
Proving vote correctness in the
IVXV internet voting system
Taaniel Kraavi1 & Jan Willemson2

This paper studies the practical aspects of adding zero-knowledge proofs of vote correctness
to Internet voting, specifically to the IVXV system used in Estonia. We discuss various available
alternatives and present a concrete instantiation based on Bulletproofs together with implementation
details and benchmarking results. As IVXV currently uses the ElGamal cryptosystem with a 3072-bit
prime modulus for vote encryption, but Bulletproofs work most efficiently on elliptic curves, a group
switching solution is also implemented and benchmarked. Despite all the extra work required, our
solution is very performant and well capable of sustaining the load of votes, even during peak vote
submission periods.

Keywords  Internet voting, Vote correctness, Zero-knowledge proofs, Bulletproofs

Holding regular elections is the cornerstone of a democratic society. However, with citizens becoming
increasingly mobile in the contemporary world, gathering them in the same geographical location just for one
day to cast their votes becomes less and less of an option1.

Thus, a reliable remote voting mechanism is needed to ensure the generality of the elections. There are two
main alternatives here – postal and Internet voting. However, the security properties of postal voting are strictly
worse than those of vote casting over the Internet (i-voting)2. Thus, building a robust Internet voting system is
inevitable for a sustainable democratic system (at least in the long run).

Of course, this task presents many challenges. We will need a reliable voter authentication mechanism to
ensure eligibility and uniformity, and strong encryption to guarantee vote secrecy in transit. At the same time, the
system must provide means for independent auditing of all the key steps. This is especially challenging because
some of these requirements (most notably vote secrecy and system auditability) are inherently contradictory3,4.

In this paper, we are going to concentrate on a specific aspect of verifiability, namely checking that the
plaintext under ballot encryption actually corresponds to a valid candidate identifier. Note that in a typical
Internet voting scheme, the vote collection server can not just verify the plaintext validity by decrypting the
ballot as it does not have access to the decryption key.

On the other hand, an invalid plaintext can lead to a number of problems. In the case of homomorphic
tallying systems, an incorrect ballot may contain double or negative votes. In the case of non-homomorphic (e.g.
mixnet-based) voting systems, an invalid ballot plaintext can be used in a coercive scenario as a proof of forced
abstention when the coercer is able to audit the plaintext votes after decryption. In more elaborate scenarios, an
incorrect ballot plaintext can be used to broadcast sensitive information5 or breach the secrecy of a whole group
of voters6.

Luckily, plaintext audits can be implemented using zero-knowledge proofs, and this paper proposes an
instantiation of this technique aimed to be used in real elections. We base our study on the IVXV Internet voting
system used in Estonia. On one hand, Internet voting has been used in legally binding elections in Estonia since
20057. Still, even after 19 years of use, the system is missing proofs of ballot plaintext correctness. One of the
reasons why this issue could have been ignored for so long is that submitting an incorrect ballot is far from being
trivial. The voter would first have to implement a voting client of their own. While possible in principle, only very
few actual instances are known8. However, during the 2024 European Parliament elections, for the first time,
an incorrect ballot actually reached the decryption phase9. Thus, the issue of incorrect ballots can no longer be
ignored, and this has been the main motivation behind our current paper.

The paper is organised as follows. Section “Background” presents the basic setup of IVXV, followed by a
description of existing approaches described in Section "Prior art and existing solutions". Section "Using
Bulletproofs for vote correctness" provides the details of our proposed solution and Section “Results” presents
implementation and benchmarking details. Finally, Section "Conclusions and future work" draws some
conclusions and sets directions for future work.

1Department of Software Science, TalTech, Ehitajate tee 5, 19086 Tallinn, Estonia. 2Cybernetica, Narva mnt 20,
51009 Tartu, Estonia. email: jan.willemson@cyber.ee

OPEN

Scientific Reports | (2025) 15:31793 1| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-16764-1&domain=pdf&date_stamp=2025-8-29

Background
IVXV was released in 2017 with the aim of improving the individual verifiability of many system components
of Estonian Internet voting. Notably, the encryption scheme was changed from RSA-OAEP to ElGamal which
enabled introducing both the proofs of correct decryption and the mixing process10.

The four main parties involved in the scheme are the voter, the collector, the processor, and the tallying
party11. Since the election organiser performs the tallying, the term organiser is used hereinafter to refer to the
tallying party. I-voting itself is split into four main phases: setup, voting, processing, and tallying11. The phases
may not overlap, and each phase begins when the previous stage ends.

During the setup phase, the election-specific key-pair used to encrypt and decrypt the votes cast in the
election is generated following a (t, n)-threshold scheme. To decrypt the election results, at least t out of n key-
holders must collaborate. In the current IVXV implementation, n = 9 and t = 5. The key holders are seven
members of the National Electoral Committee and two employees of the State Electoral Office. During a normal
election process, the key is not reassembled before the tallying phase, and no party is therefore able to decrypt
arbitrary ballots during the voting and processing phases.

The key generation itself is a public ceremony where registered observers can see that the key is generated
with the key application on an air-gapped computer with no persistent storage. (In Estonia, anyone can register
themselves as an observer for an election [12 §194]. Observers can observe parts of the setup, processing and
tallying phases. There are also designated auditors appointed with the task of auditing all the key processes.)

Voters vote with an official voting client, which enables a voter to select their preferred candidate, encrypt
the ballot, digitally sign it, and send it to the collector. The collector then returns to the voting client the vote
qualifying elements, which the client verifies to attest whether the collector performed all required operations.

The collector is a combination of servers which perform multiple tasks. Upon receiving a ballot, the collector
performs feasible validity checks, such as verifying that the signature on the ballot is valid and that the voter
is eligible to vote. If the received ballot passes the checks, the collector registers the ballot with an external
registration service and stores it in the digital ballot box. Finally, the collector returns the registration proof
which the client verifies to ensure that the collector indeed registered the ballot and did not drop it.

After the voting phase concludes, the processor obtains the digital ballot box and other integrity information
such as checksums and logs from the collector. In practice, the election organiser also holds the role of the
processor. Using the processing application, the organiser verifies the integrity of the data supplied by the
collector, including the integrity of the ballot box and of the signatures on the ballots. The organiser also discards
votes overridden by re-i-voting and paper voting to keep only eligible i-votes, and strips the digital signatures
from these votes.

Finally, the organiser uses a re-encryption mix-net to cryptographically anonymise the ballots, since otherwise
they could still be correlated with the stripped digital signatures. While the processing phase is observable, the
data generated by the processing application can only be made available for designated auditors working under
an NDA, since it contains sensitive information. For example, it contains the ID codes of voters and ballot
timestamps which could be used to determine whether a voter re-voted, hence enabling coercion attacks.

The anonymised encrypted ballots are then transferred to an air-gapped computer for decryption with the
key application. In addition to decrypting the ballots, the key application also verifies whether the decrypted
results are valid, tallies the valid results, and generates zero-knowledge proofs of correct decryption. While the
decryption phase is observable, not all outputs can be made publicly available in this phase either.

The problem arises when a voter has managed to encrypt a value that does not belong to the list of valid
candidate identifiers. Currently, the vote collector has no way of determining whether the submitted cryptogram
corresponds to a valid candidate, so a discrepancy would only be detected after decryption. If incorrect identifiers
would be published as part of the end result, it could ease forced abstention attacks, where the coercer essentially
forces the voter to encrypt a garbage value instead of a vote. Also, some more elaborate attacks have been used
in the literature also making use of invalid candidate identifiers5,6.

To address this issue, the current practice in IVXV is to not publish the invalid votes, and these invalid votes
are not made available to the observers either. As a result, the observers must trust an auditor with verifying that
the key application did not arbitrarily declare votes as invalid.

It follows that the decryption process currently produces conditional outputs: if no invalid votes appear,
everything can be made public. Otherwise, only the valid votes and their proofs can be made public. In the
latter case, the tally is no longer verifiable by third parties, which hinders the universal verifiability of IVXV. A
mechanism is therefore needed to prevent ballots from reaching the final anonymised ballot box, so that the
decrypted ballot box could always be matched against the tally results and decryption proofs.

Prior art and existing solutions
The problem of identifying invalid votes before tallying is not new. Mathematical proofs of vote correctness were,
to the best of our knowledge, first introduced by Cohen and Fischer in 198513. The main idea of the scheme is
that the voters prepare unmarked ballots which have the encryptions of a ‘yes’ and a ‘no’ value. Voters then prove
that their ballot has indeed only those values without revealing which is which. To cast a vote, voters select the
desired value and submit it to the election organiser. Finally, the organiser combines the votes and publishes
the tally together with a proof that the latter is correct. However, the scheme is not threshold-based, and so the
organiser can decrypt the individual votes13. Hence, the proofs of correctness are necessary only for the voters to
verify the consistency of the tally, and not for the organiser, who can simply decrypt votes.

Benaloh and Yung later contributed an improvement to the scheme which addressed this problem by
splitting the organiser into parties who must collaborate for computing the tally14. Their work also established
the terminology of marking to designate voters selecting their choice. Benaloh then elaborated on those ideas

Scientific Reports | (2025) 15:31793 2| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

further and introduced the use of secret sharing for privacy preservation, and of homomorphic encryption and
tallying for the proof process15.

