How not to Use a Privacy-Preserving
Computation Platform: Case Study of a Voting
Application

Jan Willemson!2

1 Cybernetica AS, Ulikooli 2, 51003 Tartu, Estonia
jan.willemson@cyber.ee

2 STACC, Ulikooli 2, 51003 Tartu, Estonia

Abstract. We present an analysis of a recent proposal by Dang-awan
et al. who develop a remote electronic voting protocol based on secure
multi-party computation framework Sharemind. Even though Sharemind
comes with provable security guarantees and an application development
framework, the proposed protocol and its implementation contain a num-
ber of flaws making the result insecure. We hope this case study serves
as a good educational material for future secure computation application
and voting protocol developers.

Keywords: secure computation, electronic voting, protocol analysis

1 Introduction

Data processing is a field offering both threats and opportunities. On one
hand, having access to larger amount of high-precision data allows to take
better-informed policy decisions and as a result increase the quality of life
of the whole society. On the other hand, having access to personal infor-
mation may give rise to malicious profiling, manipulation, blackmailing
or other types of misuse.

Thus a balance is required between the two extremes of making all
data public (destroying individual privacy) and closing all data up (de-
stroying data utility).

One possible equilibrium is provided by secure computation mecha-
nisms that allow to generate aggregate results while still protecting the
individual records. Being originally proposed in early 1980s, the respective
methods have evolved over the decades, resulting in a number or prac-
tically applicable frameworks. Some of the currently actively developed
examples include Sharemind [7], SPDZ [9], ObliVM [21], Chameleon [26],

etc.

Unfortunately, building an application on top of such a framework
does not yet guarantee that the application itself is secure. There are
many places where things can go wrong if done carelessly.

A tempting area to deploy secure computation mechanisms is elec-
tronic voting. At the first sight, its problem setting closely resembles the
one of secure computation. A potentially large number of voters each
have their private input (political preference), and their joint interest is
to compute an aggregate end result (the tally).

The major approach to join the two worlds has been using homomor-
phic encryption which has been studied and developed since 1980s [3, 4].
However, this approach is quite limited in the choice of voting protocols
it is able to implement. Since homomorphic encryption allows performing
only one kind of protected operation (say, addition), the resulting proto-
cols can not go much further from simple vote counting. Implementing
more involved paradigms like preferential voting or supporting more com-
plex ballots becomes very challenging.

Deploying a fully-fledged secure computation framework as a basis
for a flexible electronic voting solution is a natural idea. However, until
recently there have been only a few incomplete attempts in this direc-
tion. In [13], Gang merely states the basic idea, and in [24], Nair et al.
implement a simple Java application to add secret-shared votes. Gjgsteen
and Strand take a different approach utilising recent advances in fully
homomorphic encryption [16]. However, fully homomorphic encryption is
still too inefficient to be applied on a large scale.

The first fully functional solution for secure computation based elec-
tronic voting was proposed and implemented by Dang-awan et al. in
2018 [10]. They have built their proof-of-concept application on top of
Sharemind® [7], an established secure computation platform with good
development tools, including high-level SecerC programming language
for creating secure applications [6]. Regrettably, Dang-awan et al. made a
number of mistakes in several stages of design and development, resulting
in a completely insecure application.

In this paper, we will be going over their main flaws. Besides the direct
protocol-analytic value, we find the result also very educational for the
developers of both secure computation and electronic voting applications.

The paper is organised as follows. We begin with a short overview of
the state of the art in both secure computation and electronic voting in
Section 2, followed by a general overview of the system architecture of
Dang-awan et al. [10] in Section 3. Next we analyse both the voting and

3 https://sharemind.cyber.ce/

tallying processes in Sections 4 and 5, respectively. Finally, we draw some
conclusions in Section 6.

2 State of the Art

Both secure computation and electronic voting domains have been ac-
tively studied for decades.

The idea and first protocols for secure computation come from Yao
in early 1980s [30]. Yao built his protocols around the garbled circuits
paradigm. In the later research, also other algebraic primitives like secret
sharing [28] and fully homomorphic encryption (FHE) [14] have been
proposed as the basis for secure computation. We refer to [8] and [23] for
good recent surveys on the respective topics.

Even though FHE, in principle, supports outsourcing of arbitrary
computations, the implied overhead of current implementations is still too
large for even medium-size computations [2]. Garbled circuits are much
faster, but assume a lot of bandwidth between the computing nodes. All
in all, secret-sharing-based secure computation frameworks provide cur-
rently the best trade-off between performance and security properties [2].

