
Serial Model for Attack Tree Computations

Aivo Jürgenson1,2, Jan Willemson3

1 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia
aivo.jurgenson@eesti.ee

2 Elion Enterprises Ltd, Endla 16, 15033 Tallinn, Estonia
3 Cybernetica, Aleksandri 8a, Tartu 51004, Estonia

jan.willemson@gmail.com

Abstract. In this paper we extend the standard attack tree model by
introducing temporal order to the attacker’s decision making process.
This will allow us to model the attacker’s behaviour more accurately,
since this way it is possible to study his actions related to dropping some
of the elementary attacks due to them becoming obsolete based on the
previous success/failure results. We propose an efficient algorithm for
computing the attacker’s expected outcome based on the given order
of the elementary attacks and discuss the pros and cons of consider-
ing general rooted directed acyclic graphs instead of plain trees as the
foundations for attack modelling.

1 Introduction

Attack tree (also called threat tree) approach to security evaluation is
several decades old. It has been used for tasks like fault assessment of
critical systems [1] or software vulnerability analysis [2, 3]. The approach
was first applied in the context of information systems (so-called threat
logic trees) by Weiss [4] and later more widely adapted to information
security by Bruce Schneier [5]. We refer to [6, 7] for good overviews on
the development and applications of the methodology.

Since their first introduction, attack trees have been used to describe
attacks against various real-world applications like Border Gateway Pro-
tocol [8], SCADA protocols [9] and e-voting infrastructures [10]. Attack
trees have found their place in computer science education [11] and several
support tools like AttackTree+4 and SecurITree5 have been developed.

Early approaches to attack tree modelling were mostly concerned with
just categorising the attacks [8] or modelling the attacker’s behaviour by
one specific parameter of the attacks like the cost, difficulty or severity [5,

4 http://www.isograph-software.com/atpover.htm
5 http://www.amenaza.com/

9, 12]. A substantial step forward was taken by Buldas et al. [13] who in-
troduced the idea of game-theoretic modelling of the attacker’s decision
making process based on several interconnected parameters like the cost,
risks and penalties associated with different elementary attacks. This ap-
proach was later refined by Jürgenson and Willemson [14, 15] and applied
to the analysis of the security of several e-voting solutions by Buldas and
Mägi [10].

So far, practically all the research in the field of attack trees has con-
centrated on what one could call a parallel model [4, 5, 3, 8, 9, 16, 12–14,
10, 15]. Essentially, the model assumes that all the elementary attacks take
place simultaneously and hence the attacker’s possible decisions based on
success or failure of some of the elementary attacks are ignored. How-
ever, as noted already in [15], this model is unrealistic. In practice, the
attacker is able to order his actions and try different alternative scenarios
if some others fail or to stop trying altogether if some critical subset of
elementary attacks has already failed or succeeded. Not risking with the
hopeless or unnecessary attempts clearly reduces the amount of potential
penalties and hence increases the attacker’s expected outcome.

The main contribution of this paper is to surpass this shortcoming
by introducing what one could call a serial model for attack trees. We
extend the basic parallel model with temporal order of the elementary
attacks and give the attacker some flexibility in skipping some of them or
stopping the attack before all of the elementary attacks have been tried.
The other contribution is a generalisation of the attack tree approach to
accommodate arbitrary rooted directed acyclic graphs, which will enable
us to conveniently ensure consistency of our computations in the general
framework proposed by Mauw and Oostdijk [12].

The paper is organised as follows. In Section 2 we first briefly review
the basic multi-parameter attack tree model. Sections 3 and 4 extend it by
introducing attack descriptions based on general Boolean functions and
temporal order of elementary attacks, respectively. Section 5 presents an
efficient algorithm for computing the attacker’s expected outcome of the
attack tree with the predefined order of leaves. Finally, Section 6 draws
some conclusions and sets directions for further work.

2 The Attack Tree Model

Basic idea of the attack tree approach is simple – the analysis begins by
identifying one primary threat and continues by dividing the threat into
subattacks, either all or some of them being necessary to materialise the

primary threat. The subattacks can be divided further etc., until we reach
the state where it does not make sense to divide the resulting attacks any
more; these kinds of non-splittable attacks are called elementary attacks
and the security analyst will have to evaluate them somehow. During the
splitting process, a tree is formed having the primary threat in its root
and elementary attacks in its leaves. Using the structure of the tree and
the estimations of the leaves, it is then (hopefully) possible to give some
estimations of the root node as well. In practice, it mostly turns out to be
sufficient to consider only two kinds of splits in the internal nodes of the
tree, giving rise to AND- and OR-nodes. As a result, an AND-OR-tree is
obtained, forming the basis of the subsequent analysis.

