n:

∀c1 ∈ P1 ∃c2 ∈ P2 [dg(c1, P2) = dg(c2, P1)]. (1)

Take a pointc1 ∈ P1. Note first that ifc1 ∈ P2, then we havedg(c1, P2) = 0 and we
can takec2 = c1 to satisfy (1).

If c1 6∈ P2, then assume w.l.o.g. that the pathP2 runs above the the point
c1. Take the closed ballB with centerc1 and radiusdg(c1, P2) in metric space
([0,m] × [0, n], d) whered is the R2

∞-distance as in Definition 2. (Note that this

1One may argue that the EuclideanR2 metric is better suited for practical purposes than theR2
∞ metric.

On the other hand, we feel that working on the (in fact discrete) grid, theR2
∞ metric is actually more

natural. Besides that, the norms corresponding to the two distance measures are equivalent and do not differ
more than

√
2 times.

ball actually looks like a square with edge length2dg(c1, P2) and centerc1.) We see
from Definition 2 that no interior point ofB belongs to the pathP2, but some of the
boundary points do. In particular, the upper left corner ofB must always belong to
P2. Now taking this point asc2 we see that no point ofP1 can be closer toc2 thanc1

is, hencedg(c1, P2) = dg(c2, P1) as was required to prove (1).
Now let c̄1 ∈ P1 be such a point thatdg(c̄1, P2) = max

c1∈P1
{dg(c1, P2)}. Then by

(1) we can choose a pointc̄2 ∈ P2 such thatdg(c̄1, P2) = dg(c̄2, P1). Thus

dg(P1, P2) = dg(c̄1, P2) = dg(c̄2, P1) ≤ max
c2∈P2

{dg(c2, P1)} = dg(P2, P1).

Similarly we prove thatdg(P2, P1) ≤ dg(P1, P2) and hencedg(P1, P2) = dg(P2, P1).
2

In the light of Lemma 1, the next definition is just a utilisation of a standard defi-
nition of a (closed) ball in metric space.

Definition 3 By aball with centerP and radiusδ in the space(Pm,n, dg) we mean
the set

B(P, δ) = {P ′ ∈ Pm,n : dg(P, P ′) ≤ δ}.

Denotingπ (m,n) := |Pm,n|, we have the following standard result with the
standard one-line proof.

Lemma 2 π (m,n) =
(

m + n

m

)
.

Proof. Each path containsm + n steps, out of whichm are made rightwards.2

4 Problem Statement

We will be looking at the following covering problem in the metric space(Pm,n, dg).

Problem. For a given integerδ and grid dimensionsm andn, find a lower and upper
estimate to the cardinality of a subsetS ⊆ Pm,n such that the following conditions
hold. ⋃

P∈S

B(P, δ) = Pm,n (2)

∀P ′ ∈ S

P ′ 6∈
⋃

P∈S\{P ′}

B(P, δ)

 (3)

The lower estimate corresponds to the question about efficient covering. In this set-
ting we ask what is the minimal number of pre-planned paths required in the casebase
in order embrace all the possible paths with deviation not exceeding the thresholdδ.

The upper estimate, on the contrary, deals with the worst case. In this case we
consider a process of random path generation and ask what is the largest path set that
can occur if we every time only include new paths that deviate more than byδ from
all the previously recorded paths.

5 Lower Bound

Theorem 1 For everyδ ∈ N and every subsetS ⊆ Pm,n satisfying the properties (2)
and (3), the inequality

|S| ≥ π

(⌊
m

2δ + 1

⌋
,

⌊
n

2δ + 1

⌋)
(4)

holds. Evenmore, there exists such a setS that the properties (2) and (3) are satisfied
and equality holds in inequality (4).

Proof. First we consider a special case whenm,n
... 2δ + 1 and a subsetT ⊆ Pm,n

defined by the following condition:

T = {((x0, y0), . . . , (xm+n, ym+n)) ∈ Pm,n : ∀i ∈ [0,m+n] xi

... 2δ+1∨yi

... 2δ+1}.