The idea of using electr(on)ic means for vote recording is almost as
old as human usage of electricity. On June 1, 1869, Thomas A. Edison was
awarded U.S. Patent number 90,646 for an “electrographic vote-recorder”
which he envisioned to be used in U.S. Congress elections. In 1870s, sev-
eral proposals to use electric machinery to record votes were made in
France [19]. Since then, mankind has experimented with various vote
casting assistants including Direct Recording Electronic machines and
Internet voting. We refer to Robert Krimmer’s PhD thesis for a good
historical overview of all the relevant developments and their societal
context [19].

By early 2000s, Internet had become the primary means of data trans-
fer. It was a natural question to ask whether votes could also be cast via
Internet during elections. For example, there was such an experiment
performed in 2000 Arizona presidential primaries [1]. The first legally
binding country-wide elections with Internet voting as an option were or-
ganised in Estonia in 2005 [22]. Since then, several countries (e.g. Norway,
Switzerland and Australia) have experimented with various approaches.

One of the main challenges with any kind of elections is ensuring
integrity of the result. To achieve this, all of the processes must be trans-
parent and independently auditable, preserving vote privacy at the same
time. There is an inherent contradiction between these two requirements,

making finding a trade-off a delicate task (see e.g. [25] for a good overview
of recent research in this direction).

The scheme of Dang-awan et al. [10] also tries to establish an equilib-
rium between privacy and verifiability. Unfortunately, it achieves neither
of these properties.

3 System architecture

Remote electronic voting systems generally comprise of the following com-
ponents.

— Client software working in the voter’s environment and being re-
sponsible for displaying the options, getting the voter preference and
securing it (by encrypting, signing and/or other means).

— Voting server being responsible for collecting and storing the votes
(typically in a secured state).

— Tallying server is where the votes are opened (e.g. decrypted) and
tabulated.

To prove that the required security properties of the system hold,
frequently various auditing components are implemented in addition.
In a more general sense, we can also consider operating systems, net-
work connections, local legislation, etc. to be part of the picture, but out
treatment will not go into these details.

Dang-awan et al. [10] start from the observation that securing the vot-
ing and tallying servers is a critical prerequisite for a trustworthy remote
electronic voting system. Indeed, a breach in a server-side component
has a potential to allow for a large-scale vote manipulation attack to be
implemented unnoticed [29].

In order to decrease the need to rely on a single server, Dang-awan et
al. propose to distribute the voting server between different parties and
run secure multi-party computation (SMC) protocols between them to
achieve the required functionality [10].

On the high level, a representative-based architecture is used [12] (see
Figure 1).

In this architecture, voters act as (input) parties submitting their
votes in a secret shared form to computation servers (also called nodes),
of which there are three in the standard configuration of Sharemind. Each
server also has a database back-end to store the shares, and a Node.js
front-end to implement communication routines with the other parties.

Running applications in the distributed environment is managed by
a special controller library. One example of such an application is the

Party 1 Computation

server 1
Party 2 Output
server
Computation
Party 3 server 2

Split input Secure Split output
protocol

Fig. 1. Representative-based architecture for SMC [12]

tally triggered by the election organiser, with the aggregated end result
designated for the output server. Note that the end result is computed
and reaches the output server in secret shared form. In order to tabulate
the result, it must be explicitly declassified, i.e. the shares of the output
are combined according to the underlying secret sharing scheme to give
the open aggregated tally.

Declassification operation is security-critical. In principle, it can also
be applied on intermediate results or even input values, thus violating
their privacy. On the other hand, this operation is required to obtain
human-readable output of the computations, so we can not just prohibit
it. Thus, declassification has to be invoked with great caution.

4 Voting

In the system proposed by Dang-awan et al., vote casting is implemented
via a Javascript library loaded into the browser. The library secret shares
the vote (even though this operation is repeatedly confused with encryp-
tion in [10]) and sends the shares to Sharemind computing nodes.

The first problem we observe is that integrity of the votes is not pro-
tected by signatures or any other strong cryptographic mechanism. In-
stead, the authors propose a naive cast-as-intended verification protocol.

The vote (consisting of the voter ID, position ID and candidate ID)
is check-summed using CRC32, and this check sum is then hashed with
SHA-1. The resulting hash is displayed to the voter as a receipt. After
the vote shares are received by the Sharemind nodes, they perform the
same operation and the resulting SHA-1 hash is returned to the voter for
comparison. If the comparison succeeds, the voter should be assured of
correct casting.