All three schemes require interactive proofs of vote correctness13–15 and serve to prove the correctness of the
tally. The schemes therefore do not consider that a party may need to verify vote correctness before any tallying.
In 1997, Cramer, Gennaro, and Schoenmakers first used zero-knowledge vote correctness proofs in the context
of ElGamal ciphertexts16. Notably, the proofs are non-interactive (NIZKP), and verifiable without access to any
secret values, but are still only usable with homomorphically tallied votes. This approach remains the most
widely used proof system in homomorphic tally voting systems17.

Unlike for voting systems with homomorphic tally18–22, such proofs of correctness are not strictly required
for the validity of traditional ‘decrypt then tally’ schemes. E-voting systems that do not rely on homomorphic
tallying therefore often rely on other techniques.

In the Civitas voting scheme18, the re-encryption proofs of Hirt and Sako23 are used to prove that a vote is the
re-encryption of an existing ciphertext. That is, encryptions for all valid candidates are published by the election
authority, and the voter proves that their ballot is a re-encryption of one of these votes, without showing which.
This paradigm was revisited and extended by Joaquim24 who proposed the addition of an additional proof of
structure. In the scheme, the ballot is obtained from the re-encryptions of multiple options and an additional
ZKP is used to prove the structure of the combination. The structure proof is based on the proof of knowledge
of representation by Brands25, but is a novel addition for ElGamal by Joaquim..

In the Kryvos voting system26, zero-knowledge succinct arguments of knowledge (zk-SNARK) are used to
prove ballot validity. More specifically, the proof system due to Groth27 is used to prove that the committed
vote shares correspond to the valid choice space. VoteAgain28 uses the zero-knowledge set-membership proofs
by Bayer and Groth29 to prove that a ballot represents a valid candidate. In the code-based SwissPost voting
scheme30 developed in Switzerland, voters use codes delivered to them by post to vote for specific candidates.
A mechanism specific to their code-based implementation is also used to verify that a voter has cast a vote for a
candidate they are allowed to vote for.

Selection criteria
The desired goal is to prove that an encrypted ballot contains a valid candidate identifier, without leaking
which candidate the ballot is for. To simplify the problem, the encrypted ballot can be viewed as a binding and
hiding commitment to a candidate identifier. This enables the use of ‘commit-and-prove’ techniques31, where a
statement is proven in zero-knowledge relative to a committed value. The stated problem can thus be reduced to
the general task of proving set membership in zero-knowledge, i.e. that a secret value belongs to a set.

For minimal changes to IVXV, the chosen scheme should be compatible with finite field arithmetic, the (lifted)
ElGamal cryptosystem, and rely only on the discrete logarithm problem (DLOG). Relying on the DLOG avoids
introducing new security assumptions into IVXV. It follows that schemes based on the ElGamal cryptosystem
and Pedersen commitments are preferable over other approaches.

We considered the state of the art zero-knowledge set membership proofs of Benarroch et al.32 and of
Campanelli, Hall-Andersen, and Kamp33 which are both based on cryptographic accumulators. However,
both approaches require an underlying commit-and-prove system for either range proofs, or proving arbitrary
statements using constraint systems. As such, the use of zero-knowledge range proofs (ZKRP) instead of proving
zero-knowledge set membership (ZKSM) could potentially reduce verification times and proof complexity even
further, at the cost of losing the flexibility of arbitrary sets.

While tree-based approaches can yield constant-size proofs with fast verification times, they generally
require the use of general-purpose zk-SNARKS32. As such, they do not satisfy our selection criteria. We also did
not pursue pairing-based ZKSMs due to the additional hardness assumptions of pairings and since the ZKRP
approach seemed promising.

Christ et al. summarised the state of the art regarding ZKRPs in a recent survey34, although approaches based
on lookup arguments35 are not mentioned, and neither are some recent ZKRP protocols36,37 which combine the
covered techniques in interesting ways. The paper also omits the SwiftRange range proofs38, and Flashproofs39
by the same authors. There is also the survey by Deng et al.40 which includes a comparative analysis of different
ZKRP approaches, although it does not contain any benchmarks. It also provides a more complete history of
range proofs than the survey by Christ et al., while being already a bit out-dated as of 2024.

By discarding hash-based range proofs and general polynomial commitments, the state of the art narrows
down to Sharp41 and Bulletproofs42 with its potential improvements. While variants of Sharp appear more
efficient than Bulletproofs34,41 on paper, there are important nuances to consider because of differing security
guarantees. By default, Sharp only provides ‘relaxed’ soundness, where the prover is only bound to a rational in
the target range, instead of an integer41. Bulletproofs do not suffer form this limitation. However, Bulletproofs
can only directly be used to prove that a number belongs to [0, 2n − 1] for some integer n while Sharp works
for arbitrary ranges. Since Bulletproofs are homomorphic, it is possible to overcome this limitation in practice.

For Sharp, in the interactive setting, satisfying full soundness with a knowledge error of 2−128 would
require 128 repetitions of the protocol41. In the non-interactive setting, Sharp can achieve full soundness with
an additional commitment in a hidden order group (class group or RSA group). As such, the performance
advantages of Sharp over Bulletproofs are likely lost when requiring full soundness. However, this remains
unclear as Couteau et al. provided computational benchmarks only for their most optimised variant of Sharp,
which does not make use of the hidden order group commitment.

Additionally, Sharp is a very new protocol, and it does not appear to have been implemented outside of
research. Couteau et al. have not published their benchmarked Sharp implementation either. The existence of a
reference and third party implementations of Bulletproofs43,44 as well as its practical use in protocols45 are strong
arguments for Bulletproofs over Sharp.

Scientific Reports | (2025) 15:31793 3| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

While the original Bulletproofs are already efficient in practice, optimisations such as Bulletproofs+46 and
Bulletproofs++47 have been proposed since. Bulletproofs+ reduce the proof size for a 32-bit range by 16%, while
the performance remains comparable to that of Bulletproofs for non-aggregated proofs46. Bulletproofs++ reduce
the O(n) scalar multiplications asymptotically needed by Bulletproofs(+) to O(n/ log(n)) multiplications, while
also further reducing the proof size47.

Using Bulletproofs for vote correctness
Setting
Let Gp,Gq be two DLOG-groups such that q ≪ p. Let bq denote the bit-length of q.

Let x represent a vote and let bx be the maximal bit-length of a vote such that 2bx ≪ q. Let a, b be two
integers with 0 ≤ a < b < 2bx . Thus, for any x ∈ [a, b], it holds that x is the same in both Zp and Zq , and that
x < 2bx . Let a (resp. b) represent the lowest (resp. highest) candidate number among candidates who the voters
can vote for. Without loss of generality, let the candidate numbers be consecutive between a and b. On the off-
chance that this is not the case, the available candidate numbers can be mapped onto a consecutive integer range.

Let pk ∈ Gp be the public key of the lifted ElGamal cryptosystem and let gp be a generator of Gp. The
encryption of x ∈ [a, b] with randomness r $← Zp is then

	 Encpk(x; r) =
(
gr

p, gx
p · pkr

)
= (y, X).

More generally, we will use capital letters to denote Pedersen commitments. Standalone, X can be viewed as a
Pedersen commitment of x with randomness r in Gp.

Let bc represent the bit-length of a verifier’s challenge in a Σ-protocol. For some security parameter λ, it must
hold that bc ≥ λ for security with no repetitions of the protocol. In practice, λ ≥ 128. Let b⊥ be a parameter
controlling the probability of aborts, i.e. the probability that the Σ-protocol must be restarted to avoid leaking
information about the secret. Finally, the parameters bx, bc, b⊥, bq must satisfy the relation bx + bc + b⊥ < bq
which is necessary to avoid modular reductions in Gp and Gq for the protocol computations.

Range proof for concrete ranges
Bulletproofs are a zero-knowledge proof protocol without a trusted setup which can be used for range proofs,
but also for proofs for arithmetic circuits. Bulletproofs rely only on the discrete logarithm assumption, and are
made non-interactive using the Fiat-Shamir heuristic42. In this work, we only consider Bulletproof range proofs
in the non-interactive setting.

Bulletproofs do not directly prove that a value lies in an arbitrary integer range. Rather, given a Pedersen
commitment X to x with randomness r, they prove the following relation42:

	
{

(g, h ∈ G, X, bx; x, r ∈ Zq) : X = gxhr ∧ x ∈ [0, 2bx − 1]
}

,

where G is a DLOG-group. However,

	 a ≤ x ≤ b < 2bx ⇐⇒ 0 ≤ x − a < 2bx ∧ 0 ≤ b − x < 2bx ∧ b < 2bx

and we can use the additive homomorphism of Pedersen commitments to combine two Bulletproofs and prove
that x ∈ [a, b] for arbitrary a, b ∈ N as required. Note that 2bx ≪ q guarantees that indeed 0 ≤ x − a < 2bx
even when taken modulo q since 2bx < q − (x − a) ≤ q, and similarly for b − x.

Let gq, h be two generators of Gq such that loggq
(h) is not known. Let πa, πb be the Bulletproofs asserting

that x − a ∈ [0, 2bx − 1] and b − x ∈ [0, 2bx − 1] with commitments

	

ra
$← Zq, Ca ← gx−a

q · hra

rb
$← Zq, Cb ← gb−x

q · h−rb .