The crucial contribution of Buldas et al. [13] was the introduction
of four game-theoretically motivated parameters for each leaf node of
the tree. This approach was later optimised in [15], where the authors
concluded that only two parameters suffice. Following their approach, we
consider the set of elementary attacks X = {X1,X2, . . . ,Xn} and give
each one of them two parameters:

– pi – success probability of the attack Xi,

– Expensesi – expected expenses (i.e. costs plus expected penalties) of
the attack Xi.

Besides these parameters, there is a global value Gains expressing the
benefit of the attacker if he is able to materialise the primary threat.

In the parallel model of [15], the expected outcome of the attacker is
computed by maximising the expression

OutcomeS = pS · Gains −
∑

Xi∈S

Expensesi (1)

over all the assignments S ⊆ X that make the Boolean formula F , repre-
sented by the attack tree, true. (Here pS denotes the success probability
of the primary threat.) Like in the original model of Buldas et al. [13],
we assume that the attacker behaves rationally, i.e. he attacks only if
there is an attack scenario with a positive outcome. The defender’s task
is thus achieving a situation where all the attack scenarios would be non-
beneficial for the attacker.

Our aim is to develop this model in two directions. In Section 3 we
will generalise the attack tree model a bit to allow greater flexibility and
expressive power of our model, and in Section 4 we will study the effects
of introducing linear (temporal) order to the set of elementary attacks.

3 Attack Descriptions as Monotone Boolean Functions

Before proceeding, we briefly discuss a somewhat different perspective
on attack tree construction. Contrary to the standard top-down ideology
popularised by Schneier [5], a bottom-up approach is also possible. Say,
our attacker has identified the set of elementary attacks X available to
him and he needs to figure out, which subsets of X are sufficient to mount
the root attack. In this paper we assume that the set of such subsets is
monotone, i.e. if some set of elementary attacks suffices, then so does any
of its supersets. This way it is very convenient to describe all the successful
attacks by a monotone Boolean function F on the set of variables X .

Of course, if we have constructed an attack tree then it naturally
corresponds to a Boolean function. Unfortunately, considering only the
formulae that have a tree structure is not always enough. Most notably,
trees can not handle the situation, where the same lower-level attack is
useful in several, otherwise independent higher-level attacks, and this is
clearly a situation we can not ignore in practical security analysis.

Another shortcoming of the plain attack tree model follows from the
general framework by Mauw and Oostdijk [12]. They argue that the se-
mantics of an attack tree is inherently consistent if and only if the tree
can be transformed into an equivalent form without changing the value
of the expected outcome. When stating and proving their result, they
essentially transform the underlying Boolean formula into a disjunctive
normal form, but when doing so, they need to introduce several copies
of some attacks, therefore breaking the tree structure in favour of a gen-
eral rooted directed acyclic graph (RDAG). Since AND-OR-RDAGs are
equivalent to monotone Boolean functions, there is no immediate need to
take the generalisation any further.

Thus it would be more consistent and fruitful not to talk about attack
trees, but rather attack RDAGs. On the other hand, as the structure of
a tree is so much more convenient to analyse than a general RDAG, we
should still try to stick to the trees whenever possible. We will see one
specific example of a very efficient tree analysis algorithm in Section 5.

4 Ordering Elementary Attacks

After the attacker has selected the set of possible elementary attacks X
and described the possible successful scenarios by means of a monotone
Boolean function F , he can start planning the attacks. Unlike the näıve
parallel model of Schneier [5], the attacker has a lot of flexibility and

choice. He may try some elementary attack first and based on its suc-
cess or failure select the next elementary attack arbitrarily or even decide
to stop attacking altogether (e.g. due to certain success or failure of the
primary threat). Such a fully adaptive model is still too complicated to
analyse with the current methods, thus we will limit the model to be
semi-adaptive. I.e., we let the attacker to fix linear order of some ele-
mentary attacks in advance and assume that he tries them in succession,
possibly skipping superfluous elementary attacks and stopping only if he
knows that the Boolean value of F has been completely determined by
the previous successes and failures of elementary attacks.

The full strategy of the attacker will be the following.