There are many flaws in this protocol. Perhaps the biggest conceptual
problem is that all the communication between the voter and the cen-
tral system (including displaying the check-sums) is performed through a
single web browser. While this is definitely convenient, it creates a single
point of attack. When the browser gets compromised (a scenario that is
unfortunately very much possible), it can manipulate the displayed infor-
mation arbitrarily. As a result, the voter can not distinguish whether the
hash-check-sum displayed to her really matches the vote stored on the
servers, or has it been maliciously changed before being shown to her.

It is exactly for this reason that remote cast-as-intended verification
needs and independent channel. It may be implemented in various ways
like the code sheets plus SMS as in Norway [15], or using an independent
auditing device as in Estonia [17]. In any case it is clear that just relying
on one medium for both vote casting and verification is not sufficient.

Second, applying SHA-1 after CRC32 does not add any security as
SHA-1 is a deterministic function (but it does make the hashes longer,
thus more difficult to compare by a human).

Third, no random salt is added before hashing. This means that the
pre-images can be easily found by full inspection. To give some back-
of-the-envelope estimates, let’s consider the university student council
election given as a use case by the authors of [10]. There would probably
be about few thousand voters (say, up to 10,000), a few positions (say,
about 10), and a few dozens of candidates (say, up to 100).

All in all, a vote has in the order of magnitude 10 million possible
values. Since both CRC32 and SHA-1 are designed to be very fast to
evaluate, pre-computing a table of 10 million hashes is an easy task. As
all the hashes are put on a publicly accessible bulletin board (basically a
webpage) for verification purposes, anyone with the pre-computed table
can efficiently find out how everyone of the voters voted. This is definitely
something that a well-designed election system should avoid in order to
counter vote selling and other coercion attacks.

The double hashing proposed in [10] also leads to other problems.
Note that the output of CRC32 is just 32 bits long and

V232 = 210 = 65536 .
This means that whenever the number of possible vote options
F#uvoters x #positions X #candidates

is roughly equal to or larger than 65536, there is a significant probability
(50% or larger) of a collision due to the birthday paradox. Again, re-
hashing the output with SHA-1 is useless against such collisions resulting
already from CRC32.

What this means is that the server can present the same receipt to
several voters whose choices happen to give a collision. This defeats the
whole purpose of the cast-as-intended verification.

Ironically, the collisions may give some coercion-resistance to the scheme,
but only in the case that the voter’s true preference and the coercer’s
preference give the same CRC32 hash, which is in turn a very unlikely
situation.

The way server-side verification hash is computed is also significant.
Dang-awan et al. present the actual SecreC snippet that they have used
(see Figure 2). Note that curly brace mismatch comes already from [10];
confusion of secret sharing and encryption is also evident here.

Note that all the vote components are explicitly declassified before
computing the CRC32 hash. What this operation does is to make all
these private values accessible to all the computing nodes. This defeats the
whole purpose of using a secure computation platform in the first place,
and thus constitutes the biggest flaw in the whole paper. Declassification
should only happen in the very last stage of computation, i.e. only on the
tally results.

The authors of [10] refer to unavailability of other hash functions on
Sharemind platform other than CRC32 as the main reason for using it. All
the above-mentioned problems away, it is unclear why they did not decide
to at least use a privacy-preserving version of it in their implementation.

Limitations of the out-of-the-box API are, in general, a poor excuse
for using insecure primitives. CRC32 was never intended as a crypto-
graphic hash functions, it can merely capture stochastic transmission er-
rors, but it can not withstand active collision and pre-image attacks. In
case stronger cryptographic primitives (hash functions, signatures, etc.)
are needed, Sharemind provides the developers with various tools (like

/K 3Kk sk ook ok sk ok s ok ok sk ok s ok ok sk ok s ok ok sk sk s ok ok ok ok s ok ok ok ok ok K K
app_save_vote.sc:

How sent encrypted values are saved
Kok Kok ok o oK o oK oK KoK KoK K oK K ok oK ok K ok oK ok ok o oK o oK oK oK ok K ok
for (uint i = 0; i < size(candidateId); ++i) {
table = arrayToString(
declassify(electionId[i]));
tdbInsertRow(datasource, table,
{voterId, positionId[i],candidateId[i]});
print ("ROW INSERTED");
message = bl_str(
arrayToString(declassify(voterId))
+arrayToString(declassify(positionId[i]))
+arrayToString(declassify(candidateId[i])));
hash[i] = CRC32(message); // hashes returned
}

Fig. 2. Vote recording script

SecerC domain-specific language [6]) for extending the API. Of course,
there would be some performance overhead, but this is inherent in the
case of secure computations.

