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This paper studies the practical aspects of adding zero-knowledge proofs of vote correctness 
to Internet voting, specifically to the IVXV system used in Estonia. We discuss various available 
alternatives and present a concrete instantiation based on Bulletproofs together with implementation 
details and benchmarking results. As IVXV currently uses the ElGamal cryptosystem with a 3072-bit 
prime modulus for vote encryption, but Bulletproofs work most efficiently on elliptic curves, a group 
switching solution is also implemented and benchmarked. Despite all the extra work required, our 
solution is very performant and well capable of sustaining the load of votes, even during peak vote 
submission periods.
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Holding regular elections is the cornerstone of a democratic society. However, with citizens becoming 
increasingly mobile in the contemporary world, gathering them in the same geographical location just for one 
day to cast their votes becomes less and less of an option1.

Thus, a reliable remote voting mechanism is needed to ensure the generality of the elections. There are two 
main alternatives here – postal and Internet voting. However, the security properties of postal voting are strictly 
worse than those of vote casting over the Internet (i-voting)2. Thus, building a robust Internet voting system is 
inevitable for a sustainable democratic system (at least in the long run).

Of course, this task presents many challenges. We will need a reliable voter authentication mechanism to 
ensure eligibility and uniformity, and strong encryption to guarantee vote secrecy in transit. At the same time, the 
system must provide means for independent auditing of all the key steps. This is especially challenging because 
some of these requirements (most notably vote secrecy and system auditability) are inherently contradictory3,4.

In this paper, we are going to concentrate on a specific aspect of verifiability, namely checking that the 
plaintext under ballot encryption actually corresponds to a valid candidate identifier. Note that in a typical 
Internet voting scheme, the vote collection server can not just verify the plaintext validity by decrypting the 
ballot as it does not have access to the decryption key.

On the other hand, an invalid plaintext can lead to a number of problems. In the case of homomorphic 
tallying systems, an incorrect ballot may contain double or negative votes. In the case of non-homomorphic (e.g. 
mixnet-based) voting systems, an invalid ballot plaintext can be used in a coercive scenario as a proof of forced 
abstention when the coercer is able to audit the plaintext votes after decryption. In more elaborate scenarios, an 
incorrect ballot plaintext can be used to broadcast sensitive information5 or breach the secrecy of a whole group 
of voters6.

Luckily, plaintext audits can be implemented using zero-knowledge proofs, and this paper proposes an 
instantiation of this technique aimed to be used in real elections. We base our study on the IVXV Internet voting 
system used in Estonia. On one hand, Internet voting has been used in legally binding elections in Estonia since 
20057. Still, even after 19 years of use, the system is missing proofs of ballot plaintext correctness. One of the 
reasons why this issue could have been ignored for so long is that submitting an incorrect ballot is far from being 
trivial. The voter would first have to implement a voting client of their own. While possible in principle, only very 
few actual instances are known8. However, during the 2024 European Parliament elections, for the first time, 
an incorrect ballot actually reached the decryption phase9. Thus, the issue of incorrect ballots can no longer be 
ignored, and this has been the main motivation behind our current paper.

The paper is organised as follows. Section “Background” presents the basic setup of IVXV, followed by a 
description of existing approaches described in Section  "Prior art and existing solutions". Section  "Using 
Bulletproofs for vote correctness" provides the details of our proposed solution and Section “Results” presents 
implementation and benchmarking details. Finally, Section  "Conclusions and future work" draws some 
conclusions and sets directions for future work.
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Background
IVXV was released in 2017 with the aim of improving the individual verifiability of many system components 
of Estonian Internet voting. Notably, the encryption scheme was changed from RSA-OAEP to ElGamal which 
enabled introducing both the proofs of correct decryption and the mixing process10.

The four main parties involved in the scheme are the voter, the collector, the processor, and the tallying 
party11. Since the election organiser performs the tallying, the term organiser is used hereinafter to refer to the 
tallying party. I-voting itself is split into four main phases: setup, voting, processing, and tallying11. The phases 
may not overlap, and each phase begins when the previous stage ends.

During the setup phase, the election-specific key-pair used to encrypt and decrypt the votes cast in the 
election is generated following a (t, n)-threshold scheme. To decrypt the election results, at least t out of n key-
holders must collaborate. In the current IVXV implementation, n = 9 and t = 5. The key holders are seven 
members of the National Electoral Committee and two employees of the State Electoral Office. During a normal 
election process, the key is not reassembled before the tallying phase, and no party is therefore able to decrypt 
arbitrary ballots during the voting and processing phases.

The key generation itself is a public ceremony where registered observers can see that the key is generated 
with the key application on an air-gapped computer with no persistent storage. (In Estonia, anyone can register 
themselves as an observer for an election [12 §194]. Observers can observe parts of the setup, processing and 
tallying phases. There are also designated auditors appointed with the task of auditing all the key processes.)

Voters vote with an official voting client, which enables a voter to select their preferred candidate, encrypt 
the ballot, digitally sign it, and send it to the collector. The collector then returns to the voting client the vote 
qualifying elements, which the client verifies to attest whether the collector performed all required operations.

The collector is a combination of servers which perform multiple tasks. Upon receiving a ballot, the collector 
performs feasible validity checks, such as verifying that the signature on the ballot is valid and that the voter 
is eligible to vote. If the received ballot passes the checks, the collector registers the ballot with an external 
registration service and stores it in the digital ballot box. Finally, the collector returns the registration proof 
which the client verifies to ensure that the collector indeed registered the ballot and did not drop it.

After the voting phase concludes, the processor obtains the digital ballot box and other integrity information 
such as checksums and logs from the collector. In practice, the election organiser also holds the role of the 
processor. Using the processing application, the organiser verifies the integrity of the data supplied by the 
collector, including the integrity of the ballot box and of the signatures on the ballots. The organiser also discards 
votes overridden by re-i-voting and paper voting to keep only eligible i-votes, and strips the digital signatures 
from these votes.

Finally, the organiser uses a re-encryption mix-net to cryptographically anonymise the ballots, since otherwise 
they could still be correlated with the stripped digital signatures. While the processing phase is observable, the 
data generated by the processing application can only be made available for designated auditors working under 
an NDA, since it contains sensitive information. For example, it contains the ID codes of voters and ballot 
timestamps which could be used to determine whether a voter re-voted, hence enabling coercion attacks.