To prove that x ∈ [a, b], it remains to show that x is the same for both Xa ← ga
q · Ca and Xb ← gb

q · (Cb)−1,
since

	

ga
q · Ca = ga

q ·gx−a
q ·hra = gx

q · hra

gb
q ·

(
Cb

)−1 = gb
q ·gx−b

q ·hrb = gx
q · hrb .

A ZKP of discrete logarithm equality is thus needed to prove that Xa and Xb are commitments to the same x.
Note that given Ca, Cb, anyone can compute Xa, Xb since gq, h, a, b are publicly known.

Discrete logarithm equality across groups
Let (y, X), (Ca, πa), (Cb, πb) be given to the verifier. By verifying πa, πb and computing Xa, Xb, the verifier
gains assurance that

	1.	 Xa is a commitment for xa such that xa ≥ a,
	2.	 Xb is a commitment for xb such that xb ≤ b.

Scientific Reports | (2025) 15:31793 4| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Then, to verify that (y, X) is an encryption of x ∈ [a, b], the verifier must additionally be able to verify in zero-
knowledge that

	 x = xa = xb

for the committed values. More formally, to prove that (y, X) is an encryption of x ∈ [a, b], a zero-knowledge
proof must be given for the relation

	
RVeq =

{ (
(y, X, Xa, Xb),

(x, r, ra, rb)
)

∣∣∣∣∣
y = gr

p ∧ X = gx
p · pkr∧

Xa = gx
q · hra ∧

Xb = gx
q · hrb

}
.

A ZKP for RVeq therefore proves that a vote for an eligible candidate was encrypted without leaking who the
vote is for.

When p = q, the proof is a variant of proving discrete logarithm equality in a group, for which an efficient
approach has been given by Chaum and Pedersen48. However, the difficulty lies in proving this efficiently
when p ̸= q, which is the case here, i.e. proving discrete logarithm equality across different groups. For the
latter problem, an approach using Pedersen commitments was presented by Chase et al.49. More formally, the
technique by Chase et al. gives a ZKP for the relation

	
RDLeq =

{ (
(X1, X2),

(x, r1, r2)
)

∣∣∣∣ X1 = gx
1 · hr1

1 ∧ X2 = gx
2 · hr2

2

}

although a range proof for x ∈ [0, 2bx − 1] is needed as part of the technique. This range proof must be
knowledge-sound, and the authors themselves propose to use Bulletproofs for this49, 5. The protocol is therefore
ideal for the current use case, since such a range proof is required regardless, i.e, πa, πb. Moreover, since the
protocol in49 is a public-coin protocol, it can also be made non-interactive with the Fiat-Shamir transform.

For efficiency, instead of first proving xa = xb for commitments in Gq and then proving RDLeq, the
technique by Chase et al. can be extended to prove the entirety of RVeq. The resulting Σ-protocol ΠVeq for
proving the relation RVeq is given on Figure 1.

Security guarantees
The mask k is necessary to hide information with random noise, otherwise the verifier could trivially extract
x from z with x = z/c. Since operations are performed over the integers, the traditional approach of picking
the mask uniformly at random from the underlying group is not feasible. As such, not all values of k mask cx
‘sufficiently’. Indeed, not all values of z are equally likely to occur for z < 2bx+bc or z ≥ 2bx+bc+b⊥ , and so the
protocol must be aborted if z leaks information about x.

More formally, the abort condition follows from the following lemma49,50:

Lemma 1  (50, Lemma 1) In the non-aborting case, the value z in the transcript of an honest protocol execution is
uniformly distributed in {2bx+bc , . . . , 2bx+bc+b⊥ − 1}. An honest prover aborts with probability 2−b⊥ .

Notably, the verifier gets no information about k due to the hiding property of the Pedersen commitments
transmitted with the first message. Thus, it is infeasible for the verifier to learn anything about cx regardless of
whether the prover aborts the protocol.

Interactive proofs have certain shortcomings compared to non-interactive proofs. For example, non-
transferability restricts the auditability of i-voting, which is the very situation that this work aims to improve.
Moreover, the three move communication might not be practical from an implementation viewpoint, especially
when aborts are involved.

The protocol can be made non-interactive using the Fiat-Shamir transform51,52 with aborts53. To prevent
the prover from creating unsound proofs by adaptively choosing their statement, the statement and protocol
messages preceding the challenge generation must all be included in the challenge seed54.

The proofs that follow are based on the proofs in49, adapted for the proposed protocol in the non-interactive
setting. This simplifies the proofs, since the prover only outputs a non-aborting transcript and the abort cases
no longer need to be considered49, §4.2. For our proofs, challenges must be obtained from the programmable
random oracle O with c ← O(st, α), where

•	 st is the statement
(
(y, X), (gp, pk), (gq, h), (a, b)

)
,

•	 α is the first message of the protocol, i.e. (w, K, Ka, Kb).

Additionally, we require setting bc ≥ 2λ for collision resistance with Fiat-Shamir due to the birthday attack55,
§7.3.

Theorem 1  The non-interactive protocol ΠVeq is perfectly complete.

Proof  In the non-interactive setting, the prover never aborts. First, for an honest prover, the equation (i)

	 gs
p = gt+cr

p = gt
p · gcr

p = w ·
(
gr

p

)c = w · yc

Scientific Reports | (2025) 15:31793 5| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

is satisfied. Additionally, equation (ii)

	 gz
p · pks = gk+cx

p · pkt+cr = gk
p · pkt ·

(
gx

p · pkr
)c = Kp · Xc

p

is also satisfied. Equations (iii) and (iv) are proven similarly. □

Theorem 2  The non-interactive protocol for the relation RVeq is honest verifier zero-knowledge under the
DLOG assumption for Gp and Gq in the (programmable) random oracle model.

Proof  The simulator takes as input the public parameters, including the group descriptions and the public key
pk. It also has access to the random oracle and can program it with input-output pairs.

First, the simulator samples uniformly at random

	 c
$← [0, 2bc − 1], z

$← [2bx+bc , 2bx+bc+b⊥ − 1],

	 s
$← Zp, sa

$← Zq, sb
$← Zq.

Since K satisfies the equation

	 K = gk
p · pkt = gk

p · pks−cr ·
(
gcx

p · g−cx
p

)
= gz

p · pks ·
(
gx

p · pkr
)−c

,

Fig. 1.  ΠVeq: a Σ-protocol for proving RVeq based on the proof of cross-group discrete logarithm equality by
Chase et al.49.

Scientific Reports | (2025) 15:31793 6| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

the simulator computes the commitment K as

	 K ← gz
p · pks ·

(
Xc

p

)−1

and commitments Ka and Kb analogously. It also computes the commitment w as

	 w ← gs
p ·

(
yc

)−1
.

Finally, the simulator programs the random oracle O such that

	 c ← O
(
st, (w, K, Ka, Kb)

)

and then outputs the transcript

	
(
(w, K, Ka, Kb), c, (z, s, sa, sb)

)
.

Since non-interactive Bulletproofs are fully zero-knowledge in the random oracle model42, §4.4, πa and πb do
not affect the zero-knowledge property of the protocol. However, an unbounded adversary can recover rp from
y and therefore decrypt Xp to recover x, thus breaking the zero-knowledge property. This is not feasible for a
computationally bounded adversary, and thus the protocol can only satisfy computational zero-knowledge.

It remains to show that the distributions of the real and simulated transcripts are computationally
indistinguishable in the programmable random oracle model.

	1.	 In both the real and simulated executions, the challenge c is independently and uniformly sampled from
[0, 2bc − 1].

	2.	 By Lemma 1, z is distributed uniformly in [2bx+bc , 2bx+bc+b⊥ − 1] in both real and simulated transcripts
since there can be no aborted transcripts.

	3.	 In both transcripts, the values s, sa, and sb are uniformly distributed. Indeed, in the real protocol execution,
cr is perfectly masked in Zp by t, since t is sampled uniformly and independently from c, and similarly for
sa, sb in Zq .

	4.	 Since s is uniformly distributed in Zp, K = gk
p · pkt = gk

p · pks−cr is uniformly distributed in Gp. Uniform
distribution can be similarly shown for Ka, Kb. Furthermore, w = gt

p = gs−cr
p , and so w is also uniformly

distributed in Gp.□

Theorem 3  Let κrp be the knowledge error of πrp. The non-interactive protocol for the relation RVeq is 2-spe-
cial sound with knowledge error κ = 2−bc + κrp under the DLOG assumption for Gp and Gq in the (program-
mable) random oracle model.

Proof  Let there be an extractor algorithm Ext which is given as input the range proof πa (alternatively πb) and
two accepting transcripts ((w, K, Ka, Kb), c, (z, s, sa, sb)) and ((w, K, Ka, Kb), ċ, (ż, ṡ, ṡa, ṡb)) with c ̸= ċ.
Such transcripts can exist due to the programmability of the random oracle, where, after outputting c, the oracle
is reprogrammed to output c′ for the same input. The extractor also has access to the public parameters, includ-
ing pk.