5 Tally

The tallying procedure of elections is essentially a histogram computa-
tion, and this Dang-awan et al. actually implement in a privacy-preserving
manner. However, privacy is not the only requirement of the tally pro-
cess. Perhaps even more important is integrity, i.e. making sure that vote
counting was not manipulated by anyone.

The biggest problem in [10] is using Sharemind in its out-of-the-box,
three-server passive security mode. What passive security means here is
the ability to withstand an attacker who is only observing one of the
computing nodes, but is not trying to actively interfere with it. However,
this model is too weak for the voting use case.

Just to give a small illustrating example, recall that standard Share-
mind uses additive secret sharing [7], i.e. a value x € Zy32 is divided into
shares x1,x9, 3 € Zy32 so that

x1+x2+x3:xmod232,

where the share x; is held by the computing party ;. What a malicious
party can do is e.g. increasing his share of one of the votes and decreas-

ing another at the same time, resulting in the same change in the values
of the vote sums. This would lead to a serious voting result trustwor-
thiness violation as any computing node would be able to manipulate it
undetected.

Of course, tally integrity concerns are inherent in any election system.
This is why a large variety of approaches towards verification have been
proposed in the research community (see, e.g. [18] for a good overview).
Ideally, tally correctness should be checkable by everyone, or at least by a
large number of designated independent auditors. The proposal by Dang-
awan et al. does not foresee any of such mechanisms.

Ironically, the ability to find pre-images of hashes displayed on the
bulletin board gives a way for anyone to compute the tally independently.
However, this happens with the price of total vote privacy loss, which is
something we do not want either.

If a multi-party computation engine like Sharemind is used to imple-
ment the voting server, measures ensuring security against active manip-
ulation attacks should be deployed [20, 11].

On top of that, modern electronic voting systems target software in-
dependence, a state of affairs where verifying security properties of the
system should not rely on assumptions about the underlying software
platform [27]. A practical way of approaching this target is requiring
strong independently verifiable cryptographic audit trail of all the criti-
cal operations.

In the case of vote tallying, there are two main approaches proposed
and implemented that can achieve this property. First, homomorphic tal-
lying allows combining votes under encryption so that the end result is the
encryption of the final count. Second, votes can also be directly decrypted
giving non-interactive zero-knowledge proofs of decryption. To facilitate
independent auditing and protect vote privacy at the same time, mix-nets
need to be applied in this case. We refer to [5] for a recent overview on
these techniques.

Secure computations on top of secret sharing can actually be imple-
mented in a homomorphic way. In fact, the tally routine of Dang-awan et
al. makes use of homomorphic properties of Sharemind’s additive secret
sharing. But the missing piece of the puzzle is a software-independent
cryptographic trail that can be verified for integrity by independent audi-
tors. Developing such a component is a necessary prerequisite for a voting
system to be considered secure in late 2010-s.

6 Conclusions

Implementing a secure computation application is tricky, even if you have
access to a well-established platform with provable security guarantees
like Sharemind.

First of all, it is crucial to understand all the security aspects of the
application domain. Electronic voting is an especially complicated area,
since there are a number of different and partly even contradicting re-
quirements. Failure to take some of them (like coercion-resistance or tally
integrity) into account will result in an insecure system.

It is also important to fully specify and understand the threat model.
In case on remote electronic voting, the biggest vulnerabilities are inflicted
by the weaknesses of the client platform. The protocol of Dang-awan et al.
relies on a web browser as the sole voter device. If the attacker manages
to gain the control of it, he can leave the voter with the impression that
her vote was cast fine, whereas in reality it has been modified or blocked
altogether. To counter this threat, a verification procedure utilising an
independent channel is unavoidable.

Third, using a secure computation platform does not automatically
imply security of the application. On one hand, there are several defini-
tions of security. And on the other hand, there are simple programming
flaws like declassifying values too early that render the whole framework
useless. As declassification is a necessary part of secure computation pro-
tocols, it can not just be prohibited. It is inherently the responsibility of
the application developer to use it only when absolutely necessary.