We note that forP1 6= P2 ∈ T the inequalitydg(P1, P2) ≥ 2δ + 1 holds. Hence,
no two different elements of the setT can be contained in the same ball of radiusδ.
Consequently, when covering the spacePm,n with balls of radiusδ and with centers
in the elements ofS (as required by condition (2)), there must be at least the same
number of balls as there are elements in the setT . But the paths ofT are essentially

grid paths on a grid with dimensions
m

2δ + 1
× n

2δ + 1
(and grid squares of dimensions

(2δ + 1)× (2δ + 1)), hence

|T | = π

(
m

2δ + 1
,

n

2δ + 1

)
and the inequality stated in the theorem is proven for this special case.

In order to prove the inequality in the casem,n 6
... 2δ + 1, simply note that it is

always possible to consider a subgrid of dimensions

(2δ + 1)
⌊

m

2δ + 1

⌋
× (2δ + 1)

⌊
n

2δ + 1

⌋
and a set of (partial) paths defined in a similar manner as in the case of the setT . The
argument presented above can then be easily adopted to this case as well.

The existence of a setS providing equality will also be proven for the casem,n
...

2δ +1 first. We will prove that we can takeS = T whereT is the set defined above. It
has the right cardinality and the condition (3) is obvious. It remains to prove that the
condition (2) also holds. In order to do so, we have to show that every possible path
from the setPm,n belongs to some ballB(P ′, δ), whereP ′ ∈ T .

Let P ∈ Pm,n be any path in the grid. We divide the grid to(2δ + 1)× (2δ + 1)
squares and construct a new pathP ′ so that

1. it goes along the edges of the big squares (thenP ′ ∈ T); and

2. for every pointc1 on the pathP there exists a pointc2 on the pathP ′ such that
d(c1, c2) ≤ δ (thendg(P, P ′) ≤ δ).

We will follow the pathP through big squares and show for each case which
edges or vertices of the big squares must be taken into the pathP ′. We distinguish
the cases by location of start- and endpoints of the pathP in a big square. There are
four possible regions for start- and endpoints, each containing two segments of length
δ and they are situated in four corners of a big square. There are 8 possible cases and
the corresponding parts of the pathP ′ are for all the cases shown in Figure 3.

Figure 3: Construction of pathP ′ from pathP

Generalising this existence proof to the casem,n 6
... 2δ + 1 is once again easy. As

done above, we choose a subgrid with dimensions

(2δ + 1)
⌊

m

2δ + 1

⌋
× (2δ + 1)

⌊
n

2δ + 1

⌋
,

but we have to be a bit more careful. Namely, the subgrid must be located so that
no distance between an edge of the subgrid and the corresponding edge of the whole
grid is not bigger thanδ in order to embrace all the possible paths in the grid. Since
the largest remainder ofm andn when divided by2δ + 1 is 2δ this locating can be
done. It only remains to pad the paths given by the setT in the subgrid with any
subpath joining the lower left corner of the whole grid with the lower left corner of the
subgrid; and similarly for the upper right corners.2

6 Upper Bound

Theorem 2 For everyδ ∈ N and every subsetS ⊆ Pm,n satisfying the properties (2)
and (3), the inequality

|S| ≤

π

(⌊m

δ

⌋
,
⌊n

δ

⌋)
, if δ is odd

π

(⌊
m

δ + 1

⌋
,

⌊
n

δ + 1

⌋)
, if δ is even

holds. Evenmore, there exists such a setS that the properties (2), (3) and

|S| = π

(⌊
m

δ + 1

⌋
,

⌊
n

δ + 1

⌋)
are satisfied.

Proof. The proof of this theorem is very similar to the proof of Theorem 1. First we

consider the case whenδ is even andm,n
... δ. We define the setT as follows:

T = {((x0, y0), . . . , (xm+n, ym+n)) ∈ Pm,n : ∀i ∈ [0,m+n] xi

... δ+1∨yi

... δ+1}.