The anonymised encrypted ballots are then transferred to an air-gapped computer for decryption with the 
key application. In addition to decrypting the ballots, the key application also verifies whether the decrypted 
results are valid, tallies the valid results, and generates zero-knowledge proofs of correct decryption. While the 
decryption phase is observable, not all outputs can be made publicly available in this phase either.

The problem arises when a voter has managed to encrypt a value that does not belong to the list of valid 
candidate identifiers. Currently, the vote collector has no way of determining whether the submitted cryptogram 
corresponds to a valid candidate, so a discrepancy would only be detected after decryption. If incorrect identifiers 
would be published as part of the end result, it could ease forced abstention attacks, where the coercer essentially 
forces the voter to encrypt a garbage value instead of a vote. Also, some more elaborate attacks have been used 
in the literature also making use of invalid candidate identifiers5,6.

To address this issue, the current practice in IVXV is to not publish the invalid votes, and these invalid votes 
are not made available to the observers either. As a result, the observers must trust an auditor with verifying that 
the key application did not arbitrarily declare votes as invalid.

It follows that the decryption process currently produces conditional outputs: if no invalid votes appear, 
everything can be made public. Otherwise, only the valid votes and their proofs can be made public. In the 
latter case, the tally is no longer verifiable by third parties, which hinders the universal verifiability of IVXV. A 
mechanism is therefore needed to prevent ballots from reaching the final anonymised ballot box, so that the 
decrypted ballot box could always be matched against the tally results and decryption proofs.

Prior art and existing solutions
The problem of identifying invalid votes before tallying is not new. Mathematical proofs of vote correctness were, 
to the best of our knowledge, first introduced by Cohen and Fischer in 198513. The main idea of the scheme is 
that the voters prepare unmarked ballots which have the encryptions of a ‘yes’ and a ‘no’ value. Voters then prove 
that their ballot has indeed only those values without revealing which is which. To cast a vote, voters select the 
desired value and submit it to the election organiser. Finally, the organiser combines the votes and publishes 
the tally together with a proof that the latter is correct. However, the scheme is not threshold-based, and so the 
organiser can decrypt the individual votes13. Hence, the proofs of correctness are necessary only for the voters to 
verify the consistency of the tally, and not for the organiser, who can simply decrypt votes.

Benaloh and Yung later contributed an improvement to the scheme which addressed this problem by 
splitting the organiser into parties who must collaborate for computing the tally14. Their work also established 
the terminology of marking to designate voters selecting their choice. Benaloh then elaborated on those ideas 
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further and introduced the use of secret sharing for privacy preservation, and of homomorphic encryption and 
tallying for the proof process15.

All three schemes require interactive proofs of vote correctness13–15 and serve to prove the correctness of the 
tally. The schemes therefore do not consider that a party may need to verify vote correctness before any tallying. 
In 1997, Cramer, Gennaro, and Schoenmakers first used zero-knowledge vote correctness proofs in the context 
of ElGamal ciphertexts16. Notably, the proofs are non-interactive (NIZKP), and verifiable without access to any 
secret values, but are still only usable with homomorphically tallied votes. This approach remains the most 
widely used proof system in homomorphic tally voting systems17.

Unlike for voting systems with homomorphic tally18–22, such proofs of correctness are not strictly required 
for the validity of traditional ‘decrypt then tally’ schemes. E-voting systems that do not rely on homomorphic 
tallying therefore often rely on other techniques.

In the Civitas voting scheme18, the re-encryption proofs of Hirt and Sako23 are used to prove that a vote is the 
re-encryption of an existing ciphertext. That is, encryptions for all valid candidates are published by the election 
authority, and the voter proves that their ballot is a re-encryption of one of these votes, without showing which. 
This paradigm was revisited and extended by Joaquim24 who proposed the addition of an additional proof of 
structure. In the scheme, the ballot is obtained from the re-encryptions of multiple options and an additional 
ZKP is used to prove the structure of the combination. The structure proof is based on the proof of knowledge 
of representation by Brands25, but is a novel addition for ElGamal by Joaquim..

In the Kryvos voting system26, zero-knowledge succinct arguments of knowledge (zk-SNARK) are used to 
prove ballot validity. More specifically, the proof system due to Groth27 is used to prove that the committed 
vote shares correspond to the valid choice space. VoteAgain28 uses the zero-knowledge set-membership proofs 
by Bayer and Groth29 to prove that a ballot represents a valid candidate. In the code-based SwissPost voting 
scheme30 developed in Switzerland, voters use codes delivered to them by post to vote for specific candidates. 
A mechanism specific to their code-based implementation is also used to verify that a voter has cast a vote for a 
candidate they are allowed to vote for.

Selection criteria
The desired goal is to prove that an encrypted ballot contains a valid candidate identifier, without leaking 
which candidate the ballot is for. To simplify the problem, the encrypted ballot can be viewed as a binding and 
hiding commitment to a candidate identifier. This enables the use of ‘commit-and-prove’ techniques31, where a 
statement is proven in zero-knowledge relative to a committed value. The stated problem can thus be reduced to 
the general task of proving set membership in zero-knowledge, i.e. that a secret value belongs to a set.

For minimal changes to IVXV, the chosen scheme should be compatible with finite field arithmetic, the (lifted) 
ElGamal cryptosystem, and rely only on the discrete logarithm problem (DLOG). Relying on the DLOG avoids 
introducing new security assumptions into IVXV. It follows that schemes based on the ElGamal cryptosystem 
and Pedersen commitments are preferable over other approaches.

We considered the state of the art zero-knowledge set membership proofs of Benarroch et al.32 and of 
Campanelli, Hall-Andersen, and Kamp33 which are both based on cryptographic accumulators. However, 
both approaches require an underlying commit-and-prove system for either range proofs, or proving arbitrary 
statements using constraint systems. As such, the use of zero-knowledge range proofs (ZKRP) instead of proving 
zero-knowledge set membership (ZKSM) could potentially reduce verification times and proof complexity even 
further, at the cost of losing the flexibility of arbitrary sets.

While tree-based approaches can yield constant-size proofs with fast verification times, they generally 
require the use of general-purpose zk-SNARKS32. As such, they do not satisfy our selection criteria. We also did 
not pursue pairing-based ZKSMs due to the additional hardness assumptions of pairings and since the ZKRP 
approach seemed promising.