Secure computation platforms are in fast development and their func-
tionality is expanding all the time. Nevertheless, it may sometimes happen
that a desired API call is missing. In that case it is a bad idea to search
through the API documentation for something remotely similar. CRC32
was never designed to be a cryptographic hash function (even though
check-summing is sometimes also called hashing). Its collisions are easy
to find and it is easy to invert. Confusing the design with an extra layer
of cryptographic hashing does not improve the situation.

And last but not least — even the strongest cryptographic guarantees
do not protect against poor overall protocol design. Hashing values from
a relatively small domain without extra entropy leads to easy pre-image-
finding even if the hash function would be implemented securely. In case
of electronic voting applications, this leads to large-scale privacy violation
and potential coercion attacks.

Learning is a process that involves making mistakes, and before a
person is able to build something strong, he/she has to acquire knowledge
of potentially weak places. We hope that this paper has served as a good
study use case for the future architects of both secure computation and
voting applications.

Acknowledgments The research leading to these results has received
funding from the Estonian Research Council under Institutional Research
Grant TUT27-1 and the European Regional Development Fund through
the Estonian Centre of Excellence in ICT Research (EXCITE) and the
grant number EU48684.

References

1. Report of the National Workshop on Internet Voting: Issues
and Research Agenda (March 2001), internet Policy Institute,
https://www.verifiedvoting.org/downloads/NSFInternet VotingReport.pdf

2. Archer, D.W., Bogdanov, D., Pinkas, B., Pullonen, P.: Maturity and Performance
of Programmable Secure Computation. IEEE Security & Privacy 14(5), 48-56
(2016), https://doi.org/10.1109/MSP.2016.97

3. Benaloh, J.C., Fischer, M.J.: A Robust and Verifiable Cryptographically Secure
Election Scheme (Extended Abstract). In: 26th Annual Symposium on Foundations
of Computer Science, Portland, Oregon, USA, 21-23 October 1985. pp. 372-382.
IEEE Computer Society (1985), https://doi.org/10.1109/SFCS.1985.2

4. Benaloh, J.C., Yung, M.: Distributing the Power of a Government to Enhance
the Privacy of Voters (Extended Abstract). In: Halpern, J.Y. (ed.) Proceed-
ings of the Fifth Annual ACM Symposium on Principles of Distributed Com-
puting, Calgary, Alberta, Canada, August 11-13, 1986. pp. 52-62. ACM (1986),
https://doi.org/10.1145/10590.10595

5. del Blanco, D.Y.M., Alonso, L.P., Alonso, J.A.H.: Review of Cryptographic
Schemes applied to Remote Electronic Voting systems: remaining challenges and
the upcoming post-quantum paradigm. Open Mathematics 16(1), 95-112 (2018)

6. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic Language for Privacy-
preserving Applications. In: Proceedings of the First ACM Workshop on Language
Support for Privacy-enhancing Technologies. pp. 23-26. PETShop '13, ACM, New
York, NY, USA (2013), http://doi.acm.org/10.1145/2517872.2517875

7. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Jajodia, S., Lépez, J. (eds.) Computer Security -
ESORICS 2008, 13th European Symposium on Research in Computer Security,
Milaga, Spain, October 6-8, 2008. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 5283, pp. 192-206. Springer (2008), https://doi.org/10.1007/978-3-540-
88313-5_13

8. Cramer, R., Damgard, 1.B., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing. Cambridge University Press (July 2015)

9. Damgard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty Computation
from Somewhat Homomorphic Encryption. In: Safavi-Naini, R., Canetti, R.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

(eds.) Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7417, pp. 643-662. Springer (2012),
https://doi.org/10.1007/978-3-642-32009-5_38

Dang-awan, R., Piscos, J.A., Chua, R.B.: Using Sharemind as a Tool to Develop
an Internet Voting System with Secure Multiparty Computation. In: 2018 9th
International Conference on Information, Intelligence, Systems and Applications
(TISA). pp. 1-7. IEEE (July 2018)

Eerikson, H., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use your Brain!
Arithmetic 3PC For Any Modulus with Active Security. Cryptology ePrint Archive,
Report 2019/164 (2019), https://eprint.iacr.org/2019/164

Frikken, K.B.: Secure Multiparty Computation. In: Atallah, M.J., Blanton, M.
(eds.) Algorithms and Theory of Computation Handbook, Volume 2: Special Top-
ics and Techniques, pp. 14-1...14-16. CRC Press (2009)