1. Create an attack RDAG with the set of leaf nodes X = {X1,X2, . . . ,Xn}.

2. Select a subset S ⊆ X materialising the primary threat and consider
the corresponding subtree.

3. Select a permutation α of S.

4. Based on the subtree and permutation α, compute the expected out-
come.

5. Maximise the expected outcome over all the choices of S and α.

This paper is mostly concerned with item 4 in the above list, but doing
so we must remember that when building a complete attack analysis tool,
other items can not be disregarded either. Optimisations are possible, e.g.
due to monotonicity there is no need to consider any subsets of attack
suites that do not materialise the primary threat. Even more can be done
along the lines of [15], Section 4.1, but these aspects remain outside of
the scope of the current paper.

Since only one subset S and the corresponding subtree are relevant
in the above step 4, we can w.l.o.g. assume that S = X . The attacker’s
behaviour for permutation α will be modelled as shown in Algorithm 1.

Consider the example attack tree depicted in Figure 1, where we as-
sume α = id for better readability.

The attacker starts off by trying the elementary attack X1. Inde-
pendent of whether it succeeds or fails, there are still other components
needed to complete the root attack, so he tries X2 as well. If it fails, we
see that the whole tree fails, so it does not make sense to try X3 and X4.
If both X1 and X2 have succeeded, we see that it is not necessary to try
X3, since X1 and X3 have a common OR-parent, so success or failure of
X4 determines the final outcome. If X1 fails and X2 succeeds, we need
the success of both X3 and X4 to complete the task; if one of them fails,
we stop and accept the failure.

Algorithm 1 Perform the attack
Require: The set of elementary attacks X = {X1, X2, . . . , Xn}, permutation α ∈ Sn

and a monotone Boolean formula F describing the attack scenarios
1: for i := 1 to n do

2: Consider Xα(i)

3: if success or failure of Xα(i) has no effect on the success or failure of the root
node then

4: Skip Xα(i)

5: else

6: Try to perform Xα(i)

7: if the root node succeeds or fails then

8: Stop
9: end if

10: end if

11: end for

The expected outcome of the attack based on permutation α will be
defined as

Outcomeα = pα · Gains −
∑

Xi∈X

pα,i · Expensesi , (2)

where pα is the success probability of the primary threat and pα,i denotes
the probability that the node Xi is encountered during Algorithm 1. Be-
fore proceeding, we will prove that the expected outcome of Algorithm 1
does not depend on the specific form of the formula F . This essentially
gives us the compliance of our attack tree model in the framework of
Mauw and Oostdijk [12]. Formally, we will state and prove the following
theorem, similar to Proposition 1 in [15].

Theorem 1. Let F1 and F2 be two monotone Boolean formulae such
that F1 ≡ F2, and let Outcome1

α and Outcome2
α be the expected outcomes

obtained running Algorithm 1 on the corresponding formulae. Then

Outcome1
α = Outcome2

α .

Proof. We can observe that Algorithm 1 really does not depend on the
attack description having a tree structure, all the decisions to skip or stop
can be taken based on the Boolean function F . Assume we have already
fixed the results of the elementary attacks Xα(1), . . . ,Xα(i−1). Then we
see that

– the node Xα(i) may be skipped if for all the values of Xα(i+1), . . . ,Xα(n)

we have

F
(

Xα(1), . . . ,Xα(i−1), t,Xα(i+1), . . . ,Xα(n)

)

=

Bribe the
sysadmin

Obtain
encrypted

file

Break into
the system

Steal the
backup

Install the
keylogger

the password
Obtain

company
secrets

Decrypt

&

&

∨

X1 X2 X3 X4

Fig. 1. An example attack tree. The left-to-right ordering of the leaf nodes in the tree
represents the permutation α = id of the set X = {X1, X2, X3, X4}.

= F
(

Xα(1), . . . ,Xα(i−1), f,Xα(i+1), . . . ,Xα(n)

)

,

– there is no need to proceed with Algorithm 1 after the node Xα(i) if
for all the values of Xα(i+1), . . . ,Xα(n) we have

F
(

Xα(1), . . . ,Xα(i−1),Xα(i),Xα(i+1), . . . ,Xα(n)

)

= t

or
F

(

Xα(1), . . . ,Xα(i−1),Xα(i),Xα(i+1), . . . ,Xα(n)

)

= f .

⊓⊔

Thus, our serial model for attack trees follows the guidelines given in
Section 3 and it really is safe to talk about Boolean functions describing
the attack scenarios.

Next we will show formally that introducing order to the elementary
attacks really increases the attacker’s expected outcome. Comparing (2)
to (1) we get the following theorem.