Christ et al. summarised the state of the art regarding ZKRPs in a recent survey34, although approaches based 
on lookup arguments35 are not mentioned, and neither are some recent ZKRP protocols36,37 which combine the 
covered techniques in interesting ways. The paper also omits the SwiftRange range proofs38, and Flashproofs39 
by the same authors. There is also the survey by Deng et al.40 which includes a comparative analysis of different 
ZKRP approaches, although it does not contain any benchmarks. It also provides a more complete history of 
range proofs than the survey by Christ et al., while being already a bit out-dated as of 2024.

By discarding hash-based range proofs and general polynomial commitments, the state of the art narrows 
down to Sharp41 and Bulletproofs42 with its potential improvements. While variants of Sharp appear more 
efficient than Bulletproofs34,41 on paper, there are important nuances to consider because of differing security 
guarantees. By default, Sharp only provides ‘relaxed’ soundness, where the prover is only bound to a rational in 
the target range, instead of an integer41. Bulletproofs do not suffer form this limitation. However, Bulletproofs 
can only directly be used to prove that a number belongs to [0, 2n − 1] for some integer n while Sharp works 
for arbitrary ranges. Since Bulletproofs are homomorphic, it is possible to overcome this limitation in practice.

For Sharp, in the interactive setting, satisfying full soundness with a knowledge error of 2−128 would 
require 128 repetitions of the protocol41. In the non-interactive setting, Sharp can achieve full soundness with 
an additional commitment in a hidden order group (class group or RSA group). As such, the performance 
advantages of Sharp over Bulletproofs are likely lost when requiring full soundness. However, this remains 
unclear as Couteau et al. provided computational benchmarks only for their most optimised variant of Sharp, 
which does not make use of the hidden order group commitment.

Additionally, Sharp is a very new protocol, and it does not appear to have been implemented outside of 
research. Couteau et al. have not published their benchmarked Sharp implementation either. The existence of a 
reference and third party implementations of Bulletproofs43,44 as well as its practical use in protocols45 are strong 
arguments for Bulletproofs over Sharp.
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While the original Bulletproofs are already efficient in practice, optimisations such as Bulletproofs+46 and 
Bulletproofs++47 have been proposed since. Bulletproofs+ reduce the proof size for a 32-bit range by 16%, while 
the performance remains comparable to that of Bulletproofs for non-aggregated proofs46. Bulletproofs++ reduce 
the O(n) scalar multiplications asymptotically needed by Bulletproofs(+) to O(n/ log(n)) multiplications, while 
also further reducing the proof size47.

Using Bulletproofs for vote correctness
Setting
Let Gp,Gq  be two DLOG-groups such that q ≪ p. Let bq  denote the bit-length of q.

Let x represent a vote and let bx be the maximal bit-length of a vote such that 2bx ≪ q. Let a, b be two 
integers with 0 ≤ a < b < 2bx . Thus, for any x ∈ [a, b], it holds that x is the same in both Zp and Zq , and that 
x < 2bx . Let a (resp. b) represent the lowest (resp. highest) candidate number among candidates who the voters 
can vote for. Without loss of generality, let the candidate numbers be consecutive between a and b. On the off-
chance that this is not the case, the available candidate numbers can be mapped onto a consecutive integer range.

Let pk ∈ Gp be the public key of the lifted ElGamal cryptosystem and let gp be a generator of Gp. The 
encryption of x ∈ [a, b] with randomness r $← Zp is then

	 Encpk(x; r) =
(
gr

p, gx
p · pkr

)
= (y, X).

More generally, we will use capital letters to denote Pedersen commitments. Standalone, X can be viewed as a 
Pedersen commitment of x with randomness r in Gp.

Let bc represent the bit-length of a verifier’s challenge in a Σ-protocol. For some security parameter λ, it must 
hold that bc ≥ λ for security with no repetitions of the protocol. In practice, λ ≥ 128. Let b⊥ be a parameter 
controlling the probability of aborts, i.e. the probability that the Σ-protocol must be restarted to avoid leaking 
information about the secret. Finally, the parameters bx, bc, b⊥, bq  must satisfy the relation bx + bc + b⊥ < bq  
which is necessary to avoid modular reductions in Gp and Gq  for the protocol computations.

Range proof for concrete ranges
Bulletproofs are a zero-knowledge proof protocol without a trusted setup which can be used for range proofs, 
but also for proofs for arithmetic circuits. Bulletproofs rely only on the discrete logarithm assumption, and are 
made non-interactive using the Fiat-Shamir heuristic42. In this work, we only consider Bulletproof range proofs 
in the non-interactive setting.

Bulletproofs do not directly prove that a value lies in an arbitrary integer range. Rather, given a Pedersen 
commitment X to x with randomness r, they prove the following relation42:

	
{

(g, h ∈ G, X, bx; x, r ∈ Zq) : X = gxhr ∧ x ∈ [0, 2bx − 1]
}

,

where G is a DLOG-group. However,

	 a ≤ x ≤ b < 2bx ⇐⇒ 0 ≤ x − a < 2bx ∧ 0 ≤ b − x < 2bx ∧ b < 2bx

and we can use the additive homomorphism of Pedersen commitments to combine two Bulletproofs and prove 
that x ∈ [a, b] for arbitrary a, b ∈ N as required. Note that 2bx ≪ q guarantees that indeed 0 ≤ x − a < 2bx  
even when taken modulo q since 2bx < q − (x − a) ≤ q, and similarly for b − x.

Let gq, h be two generators of Gq  such that loggq
(h) is not known. Let πa, πb be the Bulletproofs asserting 

that x − a ∈ [0, 2bx − 1] and b − x ∈ [0, 2bx − 1] with commitments

	

ra
$← Zq, Ca ← gx−a

q · hra

rb
$← Zq, Cb ← gb−x

q · h−rb .

To prove that x ∈ [a, b], it remains to show that x is the same for both Xa ← ga
q · Ca and Xb ← gb

q · (Cb)−1, 
since

	

ga
q · Ca = ga

q ·gx−a
q ·hra = gx

q · hra

gb
q ·

(
Cb

)−1 = gb
q ·gx−b

q ·hrb = gx
q · hrb .

A ZKP of discrete logarithm equality is thus needed to prove that Xa and Xb are commitments to the same x. 
Note that given Ca, Cb, anyone can compute Xa, Xb since gq, h, a, b are publicly known.