The extractor then recovers xp, xq, r, ra, rb such that y = gr
p and

	 X = g
xp
p · pkr, Xa = g

xq
q · hra , Xb = g

xq
q · hrb

with the following steps:

	1.	 Bulletproof range proofs are arguments of knowledge42 and are therefore extractable. Ext can thus extract
((xq − a)∗, r∗

a) with the knowledge-extractor of πa, except with some small failure probability κrp. Since a
is publicly known, the extractor can further recover (x∗

q , r∗
a) such that Xa = g

x∗
q

q · hr∗
a and x∗

q < 2bx .
	2.	 From the two accepting transcripts with distinct challenges c ̸= ċ, the extractor selects the pairs

•	
(
(K, c, z, s), (K, ċ, ż, ṡ)

)
,

•	
(
(Ka, Kb, c, z, sa, sb), (Ka, Kb, ċ, ż, ṡa, ṡb)

)
.

 By defining

	
xp = z − ż

c − ċ
, r = s − ṡ

c − ċ

Ext extracts an opening of X = g
xp
p · pkr since

	
z − ż

c − ċ
= k + cxp − (k + ċxp)

c − ċ
= xp(c − ċ)

c − ċ
= xp

Scientific Reports | (2025) 15:31793 7| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 and the recovery of r holds similarly. Ext then extracts openings for Xa = g
xq
q · hra and Xb = g

xq
q · hrb in

the same manner. The extraction fails with probability 2−bc which is a standard result56, Theorem 1. By the
binding property of Pedersen commitments X, K, Ka, Kb and of ElGamal,

	 (a)	 y = gr
p

	 (b)	 (xq, ra) = (x∗
q , r∗

a)
	 (c)	 (z − cxp, s − cr) = (ż − ċxp, ṡ − ċr)
	 (d)	 (z − cxq, sa − cra, sb − crb) = (ż − ċxq, ṡa − ċra, ṡb − ċrb)

 must all hold under the DLOG assumption.

	3.	 Finally, the extractor returns (xp, xq, r, ra, rb).

It remains to show that xp = xq holds over the integers. From verification checks (ii) and (iii), there must exist
kp, kq, u, u̇, v, v̇ ∈ Z such that

	
z = kp + c · xp + u · p z = kq + c · xq + v · q
ż = kp + ċ · xp + u̇ · p ż = kq + ċ · xq + v̇ · q .

Because z ∈ [2bx+bc , 2bx+bc+b⊥ − 1] for an accepting transcript, it follows that (u, u̇, v, v̇) are non-negative.
By linear combination with respect to p and q,

	

(z − ż) = (c − ċ)xp + (u − u̇)p,

(z − ż) = (c − ċ)xq + (v − v̇)q.

W.l.o.g., let z − ż be positive, since if it is negative, then ż − z is positive instead. From the choice of
parameters and verification checks z − ż < 2bx+bc+b⊥ < 2bq . Moreover, πa ensures that xq < 2bx , and so
|c − ċ|xq < 2bx+bc . It follows that (z − ż) − |c − ċ|xq < 2bq and so (v − v̇) = 0.

Equating the two representations of z − ż with (v − v̇) = 0 yields

	

(c − ċ)xp + (u − u̇)p = (c − ċ)xq

(u − u̇)p = (c − ċ)(xq − xp) .

Since p is prime, it must divide (c − ċ) or (xq − xp), but p > 2bq > 2bc and so it cannot divide |c − ċ|.
Therefore p|(xq − xp) and so xq ≡ xp (mod p). Since xq < p and xp < p, no modular reduction takes place
and so xq = xp in Z as well. □

Proof size
A single Bulletproof uses 2 · ⌈log2(bx)⌉ + 4 elements of Gq and 5 elements of Zq

42, §4.2. In our protocol,
these numbers are doubled for non-aggregated Bulletproofs. Two aggregated Bulletproofs use only
2 · ⌈log2(bx) + 1⌉ + 4 elements of Gq , while the number of elements of Zq remains unchanged42, §4.3.

By compressing the transcript of our protocol into (c, z, s, sa, sb), the transcript size is
τ(2bc + bx + b⊥ + ⌈log2(p)⌉ + 2⌈log2(q)⌉), where τ represents the number of repetitions. In the non-
interactive setting, τ = 1 since the prover only sends a non-aborting transcript. For simplicity, we upper bound
our non-interactive transcript size by 4 elements of Zq , and one element of Zp.

The full proof is formed by our protocol transcript, the two Bulletproofs, and Xa, Xb, which are two
additional elements of Gq . The total proof size, assuming aggregated Bulletproofs, is thus not larger than

•	 2 + (2 · ⌈log2(bx) + 1⌉ + 4) elements of Gq ,
•	 4 + (5) elements of Zq ,
•	 1 element of Zp,

where the numbers in parentheses are due to Bulletproofs. We refer to Section “Benchmarks” for some concrete
numbers based on these estimates.

Concrete instantiation
From Estonian election statistics57, the largest number of candidates in an election since 1992 is 15322. However,
this is the cumulative candidate count across all local governments. In any concrete municipality, the number
of candidates a voter can vote for is much less, and candidate numbers are not global for local elections. The
largest number of candidates unified throughout the country is only 188557. Regardless of the election type, it
is reasonable to assume that for the foreseeable future, no election will have more than 216 candidates, and so
bx = 16.

IVXV uses finite field ElGamal in Group 15 from RFC352658, and so bp = 3071. Given the current state of
classical cryptanalysis, this corresponds to a security level of 128 bits, and so λ = 128. Since the protocol requires
bc ≥ λ for soundness without repetitions, bc = 128 satisfies this requirement, but only in the interactive setting.
In the non-interactive setting, the hash function must have a range of {0, 1}2λ to achieve a collision resistance
of λ bits55, §7.3. In practice, bc = 256 is therefore required for a 128-bit security level against confidentiality and
soundness attacks.

Scientific Reports | (2025) 15:31793 8| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

It remains to find values for b⊥ and bq such that bx + bc + b⊥ < bq and bq ≪ bp. A popular and performant
implementation of Bulletproofs59 is available over the ristretto255 curve60, which is itself built on top of
Curve25519. While using ristretto255 would be beneficial for the performance, it has a group size of 2252, which
is incompatible with bc = 256. By weakening the soundness guarantees to 112 bits of soundness, the challenge
size can be set to bc = 224. Then, b⊥ = 251 − 16 − 224 = 11 and the probability of aborts becomes 2−11. This
remains small and the computational burden of occasional aborts is only borne by the prover. Since the non-
interactive version of the protocol is full computational zero-knowledge, the zero-knowledge guarantees are not
impacted and a 128-bit security level against confidentiality attacks is therefore maintained.

To achieve 128-bit soundness guarantees, a larger curve such as P-384 should be used. By setting bq = 384,
it follows that b⊥ < 112, and so the probability of aborts is 2−112. While b⊥ could be lowered if needed for
compatibility with a smaller curve that still accommodates bc = 256, P-384 is a popular curve choice. Notably
P-384 is used by the Estonian ID card for digital signatures61, 135.

Results
To analyse and benchmark the computational cost of verification, we developed a prototype of the full protocol
in Go62. We chose Go since the IVXV vote collector is also written in Go63, and the common language therefore
simplified real-system benchmarking. In addition, the prototype can hopefully serve as a template for a
production implementation of the protocol should the approach be approved by the election organiser.

We did not implement the Bulletproofs needed as part of the protocol from scratch. Rather, we took the
open-source implementation by ING Bank64—hereinafter ‘library’—as a basis. We did not find a Bulletproofs+
implementation for Go. Since the library uses secp2561k as a hardcoded elliptic curve, we created a group
abstraction inspired by the CIRCL library65. We subsequently replaced the hardcoded curve with the abstraction
for the ease of testing the protocol with different curves. Additionally, we refactored and consolidated the library
code in places for additional clarity and fidelity to the Bulletproofs paper42.

A shortcoming of the library is that it lacks the batching technique which allows for greater efficiency for
proving and verifying two (or more) Bulletproofs. Due to time restrictions, we did not implement batching on
top of the library either.

Some prime-field NIST elliptic curves (e.g. P-256, P-384) are available in Go as part of the standard library,
however, the direct use of the curve operations has been deprecated66. The CIRCL library enhances the P-256
and P-384 implementations provided by the Go standard library, and provides optimised operations on P-38465.
CIRCL also supports the use of the ristretto255 group implemented by the go-ristretto library67. To benchmark
the full protocol we used the versions of P-256, P-384 and ristretto255 provided by CIRCL, and ING Bank’s
secp256k1 implementation.

Benchmarks
We ran the initial benchmarks on a MacBook Pro with a 2.42 GHz M2 Pro processor. Both the prover and verifier
were part of the same program, all data was held in memory and no data was serialised. We took the average of
1000 runs where we set the proof range to [101, 2000] with bx = 16, and voted for the candidate number 1500.
We did not use batching for generating or verifying Bulletproofs. The results are presented in Table 1.

It is clear from the benchmarks that on the prover’s side, the proof generation is unlikely to impact the voting
experience. While the voting client is written in C++ and not Go, implementation performance in C++ should be
comparable. While verification times are lower than proving times, the server must be able to handle and process
many concurrent requests. As such, the direct impact is more difficult to assess based on these benchmarks
alone. However, it is clear that the curve choice may have a significant impact on the verifier, whereas the impact
on the prover is negligible in practice.