Theorem 2. Let F be a monotone Boolean function on n ≥ 2 variables
describing the attack scenarios. Let Outcomeα be defined by (2) and let
OutcomeX be defined by (1) for S = X . Then we have

Outcomeα ≥ OutcomeX . (3)

If for all the elementary attacks Xi (i = 1, . . . , n) one also has Expensesi >

0, then strict inequality holds in (3).

Proof. First we note that by [15] we can compute the success probability
of the attacker as follows:

pX =
∑

S ⊆ X
F(S := true) = true

∏

Xi∈S

pi

∏

Xj∈X\S

(1 − pj) ,

where F(S := true) denotes evaluation of the Boolean function F , when
all the variables of S are assigned the value true and all others the value
false. This is exactly the total probability of all the successful branches of
Algorithm 1 and thus pX = pα (implying that pα is actually independent
of α). We also have that ∀i pα,i ≤ 1 and hence the inequality (3) follows.

Assume now that for all Xi we have Expensesi > 0. Then in order to
prove that strict inequality holds in (3), we need to show that there exists
such an index i that pα,i < 1. Consider the elementary attack Xα(n) that
the attacker is supposed to try last. If there exists an evaluation of the
Boolean variables Xα(1), . . . ,Xα(n−1) such that

F
(

Xα(1), . . . ,Xα(n−1), t
)

= F
(

Xα(1), . . . ,Xα(n−1), f
)

,

then Xα(n) is superfluous in this scenario and hence pα,n < 1.

If on the other hand we have

F
(

Xα(1), . . . ,Xα(n−1), t
)

6= F
(

Xα(1), . . . ,Xα(n−1), f
)

for all evaluations of Xα(1), . . . ,Xα(n−1), then due to monotonicity of F
we can only have that

F
(

Xα(1), . . . ,Xα(n−1), f
)

= f

and

F
(

Xα(1), . . . ,Xα(n−1), t
)

= t ,

implying F(Y1, . . . , Yn) ≡ Yn. But in this case all the elementary attacks
before the last one get skipped, so pα,1 = . . . = pα,n−1 = 0. ⊓⊔

Thus, introducing ordering of the elementary attacks is guaranteed
to give at least as good a result to the attacker as the routine described
in [15]. In the interesting case, when all attack components have positive
expenses, the attacker’s expected outcome is strictly larger.

5 Computing the Expected Outcome

There are n+1 parameters that need to be computed in order to find the
expected outcome using the formula (2) – the total success probability
pα and the probabilities pα,i that the node Xi is encountered during Al-
gorithm 1. It turns out that there is an efficient algorithm for computing
these quantities provided that the given monotone Boolean function can
actually be described by a tree. In what follows we will also assume that
the tree is binary, but this restriction is not a crucial one.

So let us have an attack tree with the leaf nodes X1, . . . ,Xn and
the corresponding success probabilities pi, i = 1, . . . , n. We will assume
that all these probabilities are independent and consider the permutation
α ∈ Sn. In order to explain the algorithm, we first introduce three extra
parameters to each node Y , namely Y.t, Y.f and Y.u showing the proba-
bilities that the node has been proven to be respectively true, false or yet
undefined in the course of the analysis. Initially, we may set Y.t = Y.f = 0
and Y.u = 1 for all the nodes and the algorithm will work by incremen-
tally adjusting these values, so that in the end of the process we will
have R.t = pα for the root node R. Throughout the computations we will
of course retain the invariant Y.t + Y.f + Y.u = 1 for all the nodes Y ,
hence one of these parameters is actually superfluous. In the presentation
version of the algorithm we will drop the parameter Y.u, even though it
actually plays the central role.

Going back to the high-level description of Algorithm 1, we see that
the most difficult step is step 3, where the attacker is supposed to find out
whether the next elementary attack in his list may have any effect on the
success or failure of the root node. Elementary attack does not have any
effect iff there is a node on the path from that particular leaf to the root
that has already been proven to be true or false. Thus the next elementary
attack should be tried iff all the nodes on this path are undefined – and
this is precisely the event that gives us the required probability pα,i.

Let the path from root R to the leaf Xi then be (Y0 = R,Y1, . . . , Ym =
Xi). Thus, we need to compute the probability

pα,i = Pr[Y0 = u& Y1 = u& . . . & Ym = u] =

= Pr[Y0 = u |Y1 = u , . . . , Ym = u] ·

·Pr[Y1 = u |Y2 = u , . . . , Ym = u] · . . .