Discrete logarithm equality across groups
Let (y, X), (Ca, πa), (Cb, πb) be given to the verifier. By verifying πa, πb and computing Xa, Xb, the verifier 
gains assurance that 

	1.	 Xa is a commitment for xa such that xa ≥ a,
	2.	 Xb is a commitment for xb such that xb ≤ b.
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Then, to verify that (y, X) is an encryption of x ∈ [a, b], the verifier must additionally be able to verify in zero-
knowledge that

	 x = xa = xb

for the committed values. More formally, to prove that (y, X) is an encryption of x ∈ [a, b], a zero-knowledge 
proof must be given for the relation

	
RVeq =

{ (
(y, X, Xa, Xb),

(x, r, ra, rb)
)

∣∣∣∣∣
y = gr

p ∧ X = gx
p · pkr∧

Xa = gx
q · hra ∧

Xb = gx
q · hrb

}
.

A ZKP for RVeq therefore proves that a vote for an eligible candidate was encrypted without leaking who the 
vote is for.

When p = q, the proof is a variant of proving discrete logarithm equality in a group, for which an efficient 
approach has been given by Chaum and Pedersen48. However, the difficulty lies in proving this efficiently 
when p ̸= q, which is the case here, i.e. proving discrete logarithm equality across different groups. For the 
latter problem, an approach using Pedersen commitments was presented by Chase et al.49. More formally, the 
technique by Chase et al. gives a ZKP for the relation

	
RDLeq =

{ (
(X1, X2),

(x, r1, r2)
)

∣∣∣∣ X1 = gx
1 · hr1

1 ∧ X2 = gx
2 · hr2

2

}

although a range proof for x ∈ [0, 2bx − 1] is needed as part of the technique. This range proof must be 
knowledge-sound, and the authors themselves propose to use Bulletproofs for this49, 5. The protocol is therefore 
ideal for the current use case, since such a range proof is required regardless, i.e, πa, πb. Moreover, since the 
protocol in49 is a public-coin protocol, it can also be made non-interactive with the Fiat-Shamir transform.

For efficiency, instead of first proving xa = xb for commitments in Gq  and then proving RDLeq, the 
technique by Chase et al. can be extended to prove the entirety of RVeq. The resulting Σ-protocol ΠVeq for 
proving the relation RVeq is given on Figure 1.

Security guarantees
The mask k is necessary to hide information with random noise, otherwise the verifier could trivially extract 
x from z with x = z/c. Since operations are performed over the integers, the traditional approach of picking 
the mask uniformly at random from the underlying group is not feasible. As such, not all values of k mask cx 
‘sufficiently’. Indeed, not all values of z are equally likely to occur for z < 2bx+bc  or z ≥ 2bx+bc+b⊥ , and so the 
protocol must be aborted if z leaks information about x.

More formally, the abort condition follows from the following lemma49,50:

Lemma 1  (50, Lemma 1) In the non-aborting case, the value z in the transcript of an honest protocol execution is 
uniformly distributed in {2bx+bc , . . . , 2bx+bc+b⊥ − 1}. An honest prover aborts with probability 2−b⊥ .

Notably, the verifier gets no information about k due to the hiding property of the Pedersen commitments 
transmitted with the first message. Thus, it is infeasible for the verifier to learn anything about cx regardless of 
whether the prover aborts the protocol.

Interactive proofs have certain shortcomings compared to non-interactive proofs. For example, non-
transferability restricts the auditability of i-voting, which is the very situation that this work aims to improve. 
Moreover, the three move communication might not be practical from an implementation viewpoint, especially 
when aborts are involved.

The protocol can be made non-interactive using the Fiat-Shamir transform51,52 with aborts53. To prevent 
the prover from creating unsound proofs by adaptively choosing their statement, the statement and protocol 
messages preceding the challenge generation must all be included in the challenge seed54.

The proofs that follow are based on the proofs in49, adapted for the proposed protocol in the non-interactive 
setting. This simplifies the proofs, since the prover only outputs a non-aborting transcript and the abort cases 
no longer need to be considered49, §4.2. For our proofs, challenges must be obtained from the programmable 
random oracle O with c ← O(st, α), where

•	 st is the statement 
(
(y, X), (gp, pk), (gq, h), (a, b)

)
,

•	 α is the first message of the protocol, i.e. (w, K, Ka, Kb).

Additionally, we require setting bc ≥ 2λ for collision resistance with Fiat-Shamir due to the birthday attack55, 
§7.3.

Theorem 1  The non-interactive protocol ΠVeq is perfectly complete.

Proof  In the non-interactive setting, the prover never aborts. First, for an honest prover, the equation (i)

	 gs
p = gt+cr

p = gt
p · gcr

p = w ·
(
gr

p

)c = w · yc
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is satisfied. Additionally, equation (ii)

	 gz
p · pks = gk+cx

p · pkt+cr = gk
p · pkt ·

(
gx

p · pkr
)c = Kp · Xc

p

is also satisfied. Equations (iii) and (iv) are proven similarly. □

Theorem 2  The non-interactive protocol for the relation RVeq is honest verifier zero-knowledge under the 
DLOG assumption for Gp and Gq  in the (programmable) random oracle model.

Proof  The simulator takes as input the public parameters, including the group descriptions and the public key 
pk. It also has access to the random oracle and can program it with input-output pairs.

First, the simulator samples uniformly at random

	 c
$← [0, 2bc − 1], z

$← [2bx+bc , 2bx+bc+b⊥ − 1],

	 s
$← Zp, sa

$← Zq, sb
$← Zq.

Since K satisfies the equation

	 K = gk
p · pkt = gk

p · pks−cr ·
(
gcx

p · g−cx
p

)
= gz

p · pks ·
(
gx

p · pkr
)−c

,

Fig. 1.  ΠVeq: a Σ-protocol for proving RVeq based on the proof of cross-group discrete logarithm equality by 
Chase et al.49.
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the simulator computes the commitment K as

	 K ← gz
p · pks ·

(
Xc

p

)−1

and commitments Ka and Kb analogously. It also computes the commitment w as

	 w ← gs
p ·

(
yc

)−1
.

Finally, the simulator programs the random oracle O such that

	 c ← O
(
st, (w, K, Ka, Kb)

)

and then outputs the transcript

	
(
(w, K, Ka, Kb), c, (z, s, sa, sb)

)
.