To better determine the impact of the protocol on the vote collection server, i.e. the verifier, we ran a
benchmark from the standard IVXV benchmark suite with the verification function added in. According to the
data obtained from the IVXV developers, the peak concurrent load for IVXV has been 12 votes per second. A
typical benchmark target is therefore to process 40 votes per second until the target number of votes has been
cast68. As such, if the vote collector can keep up with this rate with the additional verification added in, the
protocol can be deemed practical.

λ κ bc Curve group Prover’s work (ms)

Verifier’s work (ms)

BP RP Total

128 112 224 secp256k1 39.10 10.81 20.34 31.15

128 112 224 ristretto255 41.19 11.08 20.88 31.96

128 112 224 P-256 40.30 10.77 20.01 30.78

128 112 224 P-384 171.8 79.06 22.76 101.8

128 128 256 P-384 169.4 77.89 23.17 101.1

Table 1.  Prototype benchmarks on a MacBook Pro with a 2.42 GHz M2 Pro processor. All timings are in
milliseconds. ‘BP’ represents the time required to verify both Bulletproofs, while ‘RP’ represents the time
needed to verify ΠVeq. λ indicates the security level against confidentiality attacks and is upper bounded by the
128-bit security level of the ElGamal group. κ indicates the soundness level of the scheme.

Scientific Reports | (2025) 15:31793 9| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The goal was to run benchmarks on the same servers that are used during the actual elections, which are
physical servers in Estonia hosted by the Estonian Information System Authority (RIA). The servers run Ubuntu
22.04, with 8 CPU cores with a base frequency of 2.90 GHz, and 16 GB of RAM. The processor itself is the Intel®
Xeon® Gold 6326 Processor with 16 physical cores, however the vote collector is virtualised, with 8 CPU cores
available to the virtualised container. For load balancing and redundancy, the vote collector is comprised of
three servers. Unfortunately, due to the proximity in time to the 2024 elections, there was little availability for
benchmarking on this hardware. As a result, we could only run two benchmarks for which we chose the P-256
and P-384 curves.

For the benchmarks, a proof of vote correctness was serialised into JSON and stored as a Go variable in
the server-side code. For each received vote, after performing the habitual verification checks, the server de-
serialised the JSON proof and verified it, therefore simulating the actual work of the verifier. In a production
setting, the proof and the ballot will need to be read from the ASiC-E signature container containing the
encrypted ballot instead. (ASiC-E is a container format defined in ETSI EN 319 162-1, used to bind digital
signatures or time assertions to the file objects they apply to. The ASiC-E format is commonly used for digital
signatures in Estonia.) However, this overhead is likely to be marginal. Additionally, for the benchmarking,
the server re-generated the public parameters before verifying the proof since this allowed easily hooking the
prototype to the vote collector. This can easily be avoided in production since the public parameters are known
in advance and are the same for every proof.

A total of 882366 ballots were cast, which was the size of the list of eligible voters in the testing environment,
and for which a baseline benchmark already existed. The results are presented in Table 2. While the impact of
the proof verification on the processing rate of received ballots is negligible, some overhead is still introduced as
shown by the increased database error rate.

The vote collector uses etcd69 as its database for storing ballots. While the common practice is to allocate
dedicated resources to etcd70, the vote collector’s etcd shares its resources with the rest of the collector’s services,
including the verifier service. The higher etcd error count could therefore be explained by the proof verification
requiring some of the processing power that was previously used by etcd only. However, it was not possible to
determine with certainty whether this was the case, or whether the etcd errors were caused by unrelated state-
changes to the system in-between benchmarks.

If an etcd error happens before the received ballot is stored, the collector will retry the operation. However,
if the ballot cannot be stored before the configured timeout—typically between 5–10 seconds—is reached, the
voting process will fail and the voter will have to restart the voting process. While the number of etcd errors is
higher with the proof verifications added in, the error rates remain marginal compared to the total number of
votes cast. Furthermore, processing 40 ballots per second is three to eight times more than the expected voting
rate during the elections. Even if such a rate is achieved during a peak, it is unlikely to be sustained for a period
of several hours and the real impact is therefore likely to be negligible. This remains a speculation however, since
a benchmark with a target rate of 10 ballots per second could not be performed due to the unavailability of the
infrastructure.

A possible improvement would be to deploy etcd on its own dedicated resources. Not only could this improve
or solve the performance problem that caused etcd transactions to fail, it could be a worthwhile architecture
improvement in general. While this may require purchasing or leasing additional hardware, the resource
requirements for etcd are modest71 and the cost should therefore not be prohibitive. Three 4-core machines with
16 GB of RAM each should be sufficient for IVXV’s etcd needs.

Since the proofs were hardcoded as JSON objects into the collector for the benchmarks, we do not have
empirical data available regarding the additional space needed for storing the proofs. However, the theoretical
proof size given in Section “Proof size” shows that space is not a limiting factor for practical parameters.
Indeed, for the P-384 curve, points can be represented with 49 bytes where the extra byte represents whether
the y coordinate is even or odd. Thus, for bp = 3072, bq = 384, bx = 16, the individual proof size is
16 · 49B + 9 · 48B + 384B = 1.6kB, assuming elliptic curve point compression and aggregated Bulletproofs.
The overhead of encoding the proof using ASN.1 DER is negligible.

Discussion
While we chose the protocol for proving vote correctness with simplicity in mind, the resulting protocol is not
exactly simple. The complexity is twofold: there is the complexity due to the underlying range proof protocol, but
also the complexity due to the group switching strategy.

Group switching is seemingly unavoidable as long as the ElGamal ciphertext is generated in the prime-
order group of quadratic residues. Because operations in this group are computationally expensive, it is unlikely
that range proofs could be efficiently generated in this group, regardless of the technique used. Range proofs

Category Duration Processing rate DB error count

Reference 06:21:03 38.59 16

P-256 06:20:28 38.66 228

P-384 06:24:47 38.22 1205

Table 2.  Load tests with proof verification on the IVXV vote collector with 882366 ballots cast. The duration is
in hh:mm:ss format, the processing rate is in ballots per second, and the benchmark target was 40 ballots/s. DB
error count represents the number of errors related to the etcd database of the vote collector.

Scientific Reports | (2025) 15:31793 10| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

must therefore be generated in a group different than the one used for the ElGamal encryption, and a group
switching strategy must be used to bind the proof to the ciphertext. Regarding range proofs, it is our opinion that
Bulletproofs(+) are the most understandable of the considered approaches.

To avoid the need for group switching, the ElGamal ciphertext could be generated in a computationally more
performant group instead. In practice, this means changing the currently used prime-order group of quadratic
residues modulo a prime in favour of lifted ElGamal in an elliptic curve group. In lifted elliptic curve ElGamal,
the message is represented as an integer which is used as a scalar and is multiplied with the group’s base point
(the generator). In additive notation, this gives

	 EncH(m; r) = (rG, mG + rH)

where G is the group’s base point, H is the public key (a point on the curve), m is the message scalar, and r is a
random scalar. By only encrypting an integer in the range [0, 216 − 1] it is certain that the message scalar will
not overflow the group order.

By picking an elliptic curve compatible with the range proof, the encryption and the range proofs could then
be generated in the same group. While this may not replace the need for generating a range proof separately
from the ciphertext, proving the equality of discrete logarithms in the same group is simpler than using the
cross-group proof, e.g. as in48. Since there are less operations to do, this will also improve overall performance
on top of simplifying the vote correctness protocol. However, a complete migration to elliptic curves requires
re-implementing the current IVXV cryptosystem, thus losing the ‘tried and tested’ advantage of the current
implementation. The potential development effort is therefore much higher than solely using elliptic curves for
the vote correctness proof.

One change that will be inevitable when utilizing the Bulletproofs will be the candidate encoding under the
encryption. Currently, IVXV uses a data structure including the candidate name, number, precinct number and
election event identifier. As Bulletproofs are range proofs, these data structures will need to be remapped into a
continuous range of integers. This is technically, of course, doable, but it introduces another layer of indirection,
potentially making auditing of the system more complex and thus reducing transparency.

While the benchmark results show that the current prototype should already be practical performance-wise,
there are a number of ways to potentially improve the performance. Performance improvements are especially
important if the election organiser decides that the current buffer zone between real loads and test loads is not
large enough.

The first change would be to implement Bulletproof batching to verify the two range proofs simultaneously.
This would replace the 4⌈log2(n)⌉ + 8 group elements needed for verifying the Bulletproofs separately with
2⌈log2(n) + 1⌉ + 4 elements, thus shortening the proofs. While the exact time-improvement is hard to
estimate, verification time should improve at least by a quarter judging by data from the original paper42, §6.3.
Furthermore, since Bulletproofs+ can be used as a drop-in replacement to Bulletproofs, Bulletproofs+ could be
used instead, although this would improve the proof size rather than verification time. While Bulletproofs++ are
also a drop-in replacement to Bulletproofs(+), we find the protocol itself to be more complicated than the former
two and thus do not recommend this approach. It might also be possible to solely replace the inner product
argument with future improvements in the literature without replacing the Bulletproofs(+) themselves; however,
this is not guaranteed.