. . . · Pr[Ym−1 = u |Ym = u] · Pr[Ym = u] =

= Pr[Y0 = u |Y1 = u] · Pr[Y1 = u |Y2 = u] · . . .

. . . · Pr[Ym−1 = u |Ym = u] · Pr[Ym = u] (4)

The equations

Pr[Yk = u |Yk+1 = u , . . . , Ym = u] = Pr[Yk = u |Yk+1 = u]

hold due to the tree structure of our underlying RDAG and the inde-
pendence assumption of the elementary attacks. In (4) we have Pr[Ym =
u] = Pr[Xi = u] = 1 and all the other probabilities are of the form
Pr[Yk = u |Yk+1 = u]. Hence, we need to evaluate the probability that
the parent node Yk is undefined assuming that one of its children, Yk+1,
is undefined. This probability now depends on whether Yk is an AND-
or OR-node. If Yk is an AND-node and Yk+1 is undefined, then so is Yk,
if its other child Z is either true or undefined, which is the case with
probability Z.t + Z.u = 1−Z.f . Similarly, if Yk is an OR-node and Yk+1

is undefined, then so is Yk, if its other child Z is either false or undefined,
which is the case with probability Z.f + Z.u = 1 − Z.t.

This way, (4) gives an efficient way of computing pα,i assuming that
the current parameters of the internal nodes of the tree are known. Hence,
we need the routines to update these as well. These routines are straight-
forward. If the elementary attack Xi is tried, only the parameters of the
nodes on the path (Ym = Xi, . . . , Y1, Y0 = R) from that leaf to the root
need to be changed. We do it by first setting Ym.t = pi, Ym.f = 1−pi and
Ym.u = 0 and then proceed towards the root. If the node we encounter is
AND-node A with children B and C, we set

A.t = B.t · C.t , (5)

A.f = B.f + C.f − B.f · C.f , (6)

and if we encounter an OR-node A with children B and C, we set

A.t = B.t + C.t − B.t · C.t , (7)

A.f = B.f · C.f . (8)

As noted above, we see that the quantities Y.u are actually never needed
in the computations.

This way we get the full routine described as Algorithm 2.

Algorithm 2 is very efficient. In order to compute the n + 1 necessary
probabilities, it makes one run through all the leaves of the tree and at
each run the path from the leaf to the root is traversed twice. Since the
number of vertices on such a path in a (binary) tree can not be larger
than the number of leaves n, we get that the worst-case time complexity
of Algorithm 2 is O(n2). If the tree is roughly balanced, this estimate

Algorithm 2 Computing the probabilities pα,i

Require: An attack tree with leaf set X = {X1, X2, . . . , Xn} and a permutation
α ∈ Sn

Ensure: The probabilities pα,i for i = 1, 2, . . . , n

1: for all Z ∈ {X1, . . . , Xn} do

2: Z.t := 0, Z.f := 0
3: end for

4: for i := 1 to n do

5: Find the path (Y0, Y1, . . . , Ym) from the root Y0 = R to the leaf Ym = Xα(i)

6: pα,α(i) :=
∏m

j=1
(1 − Zj .a), where Zj is the sibling node of Yj and

a =

{

t, if Yj−1 is an OR-node,
f, if Yj−1 is an AND-node

7: Xα(i).t = pα(i)

8: Xα(i).f = 1 − pα(i)

9: Update the parameters of the nodes Ym−1, Ym−2, . . . , Y0 according to formulae
(5)–(8)

10: end for

drops even to O(n log n). This is a huge performance increase compared
to a näıve algorithm that one could design based on the complete attack
scenario analysis described after Figure 1 in Section 4. We studied the
näıve algorithm and it turns out that it is not only worst-case exponential,
but also average-case exponential [17].

Of course, as noted in Section 4, Algorithm 2 is only one building
block in the whole attack tree analysis. In order to find out the best attack
strategy of the attacker, we should currently consider all the subsets of X
and all their permutations. Optimisation results presented in [14] give a
strong indication that a vast majority of the possible cases can actually be
pruned out, but these methods remain outside of the scope of the current
paper.

6 Conclusions and Further Work

In this paper we studied the effect of introducing a temporal order of
elementary attacks into the attacker’s decision making process together
with some flexibility in retreating of some of them. It turns out that taking
temporal dependencies into account allows the attacker to achieve better
expected outcomes and as such, it brings the attack tree model one step
closer to the reality. This reality comes for a price of immense increase
in computational complexity, if we want to compute the attacker’s exact
outcome by considering all the possible scenarios in a näıve way.