Since non-interactive Bulletproofs are fully zero-knowledge in the random oracle model42, §4.4, πa and πb do 
not affect the zero-knowledge property of the protocol. However, an unbounded adversary can recover rp from 
y and therefore decrypt Xp to recover x, thus breaking the zero-knowledge property. This is not feasible for a 
computationally bounded adversary, and thus the protocol can only satisfy computational zero-knowledge.

It remains to show that the distributions of the real and simulated transcripts are computationally 
indistinguishable in the programmable random oracle model. 

	1.	 In both the real and simulated executions, the challenge c is independently and uniformly sampled from 
[0, 2bc − 1].

	2.	 By Lemma 1, z is distributed uniformly in [2bx+bc , 2bx+bc+b⊥ − 1] in both real and simulated transcripts 
since there can be no aborted transcripts.

	3.	 In both transcripts, the values s, sa, and sb are uniformly distributed. Indeed, in the real protocol execution, 
cr is perfectly masked in Zp by t, since t is sampled uniformly and independently from c, and similarly for 
sa, sb in Zq .

	4.	 Since s is uniformly distributed in Zp, K = gk
p · pkt = gk

p · pks−cr  is uniformly distributed in Gp. Uniform 
distribution can be similarly shown for Ka, Kb. Furthermore, w = gt

p = gs−cr
p , and so w is also uniformly 

distributed in Gp.□

Theorem 3  Let κrp be the knowledge error of πrp. The non-interactive protocol for the relation RVeq is 2-spe-
cial sound with knowledge error κ = 2−bc + κrp under the DLOG assumption for Gp and Gq  in the (program-
mable) random oracle model.

Proof  Let there be an extractor algorithm Ext which is given as input the range proof πa (alternatively πb) and 
two accepting transcripts ((w, K, Ka, Kb), c, (z, s, sa, sb)) and ((w, K, Ka, Kb), ċ, (ż, ṡ, ṡa, ṡb)) with c ̸= ċ. 
Such transcripts can exist due to the programmability of the random oracle, where, after outputting c, the oracle 
is reprogrammed to output c′ for the same input. The extractor also has access to the public parameters, includ-
ing pk.

The extractor then recovers xp, xq, r, ra, rb such that y = gr
p  and

	 X = g
xp
p · pkr, Xa = g

xq
q · hra , Xb = g

xq
q · hrb

with the following steps: 

	1.	 Bulletproof range proofs are arguments of knowledge42 and are therefore extractable. Ext can thus extract 
((xq − a)∗, r∗

a) with the knowledge-extractor of πa, except with some small failure probability κrp. Since a 
is publicly known, the extractor can further recover (x∗

q , r∗
a) such that Xa = g

x∗
q

q · hr∗
a  and x∗

q < 2bx .
	2.	 From the two accepting transcripts with distinct challenges c ̸= ċ, the extractor selects the pairs

•	
(
(K, c, z, s), (K, ċ, ż, ṡ)

)
,

•	
(
(Ka, Kb, c, z, sa, sb), (Ka, Kb, ċ, ż, ṡa, ṡb)

)
.

 By defining 

	
xp = z − ż

c − ċ
, r = s − ṡ

c − ċ

Ext extracts an opening of X = g
xp
p · pkr  since 

	
z − ż

c − ċ
= k + cxp − (k + ċxp)

c − ċ
= xp(c − ċ)

c − ċ
= xp
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	 and the recovery of r holds similarly. Ext then extracts openings for Xa = g
xq
q · hra  and Xb = g

xq
q · hrb  in 

the same manner. The extraction fails with probability 2−bc  which is a standard result56, Theorem 1. By the 
binding property of Pedersen commitments X, K, Ka, Kb and of ElGamal, 

	 (a)	 y = gr
p

	 (b)	 (xq, ra) = (x∗
q , r∗

a)
	 (c)	 (z − cxp, s − cr) = (ż − ċxp, ṡ − ċr)
	 (d)	 (z − cxq, sa − cra, sb − crb) = (ż − ċxq, ṡa − ċra, ṡb − ċrb)

 must all hold under the DLOG assumption.

	3.	 Finally, the extractor returns (xp, xq, r, ra, rb).

It remains to show that xp = xq  holds over the integers. From verification checks (ii) and (iii), there must exist 
kp, kq, u, u̇, v, v̇ ∈ Z such that

	
z = kp + c · xp + u · p z = kq + c · xq + v · q
ż = kp + ċ · xp + u̇ · p ż = kq + ċ · xq + v̇ · q .

Because z ∈ [2bx+bc , 2bx+bc+b⊥ − 1] for an accepting transcript, it follows that (u, u̇, v, v̇) are non-negative. 
By linear combination with respect to p and q,

	

(z − ż) = (c − ċ)xp + (u − u̇)p,

(z − ż) = (c − ċ)xq + (v − v̇)q.

W.l.o.g., let z − ż be positive, since if it is negative, then ż − z is positive instead. From the choice of 
parameters and verification checks z − ż < 2bx+bc+b⊥ < 2bq . Moreover, πa ensures that xq < 2bx , and so 
|c − ċ|xq < 2bx+bc . It follows that (z − ż) − |c − ċ|xq < 2bq  and so (v − v̇) = 0.

Equating the two representations of z − ż with (v − v̇) = 0 yields

	

(c − ċ)xp + (u − u̇)p = (c − ċ)xq

(u − u̇)p = (c − ċ)(xq − xp) .

Since p is prime, it must divide (c − ċ) or (xq − xp), but p > 2bq > 2bc  and so it cannot divide |c − ċ|. 
Therefore p|(xq − xp) and so xq ≡ xp (mod p). Since xq < p and xp < p, no modular reduction takes place 
and so xq = xp in Z as well. □

Proof size
A single Bulletproof uses 2 · ⌈log2(bx)⌉ + 4 elements of Gq  and 5 elements of Zq

42, §4.2. In our protocol, 
these numbers are doubled for non-aggregated Bulletproofs. Two aggregated Bulletproofs use only 
2 · ⌈log2(bx) + 1⌉ + 4 elements of Gq , while the number of elements of Zq  remains unchanged42, §4.3.

By compressing the transcript of our protocol into (c, z, s, sa, sb), the transcript size is 
τ(2bc + bx + b⊥ + ⌈log2(p)⌉ + 2⌈log2(q)⌉), where τ  represents the number of repetitions. In the non-
interactive setting, τ = 1 since the prover only sends a non-aborting transcript. For simplicity, we upper bound 
our non-interactive transcript size by 4 elements of Zq , and one element of Zp.