Finally, other than the potential improvements that could be obtained by optimising the Go code, a more
radical change would be to use another programming language for the proof verification. In particular, Rust72
could be used since many production-grade open source proof system implementations have been written in
Rust (e.g.59,73–75). In turn, this would remove the need for an in-house implementation of the underlying proof
system and is likely to also improve performance. Developers could therefore treat the implementation as a
black-box, although any third-party library should still be audited.

The proofs of vote correctness must be included in the digitally signed ASiC-E container alongside the
encrypted ballot. These proofs must be verified by the vote collector upon receiving each vote, as this enables it
to provide immediate feedback to the voter when something is amiss. It remains to determine what should the
verification application, the processing application, the key application, and the auditor do.

Since the verification application has the capability to decrypt the vote by using the randomness used during
encryption, it can verify the range directly without needing the range proofs. In fact, the verification application
currently already verifies whether the ballot contains an eligible candidate identifier.

A necessary change to the verification application, however, is to display the full candidate information
as usual. That is, the verification application should map the integer in the ballot back to the full candidate
identifier. In principle, it should not be possible to cast a vote with an invalid range proof without the collector
refusing to accept the vote. However, the purpose of the verification application is to determine whether both
the voting client and the collector behaved correctly. Since the verification application can only be used if a vote
has been successfully cast, the verification application should still verify the range proofs. If the range proofs do
not validate, the application should alert the voter that the collector misbehaved.

Similarly, the processing application should verify the range proofs to also make sure that the collector
did not misbehave. The after-the-fact verification of proofs is the main reason why the proofs should be non-
interactive and transferable. If the processing application does not verify that all range proofs are valid, ballots
with illegitimate contents could still reach the decryption phase if they slipped by the collector. Since the
processing application performs all necessary verifications and is operated by the election organiser, the output
of the application can be considered trusted. As such, the key application needs not verify the range proofs,
similarly to how the key application does not currently verify whether ballots are well formed, as this is already
done by the processor. In fact, it is not possible to verify the vote correctness proofs after ballots have been mixed

Scientific Reports | (2025) 15:31793 11| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

since the ballot randomness is altered. Therefore, the proofs can only be verified with pre-mixnet ballots. The
auditor should verify all the proofs as well.

The processing application and the Android verification application are written in Java, while the iOS
verification application is written in Objective-C. This means that Bulletproofs will also have to be implemented
in these other languages, which increases the development effort significantly. While this development effort
may outweigh the benefits of proof verification by the verification applications, the verification by the processing
application is a must. For Java, the implementation by Bünz76 could be taken as a basis.

Conclusions and future work
Even though all NP-languages are known to have zero-knowledge arguments77, their performance in specific
situations is still a question that has to be addressed case by case. While a proof of ballot correctness may indeed
be simple when there are only two choices16, the solution for larger elections is much less straightforward.

For example, in the case of Estonian elections, there may easily be a few hundred candidates in one precinct.
Thus, the solution for the Estonian IVXV Internet voting system must handle this volume efficiency, while
supporting hundreds of thousands of voters and dozens of parallel vote casting sessions.

The current paper proposes one possible solution that meets all these criteria. It utilizes Bulletproofs, a
technique recently popularized in blockchain applications. One of the challenges with Bulletproofs is that in
order to benefit from their efficiency, they should be run on top of elliptic curves, while IVXV is using mod-p
ElGamal encryption. Thus, we additionally implemented and benchmarked the group switching mechanism by
Chase et al.49.

The benchmarks confirm that the strategy is performant in practice, even on the current IVXV infrastructure.
Indeed, under expected i-voting loads, the server-side ballot processing rate is not impacted, and the proof
generation’s impact is on the voter side is negligible. By implementing Bulletproofs over the P-384 curve, the
individual ballot correctness proof size is approximately 1.6 kB. Had the proofs been used in IVXV for the 2024
European Parliament elections, the cumulative proof size would have been approximately 252 MB. We have also
discussed some additional improvements to potentially upgrade the IVXV infrastructure, and further reduce
the proof size.

Even though Bulletproofs are efficient, their construction is relatively involved. While this is not a problem
mathematically, a solution with a conceptually simpler setup would be preferable from the societal transparency
point of view. Also, Bulletproofs are range proofs which presumes changing the current ballot encoding to a
continuous range of integers. Again, this is not a problem mathematically, but the current IVXV encoding that
includes the candidate ID and a precinct number may provide easier auditability. Thus, full set membership
proofs29,78 could be considered as viable alternatives, even at the cost of reduced performance.

Data availability
The software code created during this research is available at https://github.com/takakv/msc-poc . No other
kinds of data have been created nor collected for this research.

Received: 5 March 2025; Accepted: 19 August 2025

References
	 1.	 Willemson, J. Bits or paper: Which should get to carry your vote?. In J. Inf. Secur. Appl. 38, 124–131. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​J​.​J​I​S​A​

.​2​0​1​7​.​1​1​.​0​0​7​​​​ (2018).
	 2.	 Snetkov, N., Vakarjuk, J. & Willemson, J. Comparing security levels of postal and internet voting. In Inform. Secur. J. : A Global

Perspect. 34(4), 265–285. https://doi.org/10.1080/19393555.2024.2410332 (2024).
	 3.	 Chevallier-Mames, B., et al. On some incompatible properties of voting schemes. In Towards Trustworthy Elections, New Directions

in Electronic Voting. Lecture Notes in Computer Science Vol. 6000 (ed. David Chaum et al.) 191–199 (Springer, 2010). ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​6​4​2​-​1​2​9​8​0​-​3​_​1​1​​​​​.​​​

	 4.	 Pankova, A. & Willemson, J. Relations between privacy, verifiability, accountability and coercion-resistance in voting protocols. In
Applied Cryptography and Network Security - 20th International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings.
Lecture Notes in Computer Science. Vol. 13269 (ed. Giuseppe A. & Daniele V.) 313–333 (Springer, ​2​0​2​2​)​.​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​
8​-​3​-​0​3​1​-​0​9​2​3​4​-​3​_​1​6​​​​​.​​​

	 5.	 Wikström, D., et al. How could snowden attack an election? In Electronic Voting - Second International Joint Conference, E-Vote-
ID 2017, Bregenz, Austria, October 24-27, 2017, Proceedings. Lecture Notes in Computer Science Vol. 10615 (ed. Robert K. et al.)
280–291 (Springer, 2017).https://doi.org/10.1007/978-3-319-68687-5_17.

	 6.	 Müller, J. Breaking and fixing vote privacy of the estonian E-voting protocol IVXV. In FC 2022 International Workshops, Revised
Selected Papers. Lecture Notes in Computer Science Vol. 13412 (ed. Shin’ichiro Matsuo et al.) 325–334 (Springer, ​2​0​2​2​)​.​​​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​0​3​1​-​3​2​4​1​5​-​4​_​2​2​​​​​.​​​

	 7.	 Ehin, P. et al. Internet voting in Estonia 2005–2019: Evidence from eleven elections. In Gov. Inf. Q. 39(4), 101718. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​0​1​6​/​J​.​G​I​Q​.​2​0​2​2​.​1​0​1​7​1​8​​​​ (2022).

	 8.	 Farzaliyev, V., Krips, K. & Willemson, J. Developing a personal voting machine for the Estonian internet voting system. In SAC ’21:
The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Republic of Korea, March 22-26, 2021.. (ed. Chih-Cheng
Hung et al.) 1607–1616 (ACM, 2021). https://doi.org/10.1145/3412841.3442034.

	 9.	 https://gafgaf.infoaed.ee/posts/kaks-kehtetut/.
	10.	 Heiberg, S., et al. Improving the Verifiability of the Estonian Internet Voting Scheme. In E-Vote-ID 2016, Proceedings. Lecture Notes

in Computer Science Vol. 10141(ed. Robert Krimmer et al.) 92–107 (Springer, 2016). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​3​1​9​-​5​2​2​4​0​-​1​_​
6​​​​​.​​​

	11.	 Elektroonilise h ä ä letamise ü ldraamistik ja selle kasutamine Eesti riiklikel valimistel. Tech. rep. Version 1.1. Feb. 3, 2023, IVXV-
ÜK-1.1.

	12.	 Riigikogu. Riigikogu valimise seadus. Riigi Teataja. (2020). rt: 103012020013.
	13.	 Cohen, J. D. & Fischer, M. J. A robust and verifiable cryptographically secure election scheme. In 26th Annual Symposium on

Foundations of Computer Science. 372–382 (IEEE Computer Society, 1985).https://doi.org/10.1109/SFCS.1985.2.