Thus there are two main challenges for the future research. First, one
may try to come up with optimisations to the computational process
and in this paper we showed one possible optimisation which works well
for attack trees. The second approach is approximation. In attack tree
analysis we are usually not that much interested in the exact maximal
outcome of the attacker, but we rather want to know whether it is positive
or negative. This observation gives us huge potential for rough estimates,
which still need to be studied, implemented and tried out in practice.

In this paper we limited ourselves to a semi-adaptive model, where
the attacker is bound to the predefined order of elementary attacks and
may only choose to drop some of them. Fully adaptive case where the
attacker may choose the next elementary attack freely is of course even
more realistic, but it is currently too complicated to analyse. Our model
is also non-blocking in the sense that there are no elementary attacks,
failure of which would block execution of the whole tree. However, in
practice it happens that when failing some attack, the attacker might
get jailed and is unable to carry on. Hence, future studies in the area of
adaptive and possibly-blocking case are necessary.

As a little technical contribution we also discussed the somewhat in-
evitable generalisation of attack trees to RDAGs, but our results also
show that whenever possible, we should still stick to the tree structure.
Possible optimisations of RDAG-based algorithms remain the subject for
future research as well.

7 Acknowledgments

This research was supported by Estonian Science Foundation grant no
7081. The authors are grateful to Margus Niitsoo for his discussions and
helpful comments.

References

1. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. US Gov-
ernment Printing Office (January 1981) Systems and Reliability Research, Office
of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.

2. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems
the Right Way. Addison Wesley Professional (2001)

3. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack modeling for information security
and survivability. Technical Report CMU/SEI-2001-TN-001, Software Engineering
Institute (2001)

4. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th
National Computer Security Conference. (1991) 572–581

5. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s Journal 24(12)
(December 1999) 21–29

6. Edge, K.S.: A Framework for Analyzing and Mitigating the Vulnerabilities of
Complex Systems via Attack and Protection Trees. PhD thesis, Air Force Institute
of Technology, Ohio (2007)

7. Espedahlen, J.H.: Attack trees describing security in distributed internet-enabled
metrology. Master’s thesis, Department of Computer Science and Media Technol-
ogy, Gjøvik University College (2007)

8. Convery, S., Cook, D., Franz, M.: An attack tree for the border gateway protocol.
IETF Internet draft (Feb 2004) Available at http://www.ietf.org/proceedings/
04aug/I-D/draft-ietf-rpsec-bgpattack-00.txt.

9. Byres, E., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabil-
ities in SCADA systems. In: International Infrastructure Survivability Workshop
(IISW’04), IEEE, Lisbon, Portugal. (2004)

10. Buldas, A., Mägi, T.: Practical security analysis of e-voting systems. In Miyaji,
A., Kikuchi, H., Rannenberg, K., eds.: Advances in Information and Computer
Security, Second International Workshop on Security, IWSEC. Volume 4752 of
LNCS., Springer (2007) 320–335

11. Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput.
Small Coll. 23(4) (2008) 124–131

12. Mauw, S., Oostdijk, M.: Foundations of attack trees. In Won, D., Kim, S., eds.:
International Conference on Information Security and Cryptology – ICISC 2005.
Volume 3935 of LNCS., Springer (2005) 186–198

13. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice
of Security Measures via Multi-Parameter Attack Trees. In: Critical Information
Infrastructures Security. First International Workshop, CRITIS 2006. Volume 4347
of LNCS., Springer (2006) 235–248

14. Jürgenson, A., Willemson, J.: Processing multi-parameter attacktrees with esti-
mated parameter values. In Miyaji, A., Kikuchi, H., Rannenberg, K., eds.: Ad-
vances in Information and Computer Security, Second International Workshop on
Security, IWSEC. Volume 4752 of LNCS., Springer (2007) 308–319

15. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter at-
tack trees. In: On the Move to Meaningful Internet Systems: OTM 2008. Volume
5332 of LNCS., Springer (2008) 1036–1051

16. Opel, A.: Design and implementation of a support tool for attack trees. Technical
report, Otto-von-Guericke University (March 2005) Internship Thesis.

17. Jürgenson, A., Willemson, J.: Ründepuud: pooladaptiivne mudel ja ligikaudsed
arvutused (in Estonian). Technical Report T-4-4, Cybernetica, Institute of Infor-
mation Security (2009) http://research.cyber.ee/.