The full proof is formed by our protocol transcript, the two Bulletproofs, and Xa, Xb, which are two 
additional elements of Gq . The total proof size, assuming aggregated Bulletproofs, is thus not larger than

•	 2 + (2 · ⌈log2(bx) + 1⌉ + 4) elements of Gq ,
•	 4 + (5) elements of Zq ,
•	 1 element of Zp,

where the numbers in parentheses are due to Bulletproofs. We refer to Section “Benchmarks” for some concrete 
numbers based on these estimates.

Concrete instantiation
From Estonian election statistics57, the largest number of candidates in an election since 1992 is 15322. However, 
this is the cumulative candidate count across all local governments. In any concrete municipality, the number 
of candidates a voter can vote for is much less, and candidate numbers are not global for local elections. The 
largest number of candidates unified throughout the country is only 188557. Regardless of the election type, it 
is reasonable to assume that for the foreseeable future, no election will have more than 216 candidates, and so 
bx = 16.

IVXV uses finite field ElGamal in Group 15 from RFC352658, and so bp = 3071. Given the current state of 
classical cryptanalysis, this corresponds to a security level of 128 bits, and so λ = 128. Since the protocol requires 
bc ≥ λ for soundness without repetitions, bc = 128 satisfies this requirement, but only in the interactive setting. 
In the non-interactive setting, the hash function must have a range of {0, 1}2λ to achieve a collision resistance 
of λ bits55, §7.3. In practice, bc = 256 is therefore required for a 128-bit security level against confidentiality and 
soundness attacks.
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It remains to find values for b⊥ and bq  such that bx + bc + b⊥ < bq  and bq ≪ bp. A popular and performant 
implementation of Bulletproofs59 is available over the ristretto255 curve60, which is itself built on top of 
Curve25519. While using ristretto255 would be beneficial for the performance, it has a group size of 2252, which 
is incompatible with bc = 256. By weakening the soundness guarantees to 112 bits of soundness, the challenge 
size can be set to bc = 224. Then, b⊥ = 251 − 16 − 224 = 11 and the probability of aborts becomes 2−11. This 
remains small and the computational burden of occasional aborts is only borne by the prover. Since the non-
interactive version of the protocol is full computational zero-knowledge, the zero-knowledge guarantees are not 
impacted and a 128-bit security level against confidentiality attacks is therefore maintained.

To achieve 128-bit soundness guarantees, a larger curve such as P-384 should be used. By setting bq = 384, 
it follows that b⊥ < 112, and so the probability of aborts is 2−112. While b⊥ could be lowered if needed for 
compatibility with a smaller curve that still accommodates bc = 256, P-384 is a popular curve choice. Notably 
P-384 is used by the Estonian ID card for digital signatures61, 135.

Results
To analyse and benchmark the computational cost of verification, we developed a prototype of the full protocol 
in Go62. We chose Go since the IVXV vote collector is also written in Go63, and the common language therefore 
simplified real-system benchmarking. In addition, the prototype can hopefully serve as a template for a 
production implementation of the protocol should the approach be approved by the election organiser.

We did not implement the Bulletproofs needed as part of the protocol from scratch. Rather, we took the 
open-source implementation by ING Bank64—hereinafter ‘library’—as a basis. We did not find a Bulletproofs+ 
implementation for Go. Since the library uses secp2561k as a hardcoded elliptic curve, we created a group 
abstraction inspired by the CIRCL library65. We subsequently replaced the hardcoded curve with the abstraction 
for the ease of testing the protocol with different curves. Additionally, we refactored and consolidated the library 
code in places for additional clarity and fidelity to the Bulletproofs paper42.

A shortcoming of the library is that it lacks the batching technique which allows for greater efficiency for 
proving and verifying two (or more) Bulletproofs. Due to time restrictions, we did not implement batching on 
top of the library either.

Some prime-field NIST elliptic curves (e.g. P-256, P-384) are available in Go as part of the standard library, 
however, the direct use of the curve operations has been deprecated66. The CIRCL library enhances the P-256 
and P-384 implementations provided by the Go standard library, and provides optimised operations on P-38465. 
CIRCL also supports the use of the ristretto255 group implemented by the go-ristretto library67. To benchmark 
the full protocol we used the versions of P-256, P-384 and ristretto255 provided by CIRCL, and ING Bank’s 
secp256k1 implementation.

Benchmarks
We ran the initial benchmarks on a MacBook Pro with a 2.42 GHz M2 Pro processor. Both the prover and verifier 
were part of the same program, all data was held in memory and no data was serialised. We took the average of 
1000 runs where we set the proof range to [101, 2000] with bx = 16, and voted for the candidate number 1500. 
We did not use batching for generating or verifying Bulletproofs. The results are presented in Table 1.

It is clear from the benchmarks that on the prover’s side, the proof generation is unlikely to impact the voting 
experience. While the voting client is written in C++ and not Go, implementation performance in C++ should be 
comparable. While verification times are lower than proving times, the server must be able to handle and process 
many concurrent requests. As such, the direct impact is more difficult to assess based on these benchmarks 
alone. However, it is clear that the curve choice may have a significant impact on the verifier, whereas the impact 
on the prover is negligible in practice.

To better determine the impact of the protocol on the vote collection server, i.e. the verifier, we ran a 
benchmark from the standard IVXV benchmark suite with the verification function added in. According to the 
data obtained from the IVXV developers, the peak concurrent load for IVXV has been 12 votes per second. A 
typical benchmark target is therefore to process 40 votes per second until the target number of votes has been 
cast68. As such, if the vote collector can keep up with this rate with the additional verification added in, the 
protocol can be deemed practical.

λ κ bc Curve group Prover’s work (ms)

Verifier’s work (ms)

BP RP Total

128 112 224 secp256k1 39.10 10.81 20.34 31.15

128 112 224 ristretto255 41.19 11.08 20.88 31.96

128 112 224 P-256 40.30 10.77 20.01 30.78

128 112 224 P-384 171.8 79.06 22.76 101.8

128 128 256 P-384 169.4 77.89 23.17 101.1

Table 1.  Prototype benchmarks on a MacBook Pro with a 2.42 GHz M2 Pro processor. All timings are in 
milliseconds. ‘BP’ represents the time required to verify both Bulletproofs, while ‘RP’ represents the time 
needed to verify ΠVeq. λ indicates the security level against confidentiality attacks and is upper bounded by the 
128-bit security level of the ElGamal group. κ indicates the soundness level of the scheme.
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The goal was to run benchmarks on the same servers that are used during the actual elections, which are 
physical servers in Estonia hosted by the Estonian Information System Authority (RIA). The servers run Ubuntu 
22.04, with 8 CPU cores with a base frequency of 2.90 GHz, and 16 GB of RAM. The processor itself is the Intel® 
Xeon® Gold 6326 Processor with 16 physical cores, however the vote collector is virtualised, with 8 CPU cores 
available to the virtualised container. For load balancing and redundancy, the vote collector is comprised of 
three servers. Unfortunately, due to the proximity in time to the 2024 elections, there was little availability for 
benchmarking on this hardware. As a result, we could only run two benchmarks for which we chose the P-256 
and P-384 curves.