Gang, C.: An Electronic Voting Scheme Based on Secure Multi-party Computa-
tion. In: 2008 International Symposium on Computer Science and Computational
Technology. vol. 1, pp. 292-294 (Dec 2008)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169-178. ACM
(2009), https://doi.org/10.1145/1536414.1536440

Gjosteen, K.: The Norwegian Internet Voting Protocol. In: Kiayias, A., Lip-
maa, H. (eds.) E-Voting and Identity - Third International Conference,
VoteID 2011, Tallinn, Estonia, September 28-30, 2011, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 7187, pp. 1-18. Springer (2011),
https://doi.org/10.1007/978-3-642-32747-6_1

Gjosteen, K., Strand, M.: A Roadmap to Fully Homomorphic Elections: Stronger
Security, Better Verifiability. In: Brenner, M., Rohloff, K., Bonneau, J., Miller,
A., Ryan, P.Y.A., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M.
(eds.) Financial Cryptography and Data Security - FC 2017 International Work-
shops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers. Lecture Notes in Computer Science, vol. 10323,
pp. 404-418. Springer (2017), https://doi.org/10.1007/978-3-319-70278-0_25
Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: Krimmer, R.,
Volkamer, M. (eds.) 6th International Conference on Electronic Voting: Verifying
the Vote, EVOTE 2014, Lochau / Bregenz, Austria, October 29-31, 2014. pp. 1-8.
IEEE (2014), https://doi.org/10.1109/EVOTE.2014.7001135

Jonker, H., Mauw, S., Pang, J.: Privacy and verifiability in voting systems:
Methods, developments and trends. Computer Science Review 10, 1-30 (2013),
https://doi.org/10.1016/j.cosrev.2013.08.002

Krimmer, R.: The Evolution of E-voting: Why Voting Technology is Used and
How it Affects Democracy. Ph.D. thesis, Tallinn University of Technology (2012),
doctoral Theses Series I: Social Sciences

Laud, P., Pankova, A., Jagoméigis, R.: Preprocessing Based Verification of
Multiparty Protocols with Honest Majority. PoPETs 2017(4), 23-76 (2017),
https://doi.org/10.1515/popets-2017-0038

Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: A Programming
Framework for Secure Computation. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. pp. 359-376. IEEE Com-
puter Society (2015), https://doi.org/10.1109/SP.2015.29

22.

23.

24.

25.

26.

27.

28.

29.

30.

Madise, U., Martens, T.. E-voting in Estonia 2005. The first Practice of
Country-wide binding Internet Voting in the World. In: Krimmer, R. (ed.)
Electronic Voting 2006: 2nd International Workshop, Co-organized by Coun-
cil of Europe, ESF TED, IFIP WG 8.6 and E-Voting.CC, August, 2nd - 4th,
2006 in Castle Hofen, Bregenz, Austria. LNI, vol. 86, pp. 15-26. GI (2006),
http://subs.emis.de/LNI/Proceedings/Proceedings86/article4d547.html

Martins, P., Sousa, L., Mariano, A.: A Survey on Fully Homomorphic Encryption:
An Engineering Perspective. ACM Comput. Surv. 50(6), 83:1-83:33 (Dec 2017),
http://doi.acm.org/10.1145/3124441

Nair, D.G., Binu, V.P., Kumar, G.S.: An Improved E-voting scheme using Secret
Sharing based Secure Multi-party Computation (2015)

Puiggali, J., Cucurull, J., Guasch, S., Krimmer, R.: Verifiability Experiences in
Government Online Voting Systems. In: Krimmer, R., Volkamer, M., Binder, N.B.,
Kersting, N., Pereira, O., Schiirmann, C. (eds.) Electronic Voting - Second Inter-
national Joint Conference, E-Vote-ID 2017, Bregenz, Austria, October 24-27, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10615, pp. 248-263. Springer
(2017), https://doi.org/10.1007/978-3-319-68687-5_15

Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: A Hybrid Secure Computation Framework for Machine Learn-
ing Applications. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security. pp. 707-721. ASTACCS ’18, ACM, New York, NY,
USA (2018), http://doi.acm.org/10.1145/3196494.3196522

Rivest, R.L.: On the notion of ‘software independence’ in voting systems. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 366(1881), 3759-3767 (2008)

Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612-613
(1979)

Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine,
M., Halderman, J.A.: Security analysis of the Estonian internet voting system. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 703-715. ACM (2014)

Yao, A.C.: Protocols for Secure Computations (Extended Abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982. pp. 160-164. IEEE Computer Society (1982),
https://doi.org/10.1109/SFCS.1982.38