Assume that we also have a setS corresponding to the conditions (2) and (3).
Similarly to the proof of Theorem 1, one can show that for every pathP ∈ S there

exists a pathP ′ ∈ T such thatdg(P, P ′) ≤ δ

2
. If for two different pathsP1, P2 ∈ S

the corresponding pathP ′ ∈ T is the same, we have

dg(P1, P2) ≤ dg(P1, P
′) + dg(P ′, P2) ≤

δ

2
+

δ

2
= δ,

a contradiction with the condition (3). Hence, the setS cannot have more elements
than the setT does. As in Theorem 1, we have

|T | = π

(
m

δ + 1
,

n

δ + 1

)
and the inequality stated in the theorem is proven in this case.

In order to generalise the result for the casem,n 6
... δ + 1 as well, we once again

consider a subgrid of dimensions

(δ + 1)
⌊

m

δ + 1

⌋
× (δ + 1)

⌊
n

δ + 1

⌋
situated in the center of them × n grid. We also note that choosingS = T gives the
required set to achieve equality in the theorem’s inequality.

The proof for the case whenδ is odd is completely analogous. The only difference
arises from the fact that in this case we can not require any pathP to have a path in

the (appropriately chosen) setT at most of distance
δ

2
away, but we have to use the

value
δ − 1

2
instead.2

7 Comparison of Approaches

To demonstrate the advantage of the current approach compared to our previous heuris-
tic one we use parameters from one of our previous real-world experiments. For a grid
of 51 × 67 cells and with the similarity measureδ = 5 the size of the seed casebase
would be

π

(⌊
51

2 · 5 + 1

⌋
,

⌊
67

2 · 5 + 1

⌋)
=

(
4 + 6

4

)
= 210

cases.
At the same time, if the heuristic path generation algorithm was used, the new

generated paths never covered the solution space although the experiments consisted
of more than 500 runs. Another set of our previous experiments, 20 000 runs in a
simulated environment, gave a similar result. Moreover, the heuristic algorithm often
generated random paths that were similar to old paths already stored in the casebase.
Roughly quarter of the new generated paths were innovative ones, i.e. dissimilar to all
paths in the casebase.

The advantage of the new approach is thus twofold:

1. It generates the seed casebase that is guaranteed to cover the paths space of the
robot while the previous heuristic approach did not give such a guarantee.

2. It speeds up learning because all paths are stored in the seed casebase. Un-
like the heuristic approach, the robot does not spend time on looking for new
innovative solutions.

However, ifδ is reduced, the size of the seed casebase increases rapidly. Forδ = 2
the seed casebase would have to contain over a million cases already.

In practice, a robot would never try all the possible solutions. When it has found
a solution that is good enough, it reduces exploration. When the cost of the current
path increases, it starts exploring new possibilities again. The seed casebase gives a
theoretical guarantee that none of the possible solutions remains undiscovered.

The idea of proving the upper bound was to check if we could show the maximum
number of possible cases in the casebase. It would give a confidence to the casebase
designer that the casebase would not grow bigger than a certain feasible amount. Un-
fortunately, the upper bound of the casebase is too high. For an example given above
(m = 51, n = 67, δ = 5), the casebase would contain

π

(⌊
51
5

⌋
,

⌊
67
5

⌋)
=

(
10 + 13

10

)
= 1144066

cases.
Thus, a casebase maintenance strategy that keeps the size of the casebase under

control is still needed. In our previous work, we have used forgetting strategies based
on the quality of a solution. For example, when the learning process is success-driven
the robot remembers only best solutions. When learning is failure-driven, the robot
remembers the worst solutions. The casebase is then only used to verify whether a
new solution generated from scratch is good enough. Our experiments have not shown
the superiority of one of the forgetting strategies. It rather seems that the casebase
management technique strongly depends on the characteristics of the environment and
the problem at hand.