For the benchmarks, a proof of vote correctness was serialised into JSON and stored as a Go variable in 
the server-side code. For each received vote, after performing the habitual verification checks, the server de-
serialised the JSON proof and verified it, therefore simulating the actual work of the verifier. In a production 
setting, the proof and the ballot will need to be read from the ASiC-E signature container containing the 
encrypted ballot instead. (ASiC-E is a container format defined in ETSI EN 319 162-1, used to bind digital 
signatures or time assertions to the file objects they apply to. The ASiC-E format is commonly used for digital 
signatures in Estonia.) However, this overhead is likely to be marginal. Additionally, for the benchmarking, 
the server re-generated the public parameters before verifying the proof since this allowed easily hooking the 
prototype to the vote collector. This can easily be avoided in production since the public parameters are known 
in advance and are the same for every proof.

A total of 882366 ballots were cast, which was the size of the list of eligible voters in the testing environment, 
and for which a baseline benchmark already existed. The results are presented in Table 2. While the impact of 
the proof verification on the processing rate of received ballots is negligible, some overhead is still introduced as 
shown by the increased database error rate.

The vote collector uses etcd69 as its database for storing ballots. While the common practice is to allocate 
dedicated resources to etcd70, the vote collector’s etcd shares its resources with the rest of the collector’s services, 
including the verifier service. The higher etcd error count could therefore be explained by the proof verification 
requiring some of the processing power that was previously used by etcd only. However, it was not possible to 
determine with certainty whether this was the case, or whether the etcd errors were caused by unrelated state-
changes to the system in-between benchmarks.

If an etcd error happens before the received ballot is stored, the collector will retry the operation. However, 
if the ballot cannot be stored before the configured timeout—typically between 5–10 seconds—is reached, the 
voting process will fail and the voter will have to restart the voting process. While the number of etcd errors is 
higher with the proof verifications added in, the error rates remain marginal compared to the total number of 
votes cast. Furthermore, processing 40 ballots per second is three to eight times more than the expected voting 
rate during the elections. Even if such a rate is achieved during a peak, it is unlikely to be sustained for a period 
of several hours and the real impact is therefore likely to be negligible. This remains a speculation however, since 
a benchmark with a target rate of 10 ballots per second could not be performed due to the unavailability of the 
infrastructure.

A possible improvement would be to deploy etcd on its own dedicated resources. Not only could this improve 
or solve the performance problem that caused etcd transactions to fail, it could be a worthwhile architecture 
improvement in general. While this may require purchasing or leasing additional hardware, the resource 
requirements for etcd are modest71 and the cost should therefore not be prohibitive. Three 4-core machines with 
16 GB of RAM each should be sufficient for IVXV’s etcd needs.

Since the proofs were hardcoded as JSON objects into the collector for the benchmarks, we do not have 
empirical data available regarding the additional space needed for storing the proofs. However, the theoretical 
proof size given in Section  “Proof size” shows that space is not a limiting factor for practical parameters. 
Indeed, for the P-384 curve, points can be represented with 49 bytes where the extra byte represents whether 
the y coordinate is even or odd. Thus, for bp = 3072, bq = 384, bx = 16, the individual proof size is 
16 · 49B + 9 · 48B + 384B = 1.6kB, assuming elliptic curve point compression and aggregated Bulletproofs. 
The overhead of encoding the proof using ASN.1 DER is negligible.

Discussion
While we chose the protocol for proving vote correctness with simplicity in mind, the resulting protocol is not 
exactly simple. The complexity is twofold: there is the complexity due to the underlying range proof protocol, but 
also the complexity due to the group switching strategy.

Group switching is seemingly unavoidable as long as the ElGamal ciphertext is generated in the prime-
order group of quadratic residues. Because operations in this group are computationally expensive, it is unlikely 
that range proofs could be efficiently generated in this group, regardless of the technique used. Range proofs 

Category Duration Processing rate DB error count

Reference 06:21:03 38.59 16

P-256 06:20:28 38.66 228

P-384 06:24:47 38.22 1205

Table 2.  Load tests with proof verification on the IVXV vote collector with 882366 ballots cast. The duration is 
in hh:mm:ss format, the processing rate is in ballots per second, and the benchmark target was 40 ballots/s. DB 
error count represents the number of errors related to the etcd database of the vote collector.
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must therefore be generated in a group different than the one used for the ElGamal encryption, and a group 
switching strategy must be used to bind the proof to the ciphertext. Regarding range proofs, it is our opinion that 
Bulletproofs(+) are the most understandable of the considered approaches.

To avoid the need for group switching, the ElGamal ciphertext could be generated in a computationally more 
performant group instead. In practice, this means changing the currently used prime-order group of quadratic 
residues modulo a prime in favour of lifted ElGamal in an elliptic curve group. In lifted elliptic curve ElGamal, 
the message is represented as an integer which is used as a scalar and is multiplied with the group’s base point 
(the generator). In additive notation, this gives

	 EncH(m; r) = (rG, mG + rH)

where G is the group’s base point, H is the public key (a point on the curve), m is the message scalar, and r is a 
random scalar. By only encrypting an integer in the range [0, 216 − 1] it is certain that the message scalar will 
not overflow the group order.

By picking an elliptic curve compatible with the range proof, the encryption and the range proofs could then 
be generated in the same group. While this may not replace the need for generating a range proof separately 
from the ciphertext, proving the equality of discrete logarithms in the same group is simpler than using the 
cross-group proof, e.g. as in48. Since there are less operations to do, this will also improve overall performance 
on top of simplifying the vote correctness protocol. However, a complete migration to elliptic curves requires 
re-implementing the current IVXV cryptosystem, thus losing the ‘tried and tested’ advantage of the current 
implementation. The potential development effort is therefore much higher than solely using elliptic curves for 
the vote correctness proof.