Scientific Reports | (2025) 15:31793 12| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

https://github.com/takakv/msc-poc
https://doi.org/10.1016/J.JISA.2017.11.007
https://doi.org/10.1016/J.JISA.2017.11.007
https://doi.org/10.1080/19393555.2024.2410332
https://doi.org/10.1007/978-3-642-12980-3_11
https://doi.org/10.1007/978-3-642-12980-3_11
https://doi.org/10.1007/978-3-031-09234-3_16
https://doi.org/10.1007/978-3-031-09234-3_16
https://doi.org/10.1007/978-3-319-68687-5_17
https://doi.org/10.1007/978-3-031-32415-4_22
https://doi.org/10.1007/978-3-031-32415-4_22
https://doi.org/10.1016/J.GIQ.2022.101718
https://doi.org/10.1016/J.GIQ.2022.101718
https://doi.org/10.1145/3412841.3442034
https://gafgaf.infoaed.ee/posts/kaks-kehtetut/
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1109/SFCS.1985.2
http://www.nature.com/scientificreports

	14.	 Benaloh, J. C. & Yung, M. Distributing the power of a government to enhance the privacy of voters. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing. (ed. Joseph Y. Halpern.) 52–62 (ACM, 1986). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​
.​1​1​4​5​/​1​0​5​9​0​.​1​0​5​9​5​​​​​.​​​

	15.	 Benaloh, J. C. Verifiable secret-ballot elections. PhD thesis. Yale University, (1987).
	16.	 Cramer, R., Gennaro, R. & Schoenmakers, B. A Secure and Optimally Efficient Multi-Authority Election Scheme. In EUROCRYPT

’97, Proceedings. Lecture Notes in Computer Science. Vol. 1233 (ed. Walter Fumy.) 103–118 (Springer, 1997). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​
7​/​3​-​5​4​0​-​6​9​0​5​3​-​0​_​9​​​​​.​​​

	17.	 Devillez, H., Pereira, O. & Peters, T. How to Verifiably Encrypt Many Bits for an Election? In ESORICS 2022, Proceedings, Part II.
Lecture Notes in Computer Science. Vol. 13555 (ed. Vijayalakshmi Atluri et al.) 653–671 (Springer, ​2​0​2​2​)​.​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​
7​8​-​3​-​0​3​1​-​1​7​1​4​6​-​8​_​3​2​​​​​.​​​

	18.	 Clarkson, M. R., Chong, S. & Myers, A. C. Civitas: Toward a secure voting system. In 2008 IEEE Symposium on Security and Privacy
(SP 2008). 354–368 (IEEE Computer Society, 2008).https://doi.org/10.1109/SP.2008.32.

	19.	 Sandler, D., Derr, K. & Wallach, D. S. VoteBox: A tamper-evident, verifiable electronic voting system. In Proceedings of the 17th
USENIX Security Symposium. (ed. by Paul C. van Oorschot.) 349–364 (USENIX Association, 2008)

	20.	 Benaloh, J., et al. STAR-Vote: A secure, transparent, auditable, and reliable voting system. In 2013 Electronic Voting Technology
Workshop / Workshop on Trustworthy Elections. (USENIX Association, 2013).

	21.	 Cortier, V., Gaudry, P. & Glondu, S. Belenios: A Simple Private and Verifiable Electronic Voting System. In Foundations of Security,
Protocols, and Equational Reasoning - Essays Dedicated to Catherine A. Meadows. Lecture Notes in Computer Science. Vol. 11565.
(ed. by Joshua D. Guttman et al.) 214–238 (Springer, 2019). https://doi.org/10.1007/978-3-030-19052-1_14.

	22.	 Benaloh, J. & Naehrig, M. Election Guard Design Specification. Tech. rep. Version 2.0.0. Microsoft Reserach, Aug. 18, (2023).
	23.	 Martin H. & Kazue S. Efficient receipt-free voting based on homomorphic encryption. In EUROCRYPT 2000, Proceedings. Lecture

Notes in Computer Science. Vol. 1807 (ed. Bart Preneel.) 539–556 (Springer, 2000). https://doi.org/10.1007/3-540-45539-6_38.
	24.	 Joaquim, Rui. How to prove the validity of a complex ballot encryption to the voter and the public. In J. Inform. Secur. Appl. 19(2),

130–142. https://doi.org/10.1016/J.JISA.2014.04.004 (2014).
	25.	 Brands, S. Rapid demonstration of linear relations connected by Boolean operators. In EUROCRYPT ’97, Proceedings. Lecture

Notes in Computer Science. Vol. 1233 (ed. Walter Fumy.) 318–333 (Springer, 1997). https://doi.org/10.1007/3-540-69053-0_22.
	26.	 Huber, N., et al. Kryvos: Publicly Tally-Hiding Verifiable E-Voting. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2022. (ed. by Heng Yin et al.) 1443–1457 (ACM, ​2​0​2​2​)​.​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​5​/​3​5​4​
8​6​0​6​.​3​5​6​0​7​0​1​​​​​.​​​

	27.	 Groth, J. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Proceedings, Part II. Lecture Notes in
Computer Science. Vol. 9666 (Ed. Marc Fischlin and Jean-Sébastien Coron.) 305–326 (Springer, 2016). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​
8​-​3​-​6​6​2​-​4​9​8​9​6​-​5​_​1​1​​​​​.​​​

	28.	 Lueks, W., Querejeta-Azurmendi, I. & Troncoso, C. VoteAgain: A scalable coercion-resistant voting system. In 29th USENIX
Security Symposium, USENIX Security 2020. (ed. Srdjan Capkun and Franziska Roesner.) 1553–1570 (USENIX Association, 2020).

	29.	 Bayer, S. & Groth, J. Zero-knowledge argument for polynomial evaluation with application to blacklists. In EUROCRYPT 2013,
Proceedings. Lecture Notes in Computer Science. Vol. 7881 (ed. Thomas Johansson and Phong Q. Nguyen.) 646–663 (Springer,
2013).https://doi.org/10.1007/978-3-642-38348-9_38.

	30.	 Haenni, R., et al. CHVote Protocol Specification. Cryptology ePrint Archive. (2017). iacr: 2017/325.
	31.	 Canetti, R., et al. Universally composable two-party and multi-party secure computation. In Proceedings on 34th Annual ACM

Symposium on Theory of Computing. (ed. John H. Reif.) 494–503 (ACM, 2002).https://doi.org/10.1145/509907.509980.
	32.	 Benarroch, D. et al. Zero-knowledge proofs for set membership: efficient, succinct, modular. In Des. Codes Cryptogr. 91(11), 3457–

3525. https://doi.org/10.1007/S10623-023-01245-1 (2023).
	33.	 Campanelli, M., Hall-Andersen, M. & Kamp, S. H. Curve trees: practical and transparent zero-knowledge accumulators. In 32nd

USENIX Security Symposium, USENIX Security 2023. (ed. by Joseph A. Calandrino and Carmela Troncoso.) 4391–4408 (USENIX
Association, 2023).

	34.	 Christ, M., et al. SoK: Zero-Knowledge Range Proofs. Cryptology ePrint Archive. (2024). iacr: 2024/430.
	35.	 Bootle, J., et al. Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In ASIACRYPT 2018, Proceedings,

Part I. Lecture Notes in Computer Science. Vol. 11272 (ed. Thomas Peyrin and Steven D. Galbraith.) 595–626 (Springer, 2018).
https://doi.org/10.1007/978-3-030-03326-2_20.

	36.	 Deng, C. et al. Cuproof: Range proof with constant size. In Entropy 24(3), 334. https://doi.org/10.3390/E24030334 (2022).
	37.	 Cho, K., Cho, S. & Kim, S. Lightweight signature-based range proof. In 13th International Conference on Information and

Communication Technology Convergence, ICTC 2022. 1862–1865, (IEEE, 2022) https://doi.org/10.1109/ICTC55196.2022.9952590.
	38.	 Wang, N., Chau, S. C-K. & Liu, D. SwiftRange: A short and efficient zero-knowledge range argument for confidential transactions

and more. In IEEE Symposium on Security and Privacy, SP 2024, Proceedings. 1832–1848 (IEEE, 2024). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​S​P​
5​4​2​6​3​.​2​0​2​4​.​0​0​0​5​4​​​​​.​​​

	39.	 Wang, N. & Chau, S. C-K. Flashproofs: Efficient zero-knowledge arguments of range and polynomial evaluation with transparent
setup. In ASIACRYPT 2022, Proceedings. Lecture Notes in Computer Science. Vol. 13792 (ed. by Shweta Agrawal and Dongdai Lin.)
219–248 (Springer, 2022). https://doi.org/10.1007/978-3-031-22966-4_8.

	40.	 Deng, C., et al. A survey on range proof and its applications on blockchain. In 2019 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, CyberC 2019. 1–8 (IEEE, 2019).https://doi.org/10.1109/CYBERC.2019.00011.

	41.	 Couteau, G., et al. Sharp: Short relaxed range proofs. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022. (ed. Heng Yin et al.) 609–622 (ACM, 2022). https://doi.org/10.1145/3548606.3560628.

	42.	 Bünz, B., et al. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings. 315–334 (IEEE Computer Society, 2018). https://doi.org/10.1109/SP.2018.00020.

	43.	 https://crypto.stanford.edu/bulletproofs/.
	44.	 https://github.com/dalek-cryptography/bulletproofs.
	45.	 ​h​t​t​p​s​:​​/​/​t​l​u​.​​t​a​r​i​l​a​​b​s​.​c​o​m​​/​p​r​o​t​​o​c​o​l​s​/​​m​i​m​b​l​e​​w​i​m​b​l​e​​-​m​b​-​b​p​-​u​t​x​o.
	46.	 Chung, H. W. et al. Bulletproofs+: Shorter proofs for a privacy-enhanced distributed ledger. In: IEEE Access 10, 42067–42082.

https://doi.org/10.1109/ACCESS.2022.3167806 (2022).
	47.	 Eagen, L., et al. Bulletproofs++: Next Generation Confidential Transactions via Reciprocal Set Membership Arguments. Cryptology

ePrint Archive. (2022). iacr: 2022/510.
	48.	 Chaum, D. & Pedersen, T. P. Wallet databases with observers. In CRYPTO ’92, Proceedings. Lecture Notes in Computer Science. Vol.