8 Conclusions and Future Work

Our work was motivated by the fact that our previous heuristic technique was not
able to generate all possible different solutions to the current findpath problem. We
therefore investigated the possibility to create a seed casebase that covers the whole
solution space of the robot.

In this paper, we have proven the lower and upper bound of the solution space.
The proof of the lower bound shows that it is realistic to seed the casebase with a
solution set that contains a close match to every possible solution path. This would
give a guarantee that none of the paths theoretically remains undiscovered.

At the same time, the proof of the upper bound indicates that it is unrealistic to
save all possible different solutions to the casebase. In order to keep the casebase
constrained, it has to be revised at runtime.

One of the possible solutions to the casebase explosion can be based on the fol-
lowing observation. Although our casebase contains paths distant from each other in
the sense of grid distance, many paths still overlap significantly. It would make the
casebase much smaller, if we only would try to cover all the fragments of the grid with
the paths instead of traversing all the paths themselves. The question how well this
can be done is a subject for future research.

It is also important to emphasize that the examples above represent the number
of solutions to only one problem. This problem is the most general one – traversing
between the diagonally opposite corners. Other problems will be subproblems of this
one and will require a smaller number of solutions to cover their solutions spaces. In
practical mobile robot applications there are usually rather few target points (unless it
is a mapping or exploration problem). In our future research we also intend to analyse
the dependency between the number of solutions and the size of the casebase.

We also intend to investigate some different similarity measures to reduce the size
of the solutions space even more. One possibility is to define similarity as the size of
the area surrounded by the paths.

References

[1] M.Kruusmaa. Repeated Path Planning for Mobile Robots in Dynamic Environ-
ments. Ph.D.Thesis. Chalmes Univeristy of Technology, Gothenburg, Sweden,
2002.

[2] H.Hu, M.Brady. Dynamic Global Path Planning with Uncertainty for Mobile
Robots in Manufacturing.IEEE Transactions on Robotics and Automation.
Vol.13, No.5, October 1997, pp.760-767. 1997.

[3] K.Z.Haigh. M.M.Veloso. Planning, Execution and Learning in a Robotic Agent.
AIPS-98pp.120–127, June 1998.

[4] C.Vasudevan, K.Ganesan. Case-based Path Planning for Autonomous Underwa-
ter Vehicles.Proc. of 1994 IEEE Int. Symposium on Intelligent Control,pp.160–
165, August 16-18, 1994.

[5] A.K.Goel, K.S.Ali, M.W.Donnellan, A.Gomex de Silva Garza, T.J.Callantine.
Multistrategy Adaptive Path Planning.IEEE Expert, Vol.9, No.6, Dec.1994,
pp.57–65. 1994.

[6] S.Fox, D.B.Leake. Combining Case-based Planning and Introspective Reason-
ing. Proc. of the Sixth Midwest Artificial Intelligence and Cognitive Science So-
ciety Conference,Carbondale, IL, April 1995.

[7] L.K.Branting, D.W.Aha. Stratified Case-based Reasoning: Reusing Hierarchical
Problem Solving Episodes.Proc. of the Fourteenth International Joint Confer-
ence on Artificial Intelligence,Montreal, Canada, August 20–25, 1995.

[8] K.Z.Haigh, M.Veloso, Route Planning by Analogy.Case-Based Reasoning Re-
search and Development, Proc. of ICCBR-95,pp.169–180. Springer-Verlag,
1995.

[9] R.R.Murphy. Introduction to AI Robotics. The MIT Press, 2000.

[10] D. Huttenlocher, D. Klanderman and A. Rucklige. Comparing images using the
Hausdorff distance. InIEEE Transactions on Pattern Analysis and Machine In-
telligence, Vol.15, No.9, pp.850–863, September 1993.

[11] E. Belogay, C. Cabrelli, U. Molter, and R. Shonkwiler. Calculating the Haus-
dorff distance between curves.Information Processing Letters, 64(1):17–22, 14
October 1997.