One change that will be inevitable when utilizing the Bulletproofs will be the candidate encoding under the 
encryption. Currently, IVXV uses a data structure including the candidate name, number, precinct number and 
election event identifier. As Bulletproofs are range proofs, these data structures will need to be remapped into a 
continuous range of integers. This is technically, of course, doable, but it introduces another layer of indirection, 
potentially making auditing of the system more complex and thus reducing transparency.

While the benchmark results show that the current prototype should already be practical performance-wise, 
there are a number of ways to potentially improve the performance. Performance improvements are especially 
important if the election organiser decides that the current buffer zone between real loads and test loads is not 
large enough.

The first change would be to implement Bulletproof batching to verify the two range proofs simultaneously. 
This would replace the 4⌈log2(n)⌉ + 8 group elements needed for verifying the Bulletproofs separately with 
2⌈log2(n) + 1⌉ + 4 elements, thus shortening the proofs. While the exact time-improvement is hard to 
estimate, verification time should improve at least by a quarter judging by data from the original paper42, §6.3. 
Furthermore, since Bulletproofs+ can be used as a drop-in replacement to Bulletproofs, Bulletproofs+ could be 
used instead, although this would improve the proof size rather than verification time. While Bulletproofs++ are 
also a drop-in replacement to Bulletproofs(+), we find the protocol itself to be more complicated than the former 
two and thus do not recommend this approach. It might also be possible to solely replace the inner product 
argument with future improvements in the literature without replacing the Bulletproofs(+) themselves; however, 
this is not guaranteed.

Finally, other than the potential improvements that could be obtained by optimising the Go code, a more 
radical change would be to use another programming language for the proof verification. In particular, Rust72 
could be used since many production-grade open source proof system implementations have been written in 
Rust (e.g.59,73–75). In turn, this would remove the need for an in-house implementation of the underlying proof 
system and is likely to also improve performance. Developers could therefore treat the implementation as a 
black-box, although any third-party library should still be audited.

The proofs of vote correctness must be included in the digitally signed ASiC-E container alongside the 
encrypted ballot. These proofs must be verified by the vote collector upon receiving each vote, as this enables it 
to provide immediate feedback to the voter when something is amiss. It remains to determine what should the 
verification application, the processing application, the key application, and the auditor do.

Since the verification application has the capability to decrypt the vote by using the randomness used during 
encryption, it can verify the range directly without needing the range proofs. In fact, the verification application 
currently already verifies whether the ballot contains an eligible candidate identifier.

A necessary change to the verification application, however, is to display the full candidate information 
as usual. That is, the verification application should map the integer in the ballot back to the full candidate 
identifier. In principle, it should not be possible to cast a vote with an invalid range proof without the collector 
refusing to accept the vote. However, the purpose of the verification application is to determine whether both 
the voting client and the collector behaved correctly. Since the verification application can only be used if a vote 
has been successfully cast, the verification application should still verify the range proofs. If the range proofs do 
not validate, the application should alert the voter that the collector misbehaved.

Similarly, the processing application should verify the range proofs to also make sure that the collector 
did not misbehave. The after-the-fact verification of proofs is the main reason why the proofs should be non-
interactive and transferable. If the processing application does not verify that all range proofs are valid, ballots 
with illegitimate contents could still reach the decryption phase if they slipped by the collector. Since the 
processing application performs all necessary verifications and is operated by the election organiser, the output 
of the application can be considered trusted. As such, the key application needs not verify the range proofs, 
similarly to how the key application does not currently verify whether ballots are well formed, as this is already 
done by the processor. In fact, it is not possible to verify the vote correctness proofs after ballots have been mixed 
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since the ballot randomness is altered. Therefore, the proofs can only be verified with pre-mixnet ballots. The 
auditor should verify all the proofs as well.

The processing application and the Android verification application are written in Java, while the iOS 
verification application is written in Objective-C. This means that Bulletproofs will also have to be implemented 
in these other languages, which increases the development effort significantly. While this development effort 
may outweigh the benefits of proof verification by the verification applications, the verification by the processing 
application is a must. For Java, the implementation by Bünz76 could be taken as a basis.

Conclusions and future work
Even though all NP-languages are known to have zero-knowledge arguments77, their performance in specific 
situations is still a question that has to be addressed case by case. While a proof of ballot correctness may indeed 
be simple when there are only two choices16, the solution for larger elections is much less straightforward.

For example, in the case of Estonian elections, there may easily be a few hundred candidates in one precinct. 
Thus, the solution for the Estonian IVXV Internet voting system must handle this volume efficiency, while 
supporting hundreds of thousands of voters and dozens of parallel vote casting sessions.

The current paper proposes one possible solution that meets all these criteria. It utilizes Bulletproofs, a 
technique recently popularized in blockchain applications. One of the challenges with Bulletproofs is that in 
order to benefit from their efficiency, they should be run on top of elliptic curves, while IVXV is using mod-p 
ElGamal encryption. Thus, we additionally implemented and benchmarked the group switching mechanism by 
Chase et al.49.

The benchmarks confirm that the strategy is performant in practice, even on the current IVXV infrastructure. 
Indeed, under expected i-voting loads, the server-side ballot processing rate is not impacted, and the proof 
generation’s impact is on the voter side is negligible. By implementing Bulletproofs over the P-384 curve, the 
individual ballot correctness proof size is approximately 1.6 kB. Had the proofs been used in IVXV for the 2024 
European Parliament elections, the cumulative proof size would have been approximately 252 MB. We have also 
discussed some additional improvements to potentially upgrade the IVXV infrastructure, and further reduce 
the proof size.

Even though Bulletproofs are efficient, their construction is relatively involved. While this is not a problem 
mathematically, a solution with a conceptually simpler setup would be preferable from the societal transparency 
point of view. Also, Bulletproofs are range proofs which presumes changing the current ballot encoding to a 
continuous range of integers. Again, this is not a problem mathematically, but the current IVXV encoding that 
includes the candidate ID and a precinct number may provide easier auditability. Thus, full set membership 
proofs29,78 could be considered as viable alternatives, even at the cost of reduced performance.

Data availability
The software code created during this research is available at https://github.com/takakv/msc-poc . No other 
kinds of data have been created nor collected for this research.
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