740 (ed. Ernest F. Brickell.) 89–105 (Springer, 1992). https://doi.org/10.1007/3-540-48071-4_7.
	49.	 Chase, M., et al. Proofs of discrete logarithm equality across groups. Cryptology ePrint Archive. (2022). iacr: 2022/1593.
	50.	 Abdalla, M. et al. Tightly secure signatures from lossy identification schemes. In J. Cryptol. 29(3), 597–631. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​

7​/​S​0​0​1​4​5​-​0​1​5​-​9​2​0​3​-​7​​​​ (2016).
	51.	 Fiat, A. & Shamir, A. How to prove yourself: practical solutions to identification and signature problems. In CRYPTO ’86,

Proceedings. Lecture Notes in Computer Science. Vol. 263 (ed. Andrew M. Odlyzko.) 186–194 (Springer, 1986). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​0​7​/​3​-​5​4​0​-​4​7​7​2​1​-​7​_​1​2​​​​​.​​​

	52.	 Bellare, M. & Rogaway, P. Random oracles are practical: A paradigm for designing efficient protocols. In CCS ’93, Proceedings of
the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. (ed. Dorothy E.
Denning et al.) 62–73 (ACM, 1993).https://doi.org/10.1145/168588.168596.

Scientific Reports | (2025) 15:31793 13| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

https://doi.org/10.1145/10590.10595
https://doi.org/10.1145/10590.10595
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-031-17146-8_32
https://doi.org/10.1007/978-3-031-17146-8_32
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1016/J.JISA.2014.04.004
https://doi.org/10.1007/3-540-69053-0_22
https://doi.org/10.1145/3548606.3560701
https://doi.org/10.1145/3548606.3560701
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/S10623-023-01245-1
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.3390/E24030334
https://doi.org/10.1109/ICTC55196.2022.9952590
https://doi.org/10.1109/SP54263.2024.00054
https://doi.org/10.1109/SP54263.2024.00054
https://doi.org/10.1007/978-3-031-22966-4_8
https://doi.org/10.1109/CYBERC.2019.00011
https://doi.org/10.1145/3548606.3560628
https://doi.org/10.1109/SP.2018.00020
https://crypto.stanford.edu/bulletproofs/
https://github.com/dalek-cryptography/bulletproofs
https://tlu.tarilabs.com/protocols/mimblewimble-mb-bp-utxo
https://doi.org/10.1109/ACCESS.2022.3167806
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/S00145-015-9203-7
https://doi.org/10.1007/S00145-015-9203-7
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/168588.168596
http://www.nature.com/scientificreports

	53.	 Lyubashevsky, V. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In ASIACRYPT 2009, Proceedings.
Lecture Notes in Computer Science. Vol. 5912 (ed. Mitsuru Matsui.) 598–616 (Springer, 2009). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​6​4​2​-​1​
0​3​6​6​-​7​_​3​5​​​​​.​​​

	54.	 Bernhard, D., Pereira, O. & Warinschi, B. How not to prove yourself: pitfalls of the fiat-shamir heuristic and applications to helios.
In ASIACRYPT 2012, Proceedings. Lecture Notes in Computer Science. Vol. 7658 (ed. Xiaoyun Wang and Kazue Sako.) 626–643
(Springer, 2012).https://doi.org/10.1007/978-3-642-34961-4_38.

	55.	 Stinson, Douglas R. Cryptography - theory and practice. Discrete mathematics and its applications series. CRC Press, (1995).
	56.	 Damgård, I. On Σ-protocols. 2010. https://cs.au.dk/%7Eivan/Sigma.pdf (visited on 05/12/2024).
	57.	 State Electoral Office. Statistics. (2023). https://www.valimised.ee/en/archive/statistics (visited on 05/12/2024).
	58.	 Willemson, J. Creating a decryption proof verifier for the Estonian internet voting system. In Proceedings of the 18th International

Conference on Availability, Reliability and Security, ARES 2023. 58:1–58:7 (ACM, 2023).https://doi.org/10.1145/3600160.3605467.
	59.	 de Valence, H., Yun, C. & Andreev, O. Bulletproofs (Dalek Cryptography). https://github.com/dalek-cryptography/bulletproofs

(visited on 05/12/2024).
	60.	 https://ristretto.group.
	61.	 Parsovs, A. Estonian electronic identity card and its security challenges. PhD thesis. University of Tartu, (2021).
	62.	 Kraavi, T. ZKRPs of ballot correctness. (2024). https://github.com/takakv/msc-poc (visited on 05/12/2024).
	63.	 Smartmatic-Cybernetica. IVXV Voting Service. Version 1.8.2-RK2023. (2023). ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​v​a​l​i​​m​i​s​​e​d​​/​i​v​​x​v​​/​t​​r​e​e​/​​m​a​s​​t​e​​r​/​v​o​t​

i​n​g (visited on 05/12/2024).
	64.	 ING Bank. zkrp. (2021). https://pkg.go.dev/github.com/ing-bank/zkrp (visited on 05/12/2024).
	65.	 Faz-Hernández, A. & Kwiatkowski, K. Introducing CIRCL: An Advanced Cryptographic Library. Version 1.3.7. July (2019).

https://github.com/cloudflare/circl/ (visited on 05/12/2024).
	66.	 The Go Authors. Package elliptic. https://pkg.go.dev/crypto/elliptic (visited on 05/12/2024).
	67.	 Bas Westerbaan. go-ristretto. https://github.com/bwesterb/go-ristretto (visited on 05/12/2024).
	68.	 Sven Heiberg. Private communication. May (2024).
	69.	 https://etcd.io.
	70.	 https://etcd.io/docs/v3.5/faq/#deployment.
	71.	 https://etcd.io/docs/v3.5/op-guide/hardware/.
	72.	 https://www.rust-lang.org.
	73.	 The Tari Project. Bulletproofs+. https://github.com/tari-project/bulletproofs-plus (visited on 05/12/2024).
	74.	 Polygon Zero Team. plonky2. https://github.com/0xPolygonZero/plonky2 (visited on 05/12/2024).
	75.	 0xProject. OpenZKP. https://github.com/0xProject/OpenZKP (visited on 05/12/2024).
	76.	 Bünz, B. BulletProofLib. (2017). https://github.com/bbuenz/BulletProofLib (visited on 05/12/2024).
	77.	 Goldreich, O., Micali, S. & Wigderson, A. Proofs that yield nothing but their validity for all languages in NP have zero-knowledge

proof systems. In J. ACM 38(3), 691–729. https://doi.org/10.1145/116825.116852 (1991).
	78.	 Groth, J. & Kohlweiss, M. One-out-of-many proofs: Or how to leak a secret and spend a coin. In: EUROCRYPT 2015, Proceedings,

Part II. Lecture Notes in Computer Science. Vol. 9057 (ed. Elisabeth Oswald and Marc Fischlin.) 253–280 (Springer, 2015). ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​6​6​2​-​4​6​8​0​3​-​6​_​9​​​​​.​​​

Acknowledgements
This paper has been supported by the Estonian Research Council under the grant number PRG2177.

Author contributions
T.K. was the main researcher working on the project, developing the proof-of-concept implementation, bench-
marking it and writing the report. J.W. was T.K.’s supervisor, setting the original research problem, suggesting the
literature, editing the paper, providing the funding for research, and acting as the contact author.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:31793 14| https://doi.org/10.1038/s41598-025-16764-1

www.nature.com/scientificreports/

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-34961-4_38
https://cs.au.dk/%7Eivan/Sigma.pdf
https://www.valimised.ee/en/archive/statistics
https://doi.org/10.1145/3600160.3605467
https://github.com/dalek-cryptography/bulletproofs
https://ristretto.group
https://github.com/takakv/msc-poc
https://github.com/valimised/ivxv/tree/master/voting
https://github.com/valimised/ivxv/tree/master/voting
https://pkg.go.dev/github.com/ing-bank/zkrp
https://github.com/cloudflare/circl/
https://pkg.go.dev/crypto/elliptic
https://github.com/bwesterb/go-ristretto
https://etcd.io
https://etcd.io/docs/v3.5/faq/#deployment
https://etcd.io/docs/v3.5/op-guide/hardware/
https://www.rust-lang.org
https://github.com/tari-project/bulletproofs-plus
https://github.com/0xPolygonZero/plonky2
https://github.com/0xProject/OpenZKP
https://github.com/bbuenz/BulletProofLib
https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Proving vote correctness in the IVXV internet voting system
	﻿﻿Background
	﻿﻿Prior art and existing solutions
	﻿Selection criteria

	﻿﻿Using Bulletproofs for vote correctness
	﻿Setting
	﻿Range proof for concrete ranges
	﻿Discrete logarithm equality across groups
	﻿Security guarantees
	﻿﻿Proof size
	﻿Concrete instantiation

	﻿﻿Results
	﻿﻿Benchmarks
	﻿Discussion

	﻿﻿Conclusions and future work
	﻿References

